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Abstract Since non-dominated sorting was first adopted
in NSGA in 1995, most evolutionary algorithms have
employed non-dominated sorting as one of the major crite-
ria in their environmental selection for solving multi- and
many-objective optimization problems. In this paper, we
focus on analyzing the effectiveness and efficiency of non-
dominated sorting inmulti- andmany-objective evolutionary
algorithms. The effectiveness of non-dominated sorting is
verified by considering two popular evolutionary algorithms,
NSGA-II and KnEA, which were designed for solvingmulti-
andmany-objective optimization problems, respectively. The
efficiency of non-dominated sorting is evaluated by compar-
ing several state-of-the-art non-dominated sorting algorithms
for multi- and many-objective optimization problems. These
results provide important insights to adopt non-dominated
sorting in developing novel multi- and many-objective evo-
lutionary algorithms.
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Introduction

Multi-objective optimization problems (MOPs) refer to those
consisting of multiple contradictory objectives to be opti-
mized simultaneously, which widely exist in real-world
applications [1–5]. MOPs with more than three objec-
tives are also called many-objective optimization problems
(MaOPs) [6]. Due to the fact that the objectives are in con-
flict with each other, there usually exists a set of trade-off
solutions instead of one single optimal solution for an MOP.
In the past 2 decades, evolutionary algorithms have demon-
strated the superiority in solving MOPs, and a large number
of multi-objective evolutionary algorithms (MOEAs) have
been developed, such as NSGA-II [7], SPEA2 [8], PESA-II
[9], IBEA [10], and MOEA/D [11].

For solving MOPs, one of the most important problems
that should be addressed is how to distinguish the quality of
solutions consisting of multiple objective values. To this end,
Goldberg [12] suggested the use of thePareto dominance [13]
to sort a set of solutions for MOPs, and the sorting procedure
is called non-dominated sorting. Briefly, the non-dominated
sorting aims to divide a solution set into a number of disjoint
subsets or ranks, by means of comparing their values of the
same objective. After non-dominated sorting, solutions in
the same rank are viewed equally important, and solutions
in a smaller rank are better than those in a larger rank. Since
NSGA [14] first adopted non-dominated sorting in 1995, it
has become a widely adopted strategy in MOEAs. For non-
dominated sorting, the effectiveness and efficiency are two
important issues that have been concerned in MOEAs.

For MOPs, the effectiveness of non-dominated sorting
has long been recognized and most of the existing MOEAs
adopted this strategy, e.g., NSGA-II [7], PESA-II [9], GDE3
[15], SMPSO [16], EAG-MOEA/D [17], MOEA/IGD-NS
[18], etc. In the existing MOEAs, non-dominated sorting is
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mainly performed in environmental selection, where solu-
tions are divided into several ranks by non-dominated sorting
and those in the same rank are distinguished by additional
criteria, such as crowding distance in NSGA-II, GDE3,
SMPSO, and EAG-MOEA/D, the region-based metric in
PESA-II, and the enhanced IGD in MOEA/IGD-NS. As for
MaOPs, non-dominated sorting has also been favored by
researchers in developing MOEAs despite that its effective-
ness considerably deteriorates on MaOPs due to the Pareto
dominance resistance phenomenon [19]. Some representa-
tive MOEAs that directly adopted non-dominated sorting to
handle MaOPs include GrEA [20], NSGA-III [21], KnEA
[22], and LMEA [23]. There are also some recent works
reported that non-dominated sorting is also an effective strat-
egy to which did not use non-dominated sorting in their
original versions, e.g., decomposition-based MOEAs with
dominance, MOEA/DD [24], and BCE-MOEA/D [25].

The efficiency of non-dominated sorting is another issue
in MOEAs, since it is often criticized due to the high
computational cost. Taking the NSGA-II as an example,
non-dominated sorting consumes more than 70% of the
runtime in NSGA-II when a population size of 1000 and
a maximum generation of 500 are adopted to solve a 2-
objective DTLZ1. The computational cost will becomemuch
higher for larger population size or/and larger number of
objectives. To address this issue, a lot of non-dominated
sorting algorithms have been developed to improve the effi-
ciency of non-dominated sorting, e.g., Jensen’s sort [26],
non-dominated ranking approach [27], deductive sort [28],
and efficient non-dominated sort (ENS) [29]. There are also
some non-dominated sorting methods specially tailored for
solving MaOPs, such as corner sort [30], T-ENS [23], and
A-ENS [31].

Despite that the effectiveness and efficiency of non-
dominated sorting were widely concerned in the past years,
a little work has been reported to analyze them in MOEAs,
especially for solving MaOPs. In this paper, we empirically
investigate the effectiveness and efficiency of non-dominated
sorting inMOEAs for bothMOPs andMaOPs.We verify the
effectiveness of non-dominated sorting by considering two
popular MOEAs developed for solving MOPs and MaOPs,
NSGA-II and KnEA. Some rectifications to enhance the
effectiveness of non-dominated sorting for many-objective
optimization are also discussed. The efficiency of non-
dominated sorting is evaluated by comparing eight existing
non-dominated sorting algorithms in solving MOPs and
MaOPs. These results will be helpful for researchers to
develop new non-dominated sorting-based MOEAs which
are both effective and efficient.

The rest of the paper is organized as follows. In “Basic
concepts of multi-objective optimization and non-dominated
sorting” section, some basic concepts ofmulti-objective opti-
mization and non-dominated sorting are given. In “Effective-

ness of non-dominated sorting for multi- andmany-objective
optimization” section, the effectiveness of non-dominated
sorting is analyzed with some discussions on the existing
rectifications for many-objective optimization. Afterwards,
in “Efficiency of non-dominated sorting for multi- and
many-objective optimization” section, the efficiency of non-
dominated sorting is investigated by comparing several
non-dominated sorting methods in dealing with MOPs and
MaOPs. Finally, the conclusion is given in “Conclusion” sec-
tion.

Basic concepts of multi-objective optimization and
non-dominated sorting

A minimization MOP is defined as follows:

min f(x) = ( f1(x), . . . , fM (x))
s.t. x ∈ Ω

, (1)

where x is a solution in the decision space Ω , and f(x) con-
tains M conflicting objectives to be minimized. A solution
x is said to Pareto dominate solution y, denoted as x ≺ y, if
and only if

{ ∀i ∈ 1, . . . , M : fi (x) ≤ fi (y)
∃ j ∈ 1, . . . , M : f j (x) < f j (y)

. (2)

For an MOP, a Pareto optimal solution refers to a solu-
tion which is not dominated by any solution of the MOP,
and all these solutions constitute the Pareto optimal solution
set of the MOP. The projection of Pareto optimal solution
set in objective space is called the Pareto front. Due to
the conflicting nature of the objectives, there exists more
than one Pareto optimal solution for an MOP. In particu-
lar, for an M-objective continuous MOP, its Pareto optimal
solutions constitute an M − 1 dimensional piecewise mani-
fold [32].

