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Abstract

Background: Smartphones are ideal for promoting physical activity in those with little intrinsic motivation for

exercise. This study tested three hypotheses: H1 – receipt of social feedback generates higher step-counts than

receipt of no feedback; H2 – receipt of social feedback generates higher step-counts than only receiving feedback

on one’s own walking; H3 – receipt of feedback on one’s own walking generates higher step-counts than no

feedback (H3).

Methods: A parallel group randomised controlled trial measured the impact of feedback on steps-counts. Healthy

male participants (n = 165) aged 18–40 were given phones pre-installed with an app that recorded steps continuously,

without the need for user activation. Participants carried these with them as their main phones for a two-week run-in

and six-week trial. Randomisation was to three groups: no feedback (control); personal feedback on step-counts; group

feedback comparing step-counts against those taken by others in their group. The primary outcome measure, steps

per day, was assessed using longitudinal multilevel regression analysis. Control variables included attitude to physical

activity and perceived barriers to physical activity.

Results: Fifty-five participants were allocated to each group; 152 completed the study and were included in the

analysis: n = 49, no feedback; n = 53, individual feedback; n = 50, individual and social feedback. The study provided

support for H1 and H3 but not H2. Receipt of either form of feedback explained 7.7 % of between-subject variability in

step-count (F = 6.626, p < 0.0005). Compared to the control, the expected step-count for the individual feedback group

was 60 % higher (effect on log step-count = 0.474, 95 % CI = 0.166–0.782) and that for the social feedback group, 69 %

higher (effect on log step-count = 0.526, 95 % CI = 0.212–0.840). The difference between the two feedback groups

(individual vs social feedback) was not statistically significant.

Conclusions: Always-on smartphone apps that provide step-counts can increase physical activity in young to

early-middle-aged men but the provision of social feedback has no apparent incremental impact. This approach may

be particularly suitable for inactive people with low levels of physical activity; it should now be tested with this

population.
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Background

This study used a randomised controlled trial to assess

the impacts on the physical activity of healthy male

adults of using smartphones to provide conventional

and social norms feedback on their day-to-day walking.

Most existing apps are aimed at people with an interest

in sport or exercise; they require high levels of commit-

ment and investment and a willingness to self-identify as

exercise-oriented. This study tested an intervention

aimed at people who might have little intrinsic motiv-

ation to increase their physical activity but would benefit

from engagement of their curiosity about their own lives

and new awareness of the hidden physical activity that

was already of their everyday lives.

Walking is one of the most widely available types of

physical activity and is linked with lower rates of mortal-

ity [1]. It does not require special skills, locations or

equipment, is often a natural part of domestic and work

routines and is described by most people as enjoyable

and relaxing [2]. As a means of achieving greater health

through physical activity, it is available to all those with

the necessary physical mobility and is “readily repeatable,

self-reinforcing and habit-forming” [3].

Walking is highly beneficial for health [3, 4]. It can pre-

vent or ameliorate long-term conditions such as obesity,

type-2 diabetes and cardiovascular disease [5, 6]; it helps

reduce depression and anxiety, can enhance self-esteem

[7–9] and has been shown to reduce cognitive decline [10].

Smartphones and their embedded computer technolo-

gies are increasingly being used to promote physical ac-

tivity [11–14]. Seventy-five percent of the UK population

owns a smartphone [15] and nearly 9 in 10 of these have

at some time downloaded an app [16]. Indeed, so-called

fitness apps now comprise 21 % of the UK’s downloaded

apps [17].

Some apps allow users to compare their own data with

that of other users [18–21]. One way of using such data,

the social norms approach, relies on the tendency for

people to seek to conform to what they perceive to be

the normal behaviour of others. This approach has been

successfully used to influence behaviour in fields as di-

verse as alcohol abuse, sexual behaviour, the payment of

unpaid tax and domestic electricity consumption [14]. A

social norms approach has not been evaluated in a smart-

phone app for promoting physical activity; nor have previ-

ous studies compared the social norms approach with the

use of individual feedback alone in the context of physical

activity apps.

