
To appear in ISSTA 2002

Effectively Prioritizing Tests in Development Environment
Amitabh Srivastava

Microsoft Research
One Microsoft Way

Redmond, WA

amitabhs@microsoft.com

Jay Thiagarajan
Microsoft Research
One Microsoft Way

Redmond, WA

jaythia@microsoft.com

ABSTRACT
Software testing helps ensure not only that the software under
development has been implemented correctly, but also that further
development does not break it. If developers introduce new
defects into the software, these should be detected as early and
inexpensively as possible in the development cycle. To help
optimize which tests are run at what points in the design cycle, we
have built Echelon, a test prioritization system, which prioritizes
the application’s given set of tests, based on what changes have
been made to the program.

Echelon builds on the previous work on test prioritization and
proposes a practical binary code based approach that scales well
to large systems. Echelon utilizes a binary matching system that
can accurately compute the differences at a basic block granularity
between two versions of the program in binary form. Echelon
utilizes a fast, simple and intuitive heuristic that works well in
practice to compute what tests will cover the affected basic blocks
in the program. Echelon orders the given tests to maximally cover
the affected program so that defects are likely to be found quickly
and inexpensively. Although the primary focus in Echelon is on
program changes, other criteria can be added in computing the
priorities.

Echelon is part of a test effectiveness infrastructure that runs
under the Windows environment. It is currently being integrated
into the Microsoft software development process. Echelon has
been tested on large Microsoft product binaries. The results show
that Echelon is effective in ordering tests based on changes
between two program versions.

Keywords
Software testing, test prioritization, regression testing, test
selection, test minimization.

1. INTRODUCTION
In large-scale software development, testing accounts for a
substantial portion of the development cost. An important goal of
testing is to expose defects in software; detection early in the
development cycle saves time and resources. Testing of software,

therefore, occurs continuously throughout the development cycle1.
For example, developers may run a few simple pre-checkin tests
to ensure that their code changes will not keep the program from
being built (compiled and linked) and to catch a moderate number
of defects. Later, after the whole program is built, verification
tests are run before it is released for full testing. These tests are
not intended to be exhaustive and must complete within a limited
time.

Full testing, running all tests in the test suite, is intended to be
exhaustive and may take days or weeks to run. Even during full
testing, it remains advantageous to detect the defects as early as
possible, e.g., on day 1 rather than day 21. Early detection of
defects enables developers to start sooner on finding and fixing
defects for the next iteration. Once the software is released,
software patches to update released software also go through the
regular test process. However, there are certain rare
circumstances, such as emergency patches for critical bugs, when
tests must be run under severe time constraints and certain tests
must be skipped.

To address these scenarios effectively, developers and testers must
be able to run the right tests at the right time. New defects recently
introduced into the system are most likely to be from recent code
changes. Therefore, an effective strategy is to focus testing efforts
on parts of the program affected by changes. Whenever a
developer checks in code, a set of tests can be dynamically
selected to exercise parts of the program affected by the
developer’s code changes, subject to a specified time limit. This
same technique can also be applied later to testing the system after
it is built. Even for full testing, we first want to run tests that will
exercise the affected parts of the program, before any other tests.

For any of these techniques to be used in a large-scale
development environment, of course, they must be fast, useful,
and integrated into the development process.

Over the past decade a number of techniques have been proposed
and we discuss them in Section 2. We have built a test
prioritization system, Echelon, which prioritizes an existing set of
tests to address all these scenarios. Echelon extends the previous
techniques, and proposes a practical binary code based approach

1 For this discussion, we’ll use the following simple development
model. Developers write code based on the program’s
specification and check it into the development process. Code is
compiled and linked and the application is built, verified, and
then released for testing. Defects (program not behaving as per
its specification) detected during testing are fixed in the code,
the fixes are checked in, and this process is repeated until all
detected defects have been eliminated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

for test prioritization based on program change. It takes as input
two versions of the program in binary form along with the test
coverage information of the older version, detailing which tests
cover which parts of the program. Echelon outputs a prioritized
list of tests. This ordered list of tests starts with a minimal
sequence of tests, drawn from the given tests, that cover as much
of the affected program as possible2. This is followed by another
minimal sequence of tests drawn from the remaining tests, and so
on; it ends with a sequence of tests that do not cover any of the
affected parts of the program. Even though all the subsequent
sequences do not cover any new block that has not already been
covered by the first sequence, it is still beneficial to run as many
sequences as possible because they might cover the same code
with different data values.