Based on the Pareto dominance, solutions in a popu-
lation P can be divided into L disjoint subsets or ranks
P = {F1, . . . , FL}, where L is the maximum number of
subsets for population P . Non-dominated sorting is a proce-
dure for finding these disjoint subsets, which usually consists
of the following three steps:

– Step 1) Initialize the index i to 1.
– Step 2) Find all solutions which are not dominated by any
solution in P and move them from P to Fi ; i = i + 1.

– Step 3) If P is empty, stop; otherwise, go to Step 2.

Figure 1 depicts an example of non-dominated sorting,where
the population is divided into three ranks. As shown in the
figure, the following three conditions hold for non-dominated
sorting:
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Fig. 1 Illustrative example of non-dominated sorting, where the pop-
ulation is divided into three ranks

∀x, y ∈ Fj (1 ≤ j ≤ L), x ⊀ y, (3)

∀x ∈ F1,∀y ∈ P, y ⊀ x, (4)

∀x ∈ Fj , ∃y ∈ Fj−1(2 ≤ j ≤ L), y ≺ x. (5)

To be specific, any solution in rank Fj , 1 ≤ j ≤ L , cannot
dominate another solution in this rank, i.e., all solutions in
each rank are non-dominated mutually; the solutions in the
first rank F1 cannot be dominated by any solution in the
population P; any solution in one rank is dominated by at
least one solution in the former rank.

With non-dominated sorting, the quality of solutions in a
population can be considerably distinguished, and this strat-
egy has been widely adopted in MOEAs. In the next two
sections, we will discuss the effectiveness and efficiency of
non-dominated sorting in MOEAs, respectively.

Effectiveness of non-dominated sorting for multi-
and many-objective optimization

Effectiveness for multi-objective optimization

To verify the effectiveness of non-dominated sorting for
multi-objective optimization, we empirically investigate the
role of non-dominated sorting in NSGA-II, which is for
solving MOPs [7]. The NSGA-II consists of two main com-
ponents, fast non-dominated sort and crowding distance, for
distinguishing the quality of solutions in the environmental
selection. At each generation of NSGA-II, non-dominated
sorting is first employed to select solutions with lower ranks
from the population combining parent population with off-
spring population, and crowding distance is used as the
secondary metric to distinguish solutions in the same rank
by favoring solutions with a large crowding distance.

Figure 2 presents the convergence profiles of inverted
generational distance (IGD) values obtained by NSGA-II
with non-dominated sorting and the variant without non-
dominated sorting on 2-objective ZDT1 and ZDT4, and
3-objective DTLZ1 and DTLZ2, averaged over 30 inde-
pendent runs, where the population size is set to 100 and
the remaining parameters are set to the same values recom-
mended in [7]. IGD is a popular metric for measuring the
quality of a solution set in terms of both convergence and
distribution. ZDT1, ZDT4, DTLZ1, and DTLZ2 are widely
used benchmark MOPs with multi- and uni-modal proper-
ties, respectively [33,34]. From the figure, the following two
observations can be obtained.

First, non-dominated sorting plays a crucial role in guid-
ing the population of NSGA-II to approximate the Pareto
fronts of MOPs. On both uni- and multi-model MOPs, the
population of NSGA-II is far from converging to the Pareto
fronts in a maximum of 300 generations without using non-
dominated sorting. Second, the crowding distance is a little
helpful for the convergence of populations of NSGA-II on
2-objective MOPs, but the population cannot converge to
the Pareto fronts of MOPs without non-dominated sorting.
On 3-objective MOPs, it seems that the crowding distance
cannot promote populations of NSGA-II towards the Pareto
fronts. As the number of generations increases, the IGD val-
ues obtained by the NSGA-II without non-dominated sorting
increase on 3-objective DTLZ1 and DTLZ2. The second
observation can be confirmed by Fig. 3, where the mini-
mal distance of solutions in population to Pareto fronts is
presented at different iterations for the variant of NSGA-
II without non-dominated sorting on 2-objective ZDT1 and
ZDT4 and 3-objective DTLZ1 and DTLZ2.

To further illustrate the role of non-dominated sorting in
MOEAs, Fig. 4 presents the number of solutions in different
fronts determined by non-dominated sorting for next pop-
ulation of NSGA-II on 2-objective ZDT1 and ZDT4 and
3-objective DTLZ1 and DTLZ2, where the number of can-
didate solutions is 200 and the size of next population is 100.
From the figure, it can be seen clearly that non-dominated
sorting is a very effective strategy to distinguish the quality
of solutions in population evolution of NSGA-II for solving
MOPs. For the combined population consisting of parent and
offspring populations, non-dominated sorting can determine
a large number of candidate solutions unsuitable for surviv-
ing for next populationwhenNSGA-II is used to solveMOPs.
It can also be found that the number of solutions which are
considered unsuitable for surviving considerably decreases
on 3-objective MOPs, which implies the decrement of abil-
ity of non-dominated sorting in distinguishing the quality of
solutions as the number of objectives increases.

Based on the above empirical results, we can conclude
that non-dominated sorting is a promising strategy enabling
the population to converge to the Pareto fronts for MOEAs.

123



250 Complex Intell. Syst. (2017) 3:247–263

0 50 100 150 200 250 300

Generation

0

10

20

30

40

50

60

70

80

90

IG
D

2-objective ZDT1

NSGA-II with non-dominated sorting
NSGA-II without non-dominated sorting

0 50 100 150 200 250 300

Generation

0

10

20

30

40

50

60

70

80

IG
D

2-objective ZDT4

NSGA-II with non-dominated sorting
NSGA-II without non-dominated sorting

0 50 100 150 200 250 300

Generation

0

20

40

60

80

100

120

140

160

180

IG
D

3-objective DTLZ1

NSGA-II with non-dominated sorting
NSGA-II without non-dominated sorting

0 50 100 150 200 250 300

Generation

0

0.2

0.4

0.6

0.8

1

1.2

IG
D

3-objective DTLZ2

NSGA-II with non-dominated sorting
NSGA-II without non-dominated sorting

(a) (b)

(c) (d)

Fig. 2 Convergence profiles of IGD values obtained by NSGA-II with non-dominated sorting and the variant without non-dominated sorting on
2-objective ZDT1, 2-objective ZDT4, 3-objective DTLZ1, and 3-objective DTLZ2, averaged over 30 independent runs
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Fig. 3 Minimal distance of solutions in population to Pareto fronts
during the population evolution of the variant of NSGA-II without
non-dominated sorting on 2-objective ZDT1 and ZDT4 and 3-objective
DTLZ1 and DTLZ2

Effectiveness for many-objective optimization

In this subsection, we evaluate the effectiveness of non-
dominated sorting in MOEAs for solving MaOPs. To this
end, we consider the knee point driven non-dominated
sorting-based MOEA, KnEA, recently tailored to handle
MaOPs. The KnEA consists of two main components in
the environmental selection: (1) non-dominated sorting and
(2) knee point selection. At each generation of KnEA,
non-dominated sorting is first performed on the combined
population consisting of parent and offspring populations,
and then, knee points in the first non-dominated front are
selected, in case the number of non-dominated solutions in
the first front is larger than the population size.