The trial set out to test three hypotheses. Theories

about the effects of social norms on behaviour [22] and

evidence from the use of the social norms approach in

other domains [23] led us to expect that those receiving

social feedback would have higher step-counts than

those who did not receive any feedback:

� H1: those with access to social feedback will have

higher step-counts than those receiving no feedback

Few previous studies of the social norms approach

have controlled for the personal feedback that is implicit

in any attempt to compare people’s behaviour to an aver-

age or norm. To separate out the effect of the social

comparison from the effect of the feedback on people’s

own activity, we included a second treatment that pro-

vided participants with personal feedback but not com-

parative data from a peer group. We anticipated that

those in this individual feedback group would show a

higher step-count than the control group but a lower step

count than the social norms group. We hypothesised that:

� H2: those receiving social norms feedback will have

higher step-counts than those that only receive

feedback on their own walking

Most previous studies indicate that feedback on a

person’s own physical activity levels is itself sufficient

to prompt increased walking. We therefore hypothesised

that:

� H3: those only receiving feedback on their own

walking will have higher step-counts than those

receiving no feedback

Methods

The study used a randomised controlled trial design to

test the effectiveness of using this app amongst men

aged 22–40 years. The intervention consisted of an app

and a series of automated emails (see [14] for details).

Although interventions that include extensive face-to-

face support can be effective, they are expensive and re-

source intensive. We wanted to test an intervention that

could be implemented on a large scale at a low cost per-

capita and would therefore be suitable as a public health

intervention. The key features of the app are described

below, along with details of the organisation of the trial.

To remove the effects of the variability between different

hardware and software platforms, the app was installed on

identical phones and these were provided to the partici-

pants, who had to agree to put their Subscriber Identifica-

tion Module (SIM) cards into the study phones and use

them as their main mobile phones for the duration of the

study. Participants were advised that the likely data usage

of the app during the trial would be 20 megabytes and

were informed that they would be liable for any extra data

charges if they went abroad and activated the roaming

function. As an incentive to participate, they were told they

would keep the phones when the study was over.

The design of the version of the app provided to the

two treatment groups was distinct from previous apps in
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three key ways. First, there was no requirement for add-

itional equipment such as pedometers or foot pods and

no need for data entry. This makes the app more attract-

ive to those who are ambivalent about the benefits of

measurement or about their ability to become fitter and

healthier [24]. Secondly, while most other apps (e.g.,

MapMyWALK) only activate when users provide notice

that they are about to begin an exercise event, this app

measured activity continually and without the need for

any user action. This feature of the app was intended to

reduce the initial investment of time and effort, increase

participation and reduce the dropout rate. In addition, it

ensured that the app measured the physical activity in-

herent in routine, everyday activities, as well as more

purposeful exercise. The third difference was that the

formal goal-setting, training and coaching seen in many

other apps was replaced by self-generated, informal tar-

gets that resulted from users’ engagement with the feed-

back. In fact, the only action required of users was that

they occasionally brought the app to the foreground by

clicking on the bActive icon; this was prompted by the

presence of an icon on the phone screen and by regular

text messages.

For such apps, measurement accuracy is now consid-

ered less important than previously and the emphasis,

instead, is on the design features of the app. Early re-

search into pedometers emphasised the importance of

measurement validation using gold standard methods

such as calorie expenditure and oxygen consumption

[24–26]. Now, however, a lower standard of accuracy is

generally accepted for apps aimed at influencing behav-

iour and emphasis is placed on interactive features such

as goal-setting [24, 27, 28], behavioural feedback loops

[11, 28–30] and features that combine motivation with

enjoyment [28, 29].

Participants for this study were recruited in September

2011 by a team of 12 recruiters who approached people

of approximately the age-group targeted for the study,

22–40 years, in public spaces around shopping centres

in Bristol. If potential participants expressed an interest,

the researchers took them through a screening question-

naire that confirmed their suitability in terms of age and

their residence within easy access of the technical sup-

port team (in case of the need for technical support). To

avoid the confounding effect of some participants being

unable to use a mobile phone, participants also had to

have an existing mobile phone contract. Potential partic-

ipants were also excluded from the research if their re-

sponses to the Physical Activity Readiness Questionnaire

[31] indicated that an increase in physical activity levels

might be deleterious to their health.

Recruitment was limited to males. Research into motiv-

ational factors for health behaviours often attracts more

female than male participants; this study was designed to

help redress the resulting imbalance in much of the litera-

ture. The focus on males was also prompted by the need

to carry the study phone in a pocket and concerns that

women’s clothing would more often lack suitable pockets.