It is important to emphasize that Echelon does not eliminate any
tests itself; it merely prioritizes them, so as much of the changed
code is tested as early as possible. In time-constrained
environments, of course, an appropriate number of test sequences
can be selected from the prioritized list, and Echelon provides a
variety of information to guide this decision.

The key features of Echelon are:

• Echelon prioritizes tests into an ordered sequence of
tests based on program change.

• Echelon compute changes between programs at a very
fine granularity—at the level of basic blocks— using an
accurate binary matching algorithm.

• Echelon uses a fast, simple algorithm that works well in
practice and does not attempt an expensive data flow
algorithm to determine which new code will be covered
by which existing tests.

• Echelon operates at the binary level making it easier to
integrate into the development process. Echelon scales
to real product binaries in large-scale development
environments.

• Echelon also produces a list of program source code
that will not be covered by any of the given existing
tests. New tests will be needed to test them.

This paper discusses Echelon. It describes the previous work and
how it relates to Echelon, the test prioritization system, and
Echelon’s implementation. The paper presents the results from
prioritizing tests on binaries from large-scale development
environments, and discusses Echelon’s effectiveness.

2. RELATED WORK
To address the cost of testing, the following approaches have been
proposed: test selection [1][3][5][20][28], test prioritization [6]
[7][8][17][18], and a hybrid approach [31] combining the two
previous techniques by starting first with test selection using
source code changes [14] followed by test prioritization to
schedule the selected tests. Test minimization techniques that
permanently discard tests have been proposed in [4][13][19][30].

2 Some changes especially new code may not be covered by any
existing tests. Echelon enumerates these exceptions.

As Echelon applies prioritization in context of knowledge of the
program change, we will focus our discussion on techniques that
use program change. Program change has been proposed
[1][3][4][20][28] for test selection, and for test prioritization
[6][8][17][31]. Techniques used to compute program change are
source code differencing [6][8][28], data and control flow
analysis [1][20], and coarse grained modified code entities [5] to
identify which parts of the program might be affected by the
changes.

Source code differencing techniques can be built using commonly
available tools like the Unix diff [6][8][28], which are simple and
fast. This technique will erroneously mark a procedure as changed
when a variable in a procedure was simply renamed. It will also
fail to determine the set of affected procedures when definitions in
a header file, such as macro definitions and method definitions,
were modified. Static analysis will be needed to address these
cases.

Flow analysis is difficult in a language such as C++/C which
contains pointers, casts, and aliasing. Flow analysis is expensive
on large commercial programs [9][21]. Graves [9] argues that
cost of flow techniques can only be justified if the results were
used for other analyses.

The effectiveness of techniques is also dependent on the
granularity at which the program change is determined. Harrold
[11] shows techniques that determine change at coarser-grained
entities like functions [5] may select more tests than statement or
control flow based techniques [1][20]. Modification-based
prioritization techniques [6][8] compute program changes at the
function granularity using the UNIX diff tool.

Echelon uses a binary code based approach for test prioritization.
Working at the binary level has advantages over working at the
source code level. As binary modification eliminates the
recompilation step for collecting coverage etc., it is easier to
integrate into the build process in production environments.
Moreover, by the time the program is available in binary form, all
the changes in header files to constants, macro definitions etc.
have already been propagated to the affected procedures in the
program, thus simplifying the process for determining program
changes. Although program has been compiled to machine code
in the binary form, interprocedural flow analysis and optimization
can be performed, if needed, at binary level [24][25][26].

Echelon uses binary matching [29] to compute program change.
It computes program change at basic block granularity. Echelon
utilizes a fast and simple heuristic to predict which tests will cover
the affected basic blocks. By doing prioritization, Echelon can
use a non-precise algorithm that works well in practice.
Echelon’s technique is fast and scales well to large programs
making it suitable for use in development environments.

3. ARCHITECTURE OF ECHELON
Echelon is part of the Magellan test effectiveness tool set.
Echelon leverages the Magellan and Vulcan [23] infrastructure for
information and analysis. In this section, we first briefly describe
Magellan and Vulcan, and then discuss Echelon in greater detail.