Figure 5 presents the convergence profiles of IGD values
obtained by KnEA with non-dominated sorting and the vari-
ant without non-dominated sorting on 5- and 10-objective
DTLZ1 and DTLZ2, where the population size is set to 100
and the expected rate of knee points is set to 0.1 for DTLZ1
and 0.5 for DTLZ2. From the figure, the following three
observations can be obtained. First, non-dominated sorting
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Fig. 4 Number of solutions in different fronts determined by non-dominated sorting for next population of NSGA-II on 2-objective ZDT1 and
ZDT4 and 3-objective DTLZ1 and DTLZ2, where the population size is set to 100

is very helpful for KnEA to achieve a set of non-dominated
solutions with better quality for solving MaOPs. The KnEA
with non-dominated sorting can always obtain better IGD
values than the variant of KnEA without non-dominated
sorting under different iterations, on all tested MaOPs, espe-
cially for 5-objective DTLZ2. To illustrate the reason for the
enhanced quality of solution set, Fig. 6 gives the generational
distance (GD) values obtained byKnEAwith non-dominated
sorting and the variant without non-dominated sorting at
different iterations on DTLZ1 and DTLZ2 with 5 and 10
objectives. The GD is a widely used metric for measuring
the convergence of a solution set. As shown in the figure,
non-dominated sorting can clearly help population of KnEA
to better converge to the Pareto fronts on MaOPs, especially
for DTLZ1 which has a large number of local Pareto fronts.

Second, the role of non-dominated sorting in promoting
population of KnEA to converge to the Pareto fronts degen-
erates on MaOPs in comparison to that on MOPs. The main
reason is attributed to a phenomenon called dominance resis-
tance [19], since the number of solutions will considerably
increase as the number of objectives increases. Taking two

random solutions in M-dimensional objective space as an
example, the probability that one solution dominates the
other one is ( 12 )

M−1, as shown in Fig. 7. It is clear that the
probability decreases rapidly with the increasing number of
objectives, and it becomes almost impossible that solutions
with more than 12 objectives in a random population can be
dominated [35]. It is necessary to note that non-dominated
sorting can still determine a few candidate solutions in the
combined population unsuitable for surviving for next pop-
ulation in solving MaOPs, which is helpful for promoting
population of KnEA to converge to the Pareto fronts.

Third, knee point selection plays a key role in enabling
the population of KnEA to converge to the Pareto fronts for
MaOPs. On all tested MaOPs, KnEA only using knee point
selection can achieve a competitive performance in terms of
IGD and GD, especially for DTLZ2 with 5 and 10 objec-
tives. This result shows that KnEA is still effective on most
MaOPs when the knee points are selected from the whole
population instead of each non-dominated front of the popu-
lation, despite that the performance has a little deterioration.
It seems that non-dominated sorting is more helpful in KnEA
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Fig. 5 Convergence profiles of IGD values obtained by KnEA with non-dominated sorting and the variant without non-dominated sorting on
DTLZ1 and DTLZ2 with 5 and 10 objectives, averaged over 30 independent runs

on DTLZ1 with a large number of local Pareto fronts, which
can considerably enhance the convergence of population of
KnEA in terms of GD.

Therefore, we can summarize that non-dominated sorting
is also important for developing a promising MOEA to solve
MaOPs, especially for some complex MaOPs, such as those
with multiple local Pareto fronts.

Rectifications of Pareto dominance for many-objective
optimization

As shown in the above subsection, the effectiveness of non-
dominated sorting degenerates in MOEAs for MaOPs due to
the decrement of selection pressure of the Pareto dominance.
To address this issue, a large number of enhanced versions of
the Pareto dominance have been proposed based on different
ideas.

The first idea for enhancing the effectiveness of the Pareto
dominance is to divide the objective space into a number
of grids and solutions in the same grid are considered as
identical ones. One of representative dominance belonging

to this category is ε-dominance relation [36]. ε-Dominance
first divides each objective into d equal parts, and thus, an
M-dimensional objective space will contain dM hypercubes.
Then, the grid coordinates of solutions are used to determine
their dominance relations instead of the objective values. The
ε-dominance relation is a relaxation of the Pareto dominance
and other similar work includes paε-dominance [37], cone
ε-dominance [38], etc.

The second idea for enhancing the effectiveness of the
Pareto dominance is based on the expansion of the domi-
nance area. For two random solutions with M objectives,
the probability that one solution dominates the other one
is ( 12 )

M−1, and hence, it is rare for one solution to domi-
nate the other one in high-dimensional space. The controlling
dominance area of solutions (CDAS) method [39] expands
the dominance area of each solution by a specified angle
on each objective, and thus, the probability of dominance
and the selection pressure increase. An adaptive version of
CDASwas suggested in [40], where the expanding angle was
adaptively estimated according to the extreme solutions. It is
worth noting that the CDAS expands the dominance area by
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Fig. 6 Convergence profiles of GD values obtained by KnEA with non-dominated sorting and the variant without non-dominated sorting on
DTLZ1 and DTLZ2 with 5 and 10 objectives, averaged over 30 independent runs
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Fig. 7 Probability of one random solution dominating another one for
different numbers of objectives

modifying the objective values of solutions; there also exist
some dominance relations which expand the dominance area
bymodifying the definition of dominance, e.g.,α-dominance
[41] and generalized Pareto optimality (GPO) [42].

The third idea is to adopt the concept of fuzzy logic to
develop novel dominance relations, such as (1-k)-dominance
[43], L-dominance [44], and fuzzy dominance [45,46]. In
the Pareto dominance, one solution dominates another one
only if all the objective values of the former are smaller than
or equal to those of the latter, whereas in fuzzy logic-based
dominance relations, one solutionmay dominate another one
if themajority of the objectives of the former are smaller than
those of the latter. In this case, a solution can dominate those
which havemuchworse values than it onmost objectives and
slightly better values than it on a few objectives, and thus,
the quality of solutions can be distinguished.