Old Binary

New Binary

Binary Change Analysis

Coverage Analysis

Test Prioritization

Old Binary
Coverage

Prioritized list of

test cases
List of impacted blocks not
covered by existing tests

Figure 1. The Echelon system

The Magellan Test Effectiveness Infrastructure

The Magellan tool set provides an infrastructure for collecting,
storing, analyzing, and reporting information about a test process.
The core of Magellan is a SQL Server-based repository that stores
test coverage information for each test. The coverage
information can be mapped to the static structure of the program:
the procedures, files, directories, binaries etc. that make up the
program. All the program binaries that were tested and their
corresponding symbol files for all relevant versions of the
program are stored in a separate symbol repository. The
information in the symbol repository can be related to the
information in the coverage repository. The Magellan
infrastructure is designed to be extensible; Magellan provides a
well-defined interface for accessing and storing information.

Although new tools are easily added, Magellan provides a set of
tools that are commonly needed during the test process. The
toolset includes a test coverage collection tool that uses binary
instrumentation to collect block coverage and arc coverage
information both in user and kernel mode. The coverage
information is collected for each test and stored in Magellan’s
repository. For easy presentation of coverage data, Magellan
provides reporting tools with graphical user interface that can map
the data to the source code and Blender, a test migration tool, to
migrate coverage data from an older version of the program to the
new version. Blender addresses a common need when a new
version of the program arrives while testing for the previous
version is still in progress. Blender provides a convenient way to
migrate testing to the new version without losing what has already
been tested, if it is still relevant to the new version.

Binary Modification Infrastructure

Echelon utilizes a rich binary modification infrastructure called
Vulcan [23]. Vulcan is a second-generation technology that
provides both static and dynamic binary code modification and
provides a framework for analysis and optimization. Vulcan
provides a uniform abstraction to binary modification with a
simple API for inspection, instrumentation and optimization.
Vulcan works in the Win32 environment and can process x86,
IA64, and MSIL binaries. Vulcan has been used to improve the
performance and reliability of many Microsoft products.

To compute the changes between two version of the program,
Echelon utilizes BMAT[29], a binary matching tool built using
Vulcan. BMAT is a fast and effective tool that matches two
versions of a binary program without the knowledge of source
code changes. This tool uses a hashing-based matching algorithm
and a series of heuristic methods, with the goal of matching as
much of the program as possible with high accuracy. The
algorithm first matches procedures, then blocks within each
procedure. Several levels of matching are attempted with varying
degrees of fuzziness. This process allows correct matches to be
found even with shifted addresses, different register allocation,
and small program modifications. The success rate of matching of
code blocks is often higher than 99% [29]. Given two versions of
the program, BMAT finds the matches between the old basic
blocks and the new basic blocks.

3.1 Echelon: Test Prioritization System
Echelon takes as input two versions of a program in binary form
along with the test coverage information of the old binary and

produces a prioritized list of the tests, as well as a list of modified
and new blocks (or source lines) that may not be executed by any
existing test. Echelon accomplishes this task in three steps
illustrated in Figure 1.

In the first step, Echelon uses BMAT to find a matching block in
the old binary for each block in the new binary. Blocks with no
matches are marked as new blocks. Blocks with matches are
further compared to see if they are identical. (This comparison is
done at a logical level as Vulcan’s representation is symbolic and
contains no hard coded addresses.) Identical blocks are marked as
old blocks; otherwise, they are marked as old modified blocks.
For our analysis, we define impacted blocks to be the set of old
modified blocks and new blocks; these are the blocks that have
been changed between the two versions of the program.

In the second step, Echelon tries to determine which impacted
blocks in the new version are likely to be covered by an existing
test. For the old modified blocks, we simply check to see if the
test covered the matching block in the old binary using the
coverage information of the old binary. For new blocks, Echelon
uses the following simple heuristic.

As Vulcan provides the representation of the program as an inter-
procedural graph, all the successor and predecessor blocks for
each new block are easily computed. We use the heuristic that a
test may cover a new block if it covers at least one of its

immediate predecessor blocks and at least one of its immediate
successor blocks, skipping in both cases any intermediate new
blocks.