The fourth idea enhances the effectiveness of the Pareto
dominance by means of a set of uniformly distributed refer-
ence vectors as suggested in decomposition-based MOEAs
[47,48]. θ -Dominance [48] is a dominance relation belong-
ing to this category, where each solution is associated with
its nearest reference vector, and a solution is said to domi-
nate another one if and only if the two solutions are associated
with the same reference vector and the former has better con-
vergence and diversity than the latter. θ -dominance relation
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aims to make each solution converge to the same direction
of one reference vector, which can enable the population to
hold a good convergence and diversity.

It is necessary to stress that there are also some other
interesting ideas which enhance the effectiveness of non-
dominated sorting by combining it with additional conver-
gence- or diversity-related metrics, instead of directly modi-
fying the definition of the Pareto dominance. Some represen-
tatives belonging to this category include hypervolume [49],
knee point [22], enhanced IGD [18], and shift-based den-
sity [50].

Efficiency of non-dominated sorting for multi- and
many-objective optimization

Main non-dominated sorting methods and their time
complexity

In the past 2 decades, a large number of interesting algorithms
have been developed to address the high computational cost
of non-dominated sorting. In what follows, we only recall
several non-dominated sorting algorithms which are widely
used in literature. The interested readers can refer to [51] for
a more detailed list of non-dominated sorting algorithms.

In 2003, Jensen [26] suggested a non-dominated sorting
method, called Jensen’s sort, based on the divide-and-
conquer strategy. Jensen’s sort is an improved version of
the non-dominated sorting method developed by Kung et
al. [52], where the time complexity has been reduced
to O(NlnM−1N ) from O(N 2lnM−1N ) (M and N are
hereafter denoted as the number of objectives and the pop-
ulation size, respectively), considerably outperforming the
time complexity O(MN 2) of fast non-dominated sort (FNS)
developed in NSGA-II. Compared to the FNS, Jensen’s sort
also has a significant improvement in space complexity. The
space complexity of Jensen’s sort is O(N ), whereas FNS
holds a space complexity of O(N 2). Hence, Jensen’s sort is
computationally more efficient than FNS on MOPs with a
small number of objectives, especially for those with two or
three objectives. In spite of the high computational efficiency,
Jensen’s sort suffers from the restriction that two compared
solutions should not have the same value in any of their objec-
tives.

To address the weakness of Jensen’s sort, Fang et al. [53],
in 2008, proposed a new divide-and-conquer-based non-
dominated sorting algorithm, where a new data structure
called dominance tree was adopted to reduce the number
of redundant comparisons in FNS. This algorithm is called
the divide-and-conquer based sort. Empirical results demon-
strated that the divide-and-conquer-based sort holds a time
complexity close to O(MNlnN ) for two-objective MOPs
and approaches asymptotically to the upper bound O(MN 2)

as the number of objectives increases. Another improved ver-
sion of Jensen’s sort, termed generalized Jensen’s sort, was
also developed by Fortin et al. in [54]. As reported in [54],
the generalized Jensen’s sort can well address the weakness
of Jensen’s sort without increasing the time complexity and
space complexity.

In 2012, McClymont and Keedwell [28] developed a
novel non-dominated sorting method, called deductive sort,
by exploiting the properties of Pareto optimality, domi-
nance, and non-dominance, as well as the possible inherent
inferences that can be made based on the nature of these rela-
tionships. Although deductive sort holds a time complexity
of O(MN 2) in the worst case which is the same as that of
FNS, empirical evidence indicated that it can save a large
number of comparisons between solutions.

The corner sort suggested byWang andYao [30] in 2013 is
also a computationally very efficient non-dominated sorting
algorithm. In corner sort, a non-dominated solution is first
selected from the corner solutions, and then, the solutions
dominated by it will be ignored to save comparisons between
solutions. As reported in [30], corner sort is more suited for
solving MaOPs than FNS and deductive sort, and the more
objectives an MaOP has, the more objective comparisons it
can save. Corner sort holds a time complexity of O(MN 2)

in the worst case, but in some best cases, its time complexity
can be reduced to O(MN

√
N ).

In 2015,Martin et al. [55] proposed a non-dominated sort-
ing method, called M-front, whose main idea was to utilize
the existing knowledge of population in dominance relation-
ship at last generation to perform non-dominated sorting for
the current population. In M-front, the geometric and alge-
braic properties of the Pareto dominance were used to speed
up the insertions and removals of solutions in non-dominated
fronts. The M-front has a best case time complexity of
O(MN ) or O(MNlnN ) if the k-d tree is used, and a worst
case time complexity of O(MN 2).

Zhanget al. [29] alsodeveloped an efficient non-dominated
sortingmethod in 2015, calledENS,which has been shown to
well suit for solvingMOPswith a small number of objectives,
especially for MOPs with two or three objectives. The high
efficiency of ENS is attributed to the fact that an operation
of pre-sort was suggested for population according to one of
the objectives, since in the sorted population, a solution can
never be dominated by solutions ranked behind it, thereby
saving a large number of comparisons between solutions. It
is worth noting that the superiority of ENS will decrease as
the number of objectives increases, despite that it still out-
performs several existing non-dominated sorting methods,
such as FNS and deductive sort as indicated in [29]. To solve
this problem, a tree-based non-dominated sorting method,
termed T-ENS, was suggested by Zhang et al. in [23] based
on the ENS framework. Empirical evaluations demonstrated
that T-ENS is computationally very efficient for MaOPs and
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Fig. 8 Number of objective comparisons and runtime(s) of the eight compared non-dominated sorting methods on random populations with
different sizes for two-objective optimization
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Fig. 9 Number of objective comparisons and runtime(s) of the eight compared non-dominated sorting methods on random populations with
different sizes for three-objective optimization

its computational cost almost keeps the same as the number
of objectives increases. T-ENS holds a worst case time com-
plexity of O(MN 2) (the same with that of ENS) and a best
case time complexity of O(MNlnN/lnM), which is better
than O(MNlnN ) of ENS-BS and O(MN

√
N ) of ENS-SS.

Recently, an interesting non-dominated sorting approach
formany-objective optimization, calledA-ENS,was reported
in [31], where the idea of approximate non-dominated sort-
ing was developed. Themain difference between A-ENS and
existing non-dominated sorting methods lies in the fact that
A-ENS can only obtain an approximate non-dominated sort-
ing result, whereas the other methods all aim to obtain an
accurate result. Empirical validation by embedding it into
three popular MOEAs showed that A-ENS is not only com-
putationally very efficient for MaOPs, but also can improve
search performance on most test problems. The time com-
plexity of A-ENS is O(N 2) in the worst case and O(N

√
N )

in the best cases, which is independent of the number of
objectives, since, in A-ENS, the dominance relationship

between any two solutions is determined by a maximum of
three-objective comparisons.

Efficient non-dominated sorting for multi-objective
optimization

In the following, we verify the computational efficiency of
eight widely used non-dominated sortingmethods when they
are adopted for handling MOPs. The eight methods under
consideration include fast non-dominated sort (FNS) [7],
generalized Jensen’s sort [54], divide-and-conquer-based
sort [53], deductive sort [28], corner sort [30], M-front [55],
ENS-SS [29], and T-ENS [23].

In the experiments, the computational efficiency of these
non-dominated sorting methods is considered on random
populations and MOEAs. The first scenario is used to mimic
the situation in the early search stages of MOEAs, and the
second scenario is adopted to test the computational effi-
ciency of these non-dominated sorting methods when they
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Table 1 Number of objective
comparisons of the eight
non-dominated sorting methods
when they are embedded into
NSGA-II for solving
two-objective and
three-objective DTLZ2

Methods N = 100 N = 500

M = 2 M = 3 M = 2 M = 3

FNS 1.6E+7 1.9E+7 4.0E+8 4.7E+8

Generalized Jensen’s sort 5.0E+5 1.1E+6 3.8E+6 7.9E+6

Divide-and-conquer sort 5.6E+6 8.0E+6 1.2E+8 2.0E+8

Deductive sort 5.2E+6 7.7E+6 1.2E+8 1.9E+8

Corner sort 4.6E+6 6.6E+6 10.0E+7 1.5E+8

M-front 3.8E+6 5.1E+6 8.8E+7 1.1E+8

T-ENS 3.1E+6 1.5E+6 6.9E+7 2.0E+7

ENS-SS 3.9E+5 4.2E+6 2.6E+6 9.8E+7

The best result on each test instance is in bold

are embedded into MOEAs for solving MOPs. In the second
scenario, all components of an embedded MOEA are iden-
tical with the only exception of the non-dominated sorting
methods adopted in it.

Figures 8 and 9 present the number of objective com-
parisons and runtime(s) of the eight non-dominated sorting
methods in the first scenario for two-objective and three-
objective optimization, averaged over 30 randompopulations
with the same size. From the figures, the following two
results can be observed. First, in terms of number of objec-
tive comparisons, the generalized Jensen’s sort performs
the best on random populations for both two-objective
and three-objective optimization. ENS-SS and divide-and-
conquer-based sort need slightlymore objective comparisons
than generalized Jensen’s sort. The rest five non-dominated
sorting methods underperform the generalized Jensen’s sort,
ENS-SS, and divide-and-conquer-based sort.

Second, in terms of runtime, ENS-SS always achieves
the best efficiency on random populations for two-objective
and three-objective optimization. The superiority of ENS-SS
over the generalized Jensen’s sort in runtime may be partly
attributed to the fact that ENS-SS holds a space complex-
ity of O(1), whereas the space complexity of generalized
Jensen’s sort is O(N ). It is worth noting that deductive sort
also achieves a competitive efficiency on random popula-
tions in terms of runtime despite that it uses more objective
comparisons.

Tables 1 and 2 list the experimental results of the eight
non-dominated sorting methods when they are embedded
into NSGA-II with a population size of 100 and 500 for solv-
ing two-objective and three-objective DTLZ2, averaged over
30 runs. All parameters of NSGA-II are set as recommended
in [7]. From the tables, it can be found that the superiority of
ENS-SSover the other seven non-dominated sortingmethods
has been enhanced when they are embedded into MOEAs to
solve MOPs, in terms of both number of objective compar-
isons and runtime.

For the number of objective comparisons, the general-
ized Jensen’s sort still performs the best for three-objective

Table 2 Ratio of runtime of the eight non-dominated sorting methods
to that of ENS-SS when they are embedded into NSGA-II for solving
two-objective and three-objective DTLZ2

Methods N = 100 N = 500

M = 2 M = 3 M = 2 M = 3

FNS 18.98 4.18 93.84 4.59

Generalized Jensen’s sort 16.98 21.13 16.73 4.82

Divide-and-conquer sort 14.02 2.91 41.41 2.39

Deductive sort 6.94 1.82 30.47 1.98

Corner sort 15.60 3.65 46.74 2.78

M-front 43.18 9.39 66.51 3.41

T-ENS 10.25 1.26 33.95 0.51

ENS-SS 1.00 1.00 1.00 1.00

The best result on each test instance is in bold

DTLZ2, but ENS-SS can achieve the best efficiency in solv-
ing two-objective DTLZ2. As for the runtime, ENS-SS takes
much less cost than the other seven non-dominated sort-
ing methods for solving two-objective and three-objective
DTLZ2, in case a population size of 100 is used. When the
population size increases to 500, ENS-SS takes the least run-
time for solving two-objective DTLZ2, whereas T-ENS will
achieve the best for three-objective DTLZ2.

From the tables, it can also be seen that the computational
efficiency of ENS-SS will be enhanced when a large pop-
ulation size of NSGA-II is used to solve MOPs, especially
for solving MOPs with two objectives. Take the well-known
non-dominated sortingmethodFNSas a comparison, the run-
time taken by FNS is about 19 times of that of ENS-SS if a
population size of 100 is used to solve two-objective DTLZ2.
This ratio will be incremented to 94 as the population size
becomes 500.

On the basis of the above empirical comparisons, we can
conclude that ENS-SS is computationally more efficient than
the state-of-the-art non-dominated sortingmethods formulti-
objective optimization, which can significantly improve the
computational efficiency of an MOEA when it is embedded
into the algorithm to solve MOPs. In the case of solving
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Fig. 10 Number of objective comparisons and runtime(s) of the eight compared non-dominated sorting methods on random populations with a
size of 500 for many-objective optimization
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Fig. 11 Number of objective comparisons and runtime(s) of the eight compared non-dominated sorting methods on random populations with a
size of 1000 for many-objective optimization

MOPs with three objectives, T-ENS will be strongly sug-
gested to be adopted if a large population size is used in the
MOEA.

Efficient non-dominated sorting for many-objective
optimization

In this subsection, we test the computational efficiency of the
above eight non-dominated sorting methods on MaOPs.

The experiments are conducted on three different sce-
narios which are often encountered in many-objective opti-
mization. In the first scenario, we test the efficiency of the
non-dominated sorting methods on random populations for
many-objective optimization; in the second scenario, the
computational costs of the non-dominated sorting methods
are compared by embedding them into theMOEAswhich are
specially tailored to solve MaOPs; in the third scenario, we
compare the efficiency of the non-dominated sorting meth-
ods when they are used to obtain a set of reference points

uniformly distributed on the true PFs, which is required for
calculating some performance indicators, such as GD [56]
and IGD [57].