This heuristic works very well in practice (as shown in Section 5),
but it misses some infrequent cases. First, it will miss if there was
a path from a predecessor to a successor that did not go through
the new block. Echelon can overcome this by using arc coverage
or branch prediction [2] to decide which arc is likely to be taken.
Second, if a new block was a target of an indirect call, the
predecessors of the new block are not always visible in the static
graph, causing the heuristic to always predict that these blocks are

not covered by any test. To handle these blocks, Echelon
provides an option to relax the condition that requires a
predecessor block to be executed; therefore, a test will cover a
new block that is a target of an indirect call if it covers at least one
of its successor blocks. In both cases, these approaches improve
the heuristic.

After these two steps, Echelon has determined the set of impacted
blocks (new and old modified blocks) that will be covered by each
test.

Figure 2. Ordering tests

In the third step, similar to [6][8][31], Echelon prioritizes the
given set of tests. As shown in Figure 2, Echelon uses the
impacted block set for each test to prioritize the tests. Echelon
uses an iterative, greedy algorithm to first find a short sequence of
tests from the given tests such that as many of the impacted blocks
as possible will be covered. The algorithm starts by assigning
priority weight to each test equal to the number of impacted
blocks it covers. The test with the maximum weight is first
selected; in case of a tie we pick the test with the maximum
overall coverage. The selected test is removed from the list, and
the impacted blocks covered by it are removed from the impacted
block set, CurrBlkSet. The priority weight for each test is
recalculated based on the updated impacted block set, CurrBlkSet.
By doing so, the algorithm tries to pick a test from the remaining
tests that will cover the maximum number of the remaining
impacted blocks. This is repeated till any remaining test can
cover any remaining impacted blocks in CurrBlkSet. The tests
thus selected form the first sequence that will provide the
maximum coverage of the impacted blocks. This process is
repeated to generate the next sequence, till any remaining test can
cover any of the impacted blocks in ImpactedBlkSet. Remaining
tests are added to a separate sequence in the order of their overall

coverage. As we keep a sorted list of tests by weight, we terminate
the search for a test when the new computed weight is greater than
the original weight of the next test. This helps the algorithm to
converge faster.

Extension to Prioritization Algorithm

We have described the algorithm using only the coverage of the
impacted blocks to compute priority weight. An obvious addition
is taking the execution time of the tests into consideration. If two
tests provide the same coverage of impacted blocks, one with the
shorter time should be selected. Echelon provides an option to
take time into consideration and uses rate of impacted block
coverage for prioritization; rest of the prioritizing algorithm
remains unchanged. Other factors like overall coverage, rate of
fault detection etc. can be easily added in computing the priority
weight that have been used in previous work [6][8].

4. PERFORMANCE OF ECHELON
Echelon has been implemented in C++ on the Windows
environment on the Intel x86 platform. For use in production
environments, the performance of Echelon is critical. We
measured Echelon’s performance on a large production binary,
shown in Table 1, on a PIII 993 MHz, Dual proc, 1 GB RAM.

Table 1. Program information

Table 1 shows two versions of a large office productivity
application of 1.8 million lines of source code resulting in an 8.8
Mb executable with 22Mb symbol table. We selected two
versions of the binary about a month apart late in the product
development cycle. The changes between the two versions are
therefore small, thus better exercising the accuracy and
effectiveness of Echelon. Table 2 shows only 378 blocks out of
the program’s 668068 blocks were impacted; 220 new blocks
were added while 158 old blocks were modified. The application
was run with 3128 tests which take over 4 days to run on a single
machine.

Table 2. Program change information

Impacted Blocks 378 (220 New, 158 old)

Impacted Blocks covered 176 Blocks

Tests in first sequence 16 Tests

Number of sequences 1,225

Time taken by Echelon 210 seconds

Version 1 Version 2

Date December 2000 January 2001

Functions 31,020 31,026

Blocks 668,068 668,274

File Size (bytes) 8,880,128 8,880,128

PDB Size (bytes) 22,602,752 22,651,904

No. of Tests 3128 3128

Input:
TestList: set of tests
Coverage (t) : set of blocks covered by test t
ImpactedBlkSet: set of new and old modified blocks

Output: a set of sequences Seq

Algorithm:
while (any t in TestList covers any block in ImpactedBlkSet)
{

CurrBlkSet = ImpactedBlkSet
Start a new sequence Seq

while (any t in TestList covers any block in CurrBlkSet }
{

for each t in TestList compute
{

Weight(t) = count[CurrBlkSet ∩ Coverage(t)]
}
Select test t in TestList with maximum weight
Add t to current sequence Seq
Remove t from TestList
CurrBlkSet = CurrBlkSet – Coverage (p)

}
}
Put all remaining tests in TestList in a new sequence Seq

Echelon took 210 seconds to prioritize the 3128 tests: 90 seconds
to compute the program changes using binary matching and 120
seconds to compute the impacted block set and prioritizing the
tests.

5. ANALYSIS OF ECHELON RESULTS
Echelon has been tested on a number of binaries from Microsoft’s
development environment. To understand how well Echelon
performs, two measurements are of interest:

• First, how many sequences of tests were formed and
how many tests are in each sequence?

• Second, how accurate is Echelon?

We will address these questions in detail on the application binary
shown in Table 1.

Echelon prioritized the 3128 tests into 1225 sequences. The first
sequence, which provides a maximum coverage of impacted
blocks, contained only 16 tests. Figure 3 shows the number of
tests in each sequence. The number of tests in each sequence falls
sharply after the first few sequences because most of the changes
are concentrated in one part of the program. The graph also shows
that about half of the sequences towards the end contain only one
test; all these tests cover a common routine that was modified but
did not cover much of the other modified code. Echelon has
correctly prioritized these tests by putting them towards the end of
the list.

Figure 4 shows how many impacted blocks are covered by each
minimal sequence. As expected the first sequence covers the
maximum number possible. However, the graph shows that there
is a sharp decline after the first few sequences. This information
in the graph is very useful for the test team while deciding on how
many test sequences to run. Interestingly, the sequences towards
the end cover the same one block. These correspond to same
sequences consisting of single tests in Figure 3.

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

Sequence

#I
m

pa
ct

ed
B

lo
ck

s

Figure 4. Number of impacted blocks in each sequence

Figure 5 again shows the percentage coverage of impacted blocks
attained by each sequence as well as the cumulative overall
coverage attained as we proceed down the list of sequences. The
impacted block coverage is the highest for the first sequence and
it decreases, as expected, as we go along. Although Echelon does
not take overall coverage into consideration except to break ties,
the overall coverage reaches the maximum at a very fast pace.
(Note that some impacted blocks were not covered by any existing
test.) This information is also useful in deciding how many
sequences to run when running in time constrained environments.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 200 400 600 800 1000 1200 1400

Sequence

%
co

ve
ra

ge

%Cumul at i ve T otal Cover eage %Impacted Bl ock Cover age

Figure 5. Cumulative coverage and impacted coverage

Figure 3. Number of tests in each sequence

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400

Sequence

#
Te

st
C

as
es

To measure Echelon’s accuracy, we looked at two questions.

• First, how many blocks that were predicted to be
covered by a test were not in fact covered?

• Second, how many blocks that were predicted to be not
covered by a test were actually covered?

To compute this information, we collected full coverage
information for the two versions and used that to verify how well
Echelon predicted. (This collection of coverage information is
not part of normal operation of Echelon.)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

Seq 1 Seq 2 Seq 3 Seq 4

Sequence

%
Im

ap
ac

te
d

B
lo

ck
s

M
is

pr
ed

ic
te

d

Figure 6. Predicted blocks not covered

Figure 6 shows the percentage of impacted blocks in the first four
sequences that were predicted to be covered by a test but were in
fact not covered. The error was in the range of 1-4%. In each of
these cases, Echelon did not predict correctly because there was
also a direct path from the predecessor to the successor of a new
block. We could have avoided the error if we had used the
available arc coverage information to predict which edges are
likely to execute.

4.60%

4.80%

5.00%

5.20%

5.40%

5.60%

5.80%

Seq 1 Seq 2 Seq 3 Seq 4

Sequence

%
Im

pa
ct

ed
bl

oc
ks

m
is

pr
ed

ic
te

d

Figure 7. Blocks covered but not predicted

Figure 7 shows the percentage of impacted blocks in the first four
sequences that were predicted not to be covered by any test but
actually were. This error was in the range of 5-6%. In these cases,
a number of new blocks were inserted at the head of a procedure.

As the procedure was called indirectly, no predecessor of these
new block were visible in the graph. As we did not use the option
to compensate for indirect calls, Echelon incorrectly predicted that
these blocks would not be covered.