Figures 10 and 11 plot the experimental results of the
eight non-dominated sorting methods in the first scenario
averaged over 30 random populations for the same number
of objectives, where two population sizes of 500 and 1000
are considered, respectively. From the figures, the following
two conclusions can be obtained. First, the efficiency of T-
ENS is superior over the other seven non-dominated sorting
methods in terms of both number of objective comparisons
and runtime on random populations for many-objective opti-
mization. The superiority of T-ENS will be enhanced as the
population size increases. Second, ENS-SS performs better
than T-ENS on random populations with four objectives in
terms of runtime, despite that it consumes more objective
comparisons than T-ENS. Themain reason is attributed to the
fact that ENS-SS holds a space complexity of O(1), whereas
the space complexity of T-ENS is O(N ).

123



258 Complex Intell. Syst. (2017) 3:247–263

Table 3 Number of objective
comparisons of the eight
non-dominated sorting methods
when they are embedded into
KnEA for solving 5-objective
and 10-objective DTLZ2

Methods N = 100 N = 500

M = 5 M = 10 M = 5 M = 10

FNS 2.1E+7 2.8E+7 5.3E+8 6.6E+8

Generalized Jensen’s sort 4.6E+6 6.7E+6 4.7E+7 8.8E+7

Divide-and-conquer sort 1.0E+7 1.4E+7 2.5E+8 3.1E+8

Deductive sort 1.0E+7 1.4E+7 2.5E+8 3.0E+8

Corner sort 9.2E+6 1.4E+7 1.9E+8 2.5E+8

M-front 1.2E+7 2.5E+7 2.3E+7 5.5E+8

ENS-SS 6.5E+6 1.0E+7 1.5E+8 2.1E+8

T-ENS 1.7E+6 2.8E+6 1.8E+7 2.4E+7

The best result on each test instance is in bold

Table 4 Ratio of runtime of the
eight non-dominated sorting
methods to that of T-ENS when
they are embedded into KnEA
for solving 5-objective and
10-objective DTLZ2

Methods N = 100 N = 500

M = 5 M = 10 M = 5 M = 10

FNS 3.97 4.17 11.15 10.57

Generalized Jensen’s sort 58.97 71.43 57.60 92.60

Divide-and-conquer sort 2.67 2.67 6.09 5.65

Deductive sort 1.91 2.06 5.27 4.90

Corner sort 3.66 3.51 7.27 6.08

M-front 10.53 13.20 11.10 14.13

ENS-SS 1.13 1.36 3.14 3.32

T-ENS 1.00 1.00 1.00 1.00

The best result on each test instance is in bold

Table 5 Number of objective
comparisons of the eight
non-dominated sorting methods
for obtaining a set of reference
points uniformly distributed on
the true PF of DTLZ7 under
different numbers of sampled
points

Methods 1000 Points 10,000 Points

M = 5 M = 10 M = 5 M = 10

FNS 2.9E+6 3.0E+6 2.9E+8 3.0E+8

Generalized Jensen’s sort 2.3E+5 3.5E+5 5.4E+6 1.3E+7

Divide-and-conquer sort 8.9E+5 1.5E+6 5.0E+7 1.4E+8

Deductive sort 7.5E+5 1.5E+6 3.3E+7 1.4E+8

Corner sort 5.9E+5 1.2E+6 2.7E+7 1.0E+8

M-front 9.0E+5 2.6E+6 5.4E+7 2.1E+8

ENS-SS 4.9E+5 1.0E+6 2.7E+7 9.4E+7

T-ENS 1.7E+5 3.7E+5 9.1E+6 2.5E+7

The best result on each test instance is in bold

Table 6 Ratio of runtime of the
eight non-dominated sorting
methods to that of T-ENS when
they are used to obtain a set of
reference points uniformly
distributed on the true PF of
DTLZ7 under different numbers
of sampled points

Methods 1000 Points 10,000 Points

M = 5 M = 10 M = 5 M = 10

FNS 7.98 4.61 12.14 4.69

Generalized Jensen’s sort 36.69 32.19 11.02 10.99

Divide-and-conquer sort 3.32 2.59 3.31 2.45

Deductive sort 2.40 2.35 1.88 2.28

Corner sort 2.99 2.94 2.59 3.01

M-front 5.95 6.77 4.04 4.82

ENS-SS 2.00 1.46 2.37 1.39

T-ENS 1.00 1.00 1.00 1.00

The best result on each test instance is in bold
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Tables 3 and 4 list the experimental results of the eight
non-dominated sorting methods when they are embedded
into KnEA with a population size of 100 and 500 to
solve 5-objective and 10-objective DTLZ2, respectively. The
parameter settings of KnEA are the same as those recom-
mended in [22] and the reported results are averaged over 30
independent runs. From the tables, we can find that T-ENS
performs much more efficient than the other seven non-
dominated sorting methods, in case that they are embedded
into MOEAs to solve MaOPs. ENS-SS achieves the second
best efficiency in terms of runtime when they are embedded
intoKnEA to solveMaOPs. It can also be seen that the superi-
ority of T-ENS over the compared methods will be enhanced
as the population size and the number of objectives increase
in KnEA. These empirical results show that T-ENS is more
suited to deal with large-scale MaOPs, since a large popu-
lation is often needed for solving large-scale optimization
problems.

Tables 5 and 6 present the experimental results of the eight
non-dominated sorting methods for obtaining a set of refer-
ence points uniformly distributed on the true PF of DTLZ7
under 1000 and 10,000 sampled points, respectively. As can
be seen from the tables, the generalized Jensen’s sort achieves
the fewest objective comparisons in obtaining a set of refer-
ence points uniformly distributed on the true PF of DTLZ7,
except in the case of 1000 sampled points for 5-objective
DTLZ7, where T-ENS performs the fewest objective com-
parisons. In terms of runtime, T-ENS takes the least among
all eight considered non-dominated sorting methods, despite
that it consumes more objective comparisons than the gener-
alized Jensen’s sort. It can also be found that ENS-SS is the
second less time-consuming non-dominated sorting method
except in the case of 10,000 sampled points for 10-objective
DTLZ7, where deductive sort performs the second best.

From the empirical results shown in the above three
scenarios, we can conclude that T-ENS is more suited
for many-objective optimization, whose computational effi-
ciency is much more competitive than that of the existing
non-dominated sortingmethods, especiallywhen a large pop-
ulation size is adopted.

Approximate non-dominated sorting for many-objective
optimization

In the above two subsections, we have empirically ver-
ified the computational efficiency of eight state-of-the-art
non-dominated sorting algorithms for multi-objective and
many-objective optimization, respectively. In this subsection,
we consider another interesting idea of performing non-
dominated sorting for many-objective optimization, called
approximate non-dominated sorting. A-ENS was the first
algorithm developed recently based on approximate non-
dominated sorting for many-objective optimization [31].