Below are results on two binaries from a Microsoft Windows
operating system. They are consistent with our previous results.
This data was collected using a partial set of tests. The tests are
coarse; each test comprises many individual tests.

Table 3. Program and Change Information

Version 1 Version 2

Date 05/01/2001 05/23/2001

Functions 1,761 1,774

Blocks 32,012 32,135

Arcs 47,131 47,323

File size (bytes) 882,688 894,464

Impacted Blocks 0 589 (350 N, 239 OC)

Tests 56 56

Time taken to
prioritize

- 29 seconds

Table 3 shows two versions of an operating system binary. Only
589 blocks out of the program’s 32135 blocks were impacted.
Echelon divided the tests into 27 sequences with the first
sequence containing only 3 tests as shown in Figure 8.

0

1

2

3

4

5

6

7

8

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Sequence

#T
es

tc
as

es

Figure 8. Number of tests in each sequence

Figure 9 shows 176 impacted blocks were covered by the first
sequence.

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Sequence

#I
m

pa
ct

ed
B

lo
ck

s

Figure 9. Number of impacted blocks in each sequence

Table 4 shows two versions of another operating system binary.
Only 270 blocks out of the program’s 31003 blocks were
impacted.

Table 4. Program and change information

Version 1 Version 2

Date 05/01/2001 05/23/2001

Functions 1,967 1,970

Blocks 30,916 31,003

Arcs 46,638 46,775

File size (bytes) 528,384 528,896

Impacted Blocks 0 270 (190 N, 80 OC)

Tests 56 56

Time taken 21 seconds

Echelon divided the tests into 34 sequences with the first
sequence containing only 1 test as shown in Figure 10.

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence

#T
es

tC
as

es
Figure 10. Number of tests in each sequence

Figure 11 shows 66 impacted blocks were covered by the first
sequence.

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Sequence

#I
m

pa
ct

ed
B

lo
ck

s

Figure 11. Number of impacted blocks in each sequence

6. EFFECTIVENESS OF ECHELON
An important measure of effectiveness of a prioritization
technique is the early detection of defects by running the tests in
the specified order. A number of empirical studies to measure
various test prioritization techniques have been conducted in
[6][7][8][18][31]. To measure the effectiveness of Echelon, we
studied the defect detection on binaries from a development
process; the preliminary results on two binaries are discussed
below.

Echelon prioritized 157 tests for a binary from the development
process for which the coverage data was available. The binary

(size = 410KB, functions = 2308, blocks = 22446) had a known
number of defects. Echelon divided the tests into 148 sequences
(sequence 1 – 6 tests, sequence 2 – 4 tests, sequence 3 – 2 tests,
sequence 4 – 1 test). Figure 12 shows the percentage of defects
detected by the first four sequences. It also shows the percentage
of unique defects, which are defects that were not detected by any
of the previous sequences. As Figure 12 shows, the first sequence
detected 81% of the defects. The second sequence detected 62%
of the defects; 6% of these defects were unique while 56% of the
defects had already been detected by the first sequence. The rest
of the sequences did not detect any unique defects. None of the
existing tests detected the remaining 13% of the defects; new tests
will be needed to detect them.

0

10

20

30

40

50

60

70

80

90

1 2 3 4

Sequence

%
D

ef
ec

ts
de

te
ct

ed

%Defects % Unique Defects

Figure 12. Defects detected in each sequence

We conducted a similar study for another binary from the
development process. Echelon prioritized 221 tests for two
versions of a binary (size = 400KB, functions = 3675, blocks =
23153) from the development process which had a known set of
defects. Echelon divided the tests into 176 sequences (sequence 1
– 4 tests, sequence 2 – 4 tests, sequence 3 – 3 tests, sequence 4 –
5 tests). As Figure 13 shows, the first sequence detected 85% of
the defects. The second sequence detected 71% of the defects;
9% of these defects were unique while 62% of the defects had
already been detected by the first sequence. The third sequence
detected 57% of the defects; 4% of these defects were unique
while 53% of the defects had already been detected by the
previous sequences. The rest of the sequences did not detect any
unique defects. None of the existing tests detected the remaining
2% of the defects; new tests will be needed to detect them.