Table 7 Ratio of runtime of A-ENS to that of T-ENS when they are
embedded into KnEA and Two_Arch2 for solving DTLZ1–DTLZ7 and
WFG1–WFG9 with 5 and 10 objectives

Problems KnEA Two_Arch2

M = 5 M = 10 M = 5 M = 10

DTLZ1 0.59 0.53 0.64 0.53

DTLZ2 0.82 0.68 0.75 0.71

DTLZ3 0.60 0.46 0.63 0.49

DTLZ4 0.74 0.68 0.79 0.76

DTLZ5 0.55 0.47 0.39 0.44

DTLZ6 0.54 0.56 0.43 0.52

DTLZ7 0.59 0.5 0.50 0.44

WFG1 0.60 0.56 0.66 0.55

WFG2 0.59 0.54 0.65 0.63

WFG3 0.65 0.58 0.52 0.50

WFG4 0.75 0.72 0.74 0.76

WFG5 0.76 0.69 0.79 0.81

WFG6 0.73 0.69 0.74 0.76

WFG7 0.76 0.71 0.79 0.81

WFG8 0.65 0.62 0.68 0.67

WFG9 0.69 0.72 0.80 0.77

The main difference between A-ENS and existing non-
dominated sorting algorithms lies in the fact that, instead
of identifying the accurate non-dominated sorting result for
a given population in existing non-dominated sorting algo-
rithms, A-ENS determines an approximate sorting result by
performing atmost three-objective comparisons for each pair
of solutions. This means that the existing non-dominated
sorting algorithms always find the same sorting result for
a given population, and these algorithms distinguish them-
selves only in the computational efficiency. A-ENS obtains a
sorting result different from that of the other non-dominated
sorting algorithms due to the errors caused by approximate
sorting. In the following, we empirically verify the efficiency
of A-ENS and the influence on performance of MOEAs
by embedding it into two MOEAs, KnEA and Two_Arch2,
developed recently for solving MaOPs. All reported experi-
mental results are obtained by averaging over 30 independent
runs.

Table 7 presents the computational efficiency of A-ENS in
KnEA and Two_Arch2 onDTLZ1–DTLZ7 [58] andWFG1–
WFG9 [59] with 5 and 10 objectives, in comparison with
the accurate non-dominated sorting algorithm T-ENS. The
parameter settings of KnEA and Two_Arch2 are the same
as recommended in [22,60]. From the table, it can be seen
clearly that A-ENS is more efficient than T-ENS in MOEAs
for solvingMaOPs.Compared to the accurate non-dominated
sorting T-ENS, A-ENS consumes roughly 70% runtime of
that of T-ENS in both KnEA and Two_Arch2 to solve DTLZ
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Table 8 HV values obtained by KnEA with accurate non-dominated sorting method and A-ENS on DTLZ1–DTLZ7 and WFG1–WFG9 with 5
and 10 objectives

Problems M = 5 M = 10

T-ENS A-ENS T-ENS A-ENS

DTLZ1 4.5969E−1 ± 8.82E−2 5.0734E−1 ± 1.25E−1 2.7163E−1 ± 1.41E−1 7.9948E−2 ± 1.02E−1

DTLZ2 6.1657E−1 ± 6.15E−3 6.0946E−1 ± 8.69E−3 8.1704E−1 ± 6.24E−2 8.4099E−1 ± 1.18E−2

DTLZ3 5.6254E−2 ± 1.04E−1 2.6701E−1 ± 7.27E−2 3.9095E−3 ± 1.26E−2 6.3055E−2 ± 7.43E−2

DTLZ4 6.1858E−1 ± 6.89E−3 6.1811E−1 ± 6.61E−3 8.0266E−1 ± 2.05E−2 8.3580E−1 ± 1.66E−2

DTLZ5 7.4163E−2 ± 1.80E−2 7.3073E−2 ± 2.46E−2 3.8298E−2 ± 1.25E−2 3.5344E−2 ± 2.08E−2

DTLZ6 2.4864E−2 ± 1.87E−2 3.4327E−2 ± 2.08E−2 1.6162E−2 ± 2.29E−2 2.8049E−4 ± 8.72E−4

DTLZ7 1.3594E−1 ± 6.57E−3 1.4844E−1 ± 5.74E−3 2.2713E−2 ± 8.14E−3 9.9292E−2 ± 7.58E−3

WFG1 9.7626E−1 ± 2.32E−2 9.8972E−1 ± 8.03E−3 9.4577E−1 ± 8.51E−2 9.9397E−1 ± 2.66E−3

WFG2 9.7379E−1 ± 4.23E−2 9.2167E−1 ± 9.42E−2 9.8899E−1 ± 1.93E−3 9.9603E−1 ± 2.87E−3

WFG3 5.3516E−1 ± 1.40E−2 5.6173E−1 ± 2.11E−2 5.3188E−1 ± 1.73E−2 5.5059E−1 ± 1.33E−2

WFG4 5.6356E−1 ± 9.52E−3 5.6327E−1 ± 7.44E−3 7.7241E−1 ± 2.30E−2 7.9026E−1 ± 1.09E−2

WFG5 5.4986E−1 ± 5.80E−3 5.4724E−1 ± 5.75E−3 7.6269E−1 ± 5.32E−3 7.5885E−1 ± 4.79E−3

WFG6 5.3199E−1 ± 2.63E−2 5.1521E−1 ± 1.53E−2 7.2757E−1 ± 3.80E−2 7.3183E−1 ± 2.00E−2

WFG7 6.1116E−1 ± 7.31E−3 6.1254E−1 ± 4.73E−3 8.2764E−1 ± 9.16E−3 8.2897E−1 ± 1.17E−2

WFG8 3.7022E−1 ± 2.14E−2 3.6682E−1 ± 2.72E−2 5.9964E−1 ± 4.96E−2 5.8005E−1 ± 3.96E−2

WFG9 4.9760E−1 ± 6.52E−2 5.2891E−1 ± 4.38E−2 6.8623E−1 ± 7.20E−2 7.0326E−1 ± 4.68E−2

The best result on each test instance is in bold

Table 9 HV values obtained by Two_Arch2 with accurate non-dominated sorting method and A-ENS on DTLZ1–DTLZ7 andWFG1–WFG9 with
5 and 10 objectives

Problems M = 5 M = 10

T-ENS A-ENS T-ENS A-ENS

DTLZ1 8.6562E−1 ± 2.11E−2 8.2886E−1 ± 2.08E−2 8.7591E−1 ± 4.92E−2 7.9605E−1 ± 4.67E−2

DTLZ2 5.7334E−1 ± 5.88E−3 5.6916E−1 ± 7.30E−3 4.7341E−1 ± 3.09E−2 6.7170E−1 ± 2.89E−2

DTLZ3 3.0047E−1 ± 4.14E−2 2.4114E−1 ± 3.13E−2 2.3976E−1 ± 1.27E−1 2.5976E−1 ± 5.31E−2

DTLZ4 5.4961E−1 ± 1.05E−2 5.4904E−1 ± 1.15E−2 5.4429E−1 ± 3.98E−2 7.0587E−1 ± 1.46E−2

DTLZ5 1.3372E−1 ± 7.98E−3 1.3770E−1 ± 8.76E−3 5.2870E−2 ± 1.55E−2 8.0355E−2 ± 2.34E−2

DTLZ6 1.1627E−1 ± 1.09E−2 1.2888E−1 ± 1.81E−2 9.8949E−3 ± 1.54E−2 5.9620E−2 ± 1.26E−2

DTLZ7 1.3042E−1 ± 1.65E−2 1.4944E−1 ± 1.16E−2 8.4290E−2 ± 2.32E−2 1.0447E−1 ± 1.15E−2

WFG1 9.8852E−1 ± 1.22E−3 9.8861E−1 ± 1.48E−3 9.9069E−1 ± 1.29E−3 9.9436E−1 ± 8.20E−4

WFG2 9.1682E−1 ± 9.08E−2 9.5573E−1 ± 6.89E−2 9.9005E−1 ± 3.14E−3 9.9036E−1 ± 2.82E−3

WFG3 5.6637E−1 ± 1.03E−2 5.6437E−1 ± 1.20E−2 5.6233E−1 ± 8.87E−3 5.7551E−1 ± 1.61E−2

WFG4 5.1069E−1 ± 1.00E−2 5.1718E−1 ± 9.87E−3 4.9015E−1 ± 1.85E−2 5.1932E−1 ± 2.24E−2

WFG5 4.9430E−1 ± 7.43E−3 5.0298E−1 ± 6.10E−3 4.7617E−1 ± 2.18E−2 5.4869E−1 ± 1.80E−2

WFG6 4.8227E−1 ± 1.95E−2 4.8073E−1 ± 1.32E−2 4.5144E−1 ± 2.37E−2 5.3360E−1 ± 3.17E−2

WFG7 5.5479E−1 ± 7.28E−3 5.6390E−1 ± 7.92E−3 5.2117E−1 ± 1.95E−2 5.6443E−1 ± 2.51E−2

WFG8 3.4962E−1 ± 1.44E−2 3.6521E−1 ± 2.29E−2 2.8372E−1 ± 3.96E−2 3.4275E−1 ± 5.26E−2

WFG9 4.9517E−1 ± 7.85E−3 4.9494E−1 ± 3.12E−2 4.5549E−1 ± 2.92E−2 4.9367E−1 ± 2.83E−2

The best result on each test instance is in bold

and WFG test problems with 5 and 10 objectives. It can
also be found that the superiority of A-ENS over T-ENS in
computational efficiency will be enhanced as the number of
objectives increases to 10. The above results demonstrate the
competitiveness of approximate non-dominated sorting in

computational efficiency for handling many-objective opti-
mization.

To evaluate the influence of A-ENS on performance of
MOEAs, Tables 8, 9 present the hypervolume (HV) val-
ues obtained by KnEA and Two_Arch2 with A-ENS and
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accurate non-dominated sorting algorithm T-ENS on 5- and
10-objective DTLZ and WFG test problems. HV is a per-
formance indicator to measure the quality of solution sets
obtained byMOEAs in terms of both convergence and diver-
sity [61]. The method for calculating HV value is the same
to that adopted in [23]. The larger the value of HV, the better
the solution set. From the tables, the following three results
can be observed.

First, A-ENS can enhance the performance of both KnEA
and Two_Arch2 in solving most 5- and 10-objective DTLZ
and WFG test problems without considerably deterioration
on all test instances under consideration. For the 32 test
instances, A-ENS achieves better HV values than accu-
rate non-dominated sorting on 19 test instances in KnEA,
and 24 instances in Two_Arch2. The enhanced performance
of KnEA and Two_Arch2 may show that the errors intro-
duced by approximate non-dominated sorting are helpful for
MOEAs to improve the performance in solving MaOPs.

Second, compared to the performance on 5-objective
MaOPs, the effectiveness ofA-ENS is significantly enhanced
on 10-objective MaOPs for both KnEA and Two_Arch2.
A-ENS obtains better HV values on 8 out of 16 test
instances with 5 objectives in KnEA and 9 instances in
Two_Arch2. The numbers of A-ENS outperforming accu-
rate non-dominated sorting increase to 11 in KnEA and 15 in
Two_Arch2 on 16 test instances with 10 objectives. Third, A-
ENS ismore helpful for Two_Arch2 thanKnEA in improving
their performance to solve MaOPs. This implies that the
idea of approximate non-dominated sorting deserves further
investigation by developing MOEAs well suited for approx-
imate non-dominated sorting as reported in [31].

From the above empirical results, we can conclude that
approximate non-dominated sorting A-ENS is a promising
idea to perform non-dominated sorting for many-objective
optimization, which cannot only improve the computational
efficiency, but also enhance the performance in quality of
solution set, when it is adopted in MOEAs to solve MaOPs.

Conclusion

In this paper, we have empirically analyzed the effective-
ness and efficiency of non-dominated sorting for evolu-
tionary multi- and many-objective optimization. The effec-
tiveness of non-dominated sorting is verified by consid-
ering two MOEAs, NSGA-II and KnEA, both of which
adopted non-dominated sorting as an important compo-
nent, to solve MOPs and MaOPs, respectively. Experi-
mental results obtained by NSGA-II demonstrate that non-
dominated sorting is very important for MOEAs to converge
to the Pareto fronts when they are used to solve MOPs. For
MaOPs, non-dominated sorting has been shown to be effec-
tive in MOEAs such as KnEA, especially for dealing with

MaOPs with a large number of local Pareto fronts, despite
that it suffers from the deterioration of effectiveness due
to the dominance resistance phenomenon. Some enhanced
variants of the Pareto dominance for many-objective opti-
mization have also been briefly introduced.

The efficiency of non-dominated sorting is evaluated by
comparing 8 state-of-the-art non-dominated sorting algo-
rithms for evolutionary multi- and many-objective optimiza-
tion. According to the experimental results, ENS-SS per-
forms the best in efficiency for multi-objective optimization
and T-ENS holds the best efficiency for many-objective opti-
mization. The approximate non-dominated sorting algorithm
A-ENS has also been empirically discussed and experimen-
tal results have indicated that approximate non-dominated
sorting is a promising idea for many-objective optimization
in terms of both efficiency and effectiveness.

Acknowledgements This work was supported in part by the National
Natural Science Foundation ofChina (GrantNos. 61672033, 61502004,
61502001), and the Joint Research Fund for Overseas Chinese, Hong
Kong and Macao Scholars of the National Natural Science Foundation
of China (Grant No. 61428302).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References
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