0

10

20

30

40

50

60

70

80

90

1 2 3 4

Sequence

%
D

ef
ec

ts
de

te
ct

ed

%Defects %Unique Defects

Figure 13. Defects detected in each sequence

7. FUTURE WORK
This technology can be applied effectively to address other testing
strategies, for example, “real-time” testing: test teams, for
example, have performance regression test suites that verify if
program changes have not adversely affected program
performance. Test teams are often faced with the question of how
often or when to run these performance regression suites.
Through performance measurement tools, we already know parts
of the program where the application spends most of its time on
critical programs. Echelon can accurately determine if any
performance critical parts of the program have been changed and
then assign additional appropriate weight to the performance
regression tests leading them to be prioritized higher. A natural
extension is to use more information like performance from the
development process to guide testing decisions.

Also, as we collect more data from the development environment,
we will track the effectiveness of Echelon in finding defects.

8. CONCLUSIONS
The paper shows that it is possible to effectively prioritize tests in
large scale software development environments. By using binary
matching to determine changes at a fine granularity along with a
simple and intuitive algorithm, Echelon can prioritize tests based
on changes between two versions of the program. Echelon is able
to operate on large binaries built from millions of lines of source
code and produce results within a few minutes. This approach
enables effective testing early in the development process that
saves time and resources. Echelon is being integrated into the
Microsoft development process; we’ll continue to refine and
extend the algorithms as we learn more from its usage in real
production environments.

9. ACKNOWLEDGMENTS
Many people have helped bring Echelon to its current stage. The
Magellan and Vulcan team worked tirelessly to integrate and
deploy this work in Microsoft’s development environment. Our
debugging and verification of results greatly benefited from Andy
Edwards’ visualization tool that enabled us to visualize Vulcan’s
representation. Loren Merriman helped us in getting the initial
measurements. Pankaj Lunia and Norberto Arrieta were the early
adopters and braved through the early versions of the system.
John DeTreville, G.S. Rana, David Notkin, Jim Larus, Tom Ball,
and the anonymous referees provided perceptive comments on the
early drafts of the paper. Our sincere thanks to all.

REFERENCES

[1] T. Ball, “On the Limit of Control Flow Analysis for
Regression Test Selection”. Proc. ACM Int’l Symposium.
Software Testing and Analysis, pp. 134-142, Mar. 1998.

[2] T. Ball and J. Larus, Branch Prediction for Free, Proceedings
of Programming Language Design and Implementation,
1993.

[3] D. Binkley, “Semantics guided Regression Test Cost
Reduction”, IEEE Trans. Software Eng., vol. 23, no. 8, pp.
498-516, Aug. 1997.

[4] T.Y. Chen and M.F. Lau, “Dividing Strategies for the
Optimization of a Test Suite”, Information Processing
Letters, vol. 60, no. 3, pp. 135-141, Mar. 1996.

[5] Y.F. Chen, D.S. Rosenblum, and K.P. Vo, “TestTube: A
System for Selective Regression Testing,” Proc. 16th Int’l
Conf. Software Eng., pp. 211-222, May 1994.

[6] S. Elbaum, .A. Malishevsky and G. Rothermel, “Test case
prioritization: A family of empirical studies”, IEEE Trans.
Software Engg. , vol. 28, no. 2, pp. 159-182, Feb. 2002.

[7] S. Elbaum, .A. Malishevsky and G. Rothermel,
“Incorporating varying test costs and fault severities into test
case prioritization”, Proc. 23rd Int’l Conf. Software Engg.,
pp. 329-338, May 2001.

[8] S. Elbaum, .A. Malishevsky and G. Rothermel, “Prioritizing
test cases for regression testing”, Proc. Int’l Symp. Software
Testing and Analysis, pp. 102-112, Aug. 2000.

[9] T. L. Graves, M.J. Harrold, J-M. Kim, A. Porter and G.
Rothermel, “An empirical study of regression test selection
techniques”, 20th Int’l Conference on Software Engineering,
Apr. 1998.

[10] M.J. Harrold and G. Rothermel, “Empirical Studies of a
Prediction Model for Regression Test Selection”, IEEE
Trans. On Software Eng., vol. 27, no. 3, Mar. 2001.

[11] M. J. Harrold, “Testing Evolving Software”, Journal of
Systems and Software, vol. 47, no. 2-3, pp. 173-181, Jul.
1999.

[12] M.J. Harold and G. Rothermel, “Aristotle: A System for
Research on and Development of Program Analysis Based
Tools”, Technical Report OSU-CISRC-3/97-TR17, The
Ohio State Univ., Mar. 1997.

[13] M.J. Harrold, R. Gupta and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite”, ACM Trans. Software
Eng. And Methodology, vol. 2, no. 3, pp. 270-285, July
1993.

[14] J.R. Horgan, and S.A. London, “ATAC: A data flow
coverage testing tool for C”, Proc. of Symp. On Assessment
of Quality Software Development Tools, pp. 2-10, 1992.

[15] D. Rosenblum and G. Rothermel, “An Empirical comparison
of regression test selection techniques”, Proceedings of the
Int’l Workshop for Empirical Studies of Software
Maintenance, Oct. 1997.

[16] D.S. Rosenblum and E.J. Weyuker, “Using Coverage
Information to Predict the Cost-Effectiveness of Regression
Testing Strategies”, IEEE Trans. Software Engineering, vol.
23, no. 3, pp. 146-156, Mar. 1997.

[17] G. Rothermel, R.H. Untch and M.J. Harrold, “Prioritizing
Test Cases For Regression Testing”, IEEE trans. On
Software Engineering, vol. 27, no. 10, Oct. 2001

[18] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Test
Case Prioritization: An Empirical Study”, Proc. Int’l Conf.
Software Maintenance, pp. 179-188, Aug. 1999.

[19] G. Rothermel, M.J. Harrold, J. Ostrin and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suites”, Proc. Int’l Conf.
Software Maintenance, pp. 34-43, Nov. 1998.

[20] G. Rothermel and M.J. Harrold, “A Safe, Efficient
Regression Test Selection Technique”, ACM Trans.
Software Eng. And Methodology, vol. 6, no. 2, pp. 173-210,
Apr. 1997.

[21] G. Rothermel and M. J. Harrold, “Experience with
Regression Test Selection”, Proc. of the Int’l Workshop for
Empirical Studies of Software Maintenance, Monterrey, CA,
Nov. 1996.

[22] G. Rothermel and M.J. Harrold, “Analyzing Regression Test
Selection Techniques”, IEEE Trans. Software Eng., vol. 22,
no. 8, pp. 529-551, Aug. 1996.

[23] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary
Transformation in a Distributed Environment”, Microsoft
Research Technical Report, MSR-TR-2001-50.

[24] A. Srivastava and D. Wall. Link-Time Optimization of
Address Calculation on a 64-bit Architecture. Symposium on
Programming Language Design and Implementation, 1994,
pp 49-60.

[25] A. Srivastava and A. Eustace, “ATOM – A System for
Building Customized Program Analysis Tools”, Symposium
on Programming Language Design and Implementation,
1994, pp. 196-205, 1994.

[26] A. Srivastava and D. Wall. A Practical System for
Intermodule Code Optimization at Link Time. Journal of
Programming Language, 1(1):1-18, March 93.

[27] F. Vokolos and P. Frankl, “Empirical evaluation of the
textual differencing regression testing techniques”, Int’l
conference on Software Maintenance, Nov. 1998.

[28] F. Vokolos and P. Frankl, “Pythia: a regression test selection
tool based on text differencing”, Int’l conference on
reliability, Quality and Safety of Software Intensive Systems,
May 1997.

[29] Z. Wang, K. Pierce, and S. McFarling, “BMAT: A Binary
Matching Tool for Stale Profile Propagation”, The Journal of
Instruction-Level Parallelism, vol. 2, May 2000.

[30] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur,
“Effect of Test Set Minimization on Fault Detection
Effectiveness”, Software-Practice and Experience, vol. 28.
no. 4, pp. 347-369, Apr. 1998.

[31] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A
Study of Effective Regression Testing in Practice”, Proc.
Eighth Int’l Symposium Software Reliability Eng., pp. 230-
238, Nov. 1997.

[32] W.E. Wong, J.R. Horgan, A.P. Mathur, and A. Pasquini,
“Test Set Size Minimization and Fault Detection
Effectiveness: A Case Study in a Space Application”, Proc.
21st Ann. Int’l Computer Software & Applications Conf., pp.
522-528, Aug. 1997.

.