To confirm their commitment to the project and en-

sure an accurate record of electronic contact details,

those who met the entry requirements and gave their

consent to participate were asked to send a short text

message and email message to the research team and to

complete an online questionnaire. The first 165 individuals

to perform these three tasks were all included as partici-

pants. The questionnaire collected data on demography

and potentially confounding variables such as prior use of

a smartphone, pattern of physical activity, attitude to phys-

ical activity, perceived barriers to physical activity, experi-

ence of using a smartphone, and perceived impact of the

trial. A similar questionnaire at the end of the study

gathered data about the experience of participation and

perceived impacts. Both surveys were administered

using the Qualtrics online survey platform. The results

of these qualitative components of the study are not

presented in this paper.

Participants were randomly assigned to one of three

groups: a control (no feedback and no access to the inter-

active elements of the app); an individual feedback group

(feedback on the participant’s own steps), and a social

feedback group (feedback on the participant’s own steps

and on the average steps taken by others in their group).

To ensure random allocation of participants, they were

listed in the order in which they had been recruited and

each third participant in the list was allocated to one of

the three groups. This process was undertaken manually

by a research-team member who had not had any contact

with the participants, and was therefore blinded in relation

to other details of the participants. Participants were

blinded in that all three groups had a similar looking icon

on their phone, although access to the data in the app was

not visible to participants in the control group.

In studies using multi-level analysis methods, sample

size calculations are highly complex and should be used

with caution [32]. In this study, a power analysis was

also precluded by the absence of evidence on the likely

effect-size. In addition, the cost of the phones we were

supplying to participants limited the number of partici-

pants. However, we ensured that the resources available

for purchasing the study phones allowed us to achieve a

sample size that exceeded the published recommenda-

tion of at least 50 participants for each factor being

considered [33].

Prior to the start of the trial, participants from all

three groups were provided, via courier, with the study

phone and instructions on how to use it and how to in-

sert a SIM card. The app was disabled until the start of

the trial, when it was remotely enabled, presented itself
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to the user and, in the case of the two treatment groups,

offered a guide to its use. Subjects were told that the

aim of the study was to measure the amount of walking

they did; only those in the treatment groups received

overt encouragement to increase their walking.

A photo of the app as it appeared on the phones of

those in the social feedback group is shown in Fig. 1,

and an example of the on-screen feedback, in Fig. 2.

(The screens seen by those in the individual feedback

group were very similar.) Participants could view feed-

back on their phones at any time of day and the data

was refreshed every fifteen minutes. This feedback was

provided in a number of formats. When the app was

first opened, participants in the intervention groups

were shown a running total of the number of steps they

had taken that day, along with an estimate of the calories

they had burnt by taking those steps and of the number

of miles that they had walked. They then had the option

of viewing equivalent data for the previous day or viewing

‘past week’ or ‘history’ screens. These last two screens used

line graphs that allowed easy comparison of steps taken

on different days, with the latter permitting users to use a

swipe action to switch between data displays of different

weeks. Those in the social feedback group were also able

to compare their data to the average for other participants

in that group.

The study ran for eight weeks between October and

December, with data from the mobile phones automatic-

ally downloaded to a secure central server. The intention

had been for the first two weeks to provide baseline

data, but due to a technical malfunction, data from this

‘run in’ phase was unusable.

Standardised text messages were sent to participants

throughout the trial (see Table 1). In weeks 1–2, four

messages reminded all participants to carry their phones

in their pockets. In week 3, those in the treatment

groups received messages on the Monday the app was

activated and all three groups were sent a message on

the Thursday. Subsequently, those in the two experimen-

tal groups were sent weekly messages to encourage them

to walk more and those in the control group were mes-

saged once a fortnight to remind them to carry their

phones. Participants were sent the following message if

their phones had not sent data for one or two days:

“[First name], we’ve not had any data from your app for

[1, 2] days. After 3 days, we might have to withdraw you

from the research and ask for the phone back. Text, call

or email if you need any help.” No participants were ex-

cluded from the study for this reason.

Participants were provided with a participant informa-

tion sheet and written consent was obtained from all par-

ticipants. The study was not registered with a research

register, although we recognise that doing so is increas-

ingly emerging as best practice. Ethical approval was pro-

vided by Swansea University’s research ethics committee.

The data collected in this study had a two-level struc-

ture: step-counts were collected over a series of days

(first level) but were also clustered within participants

(second level). For this reason, analysis was conducted

using multilevel regression models (MLM), an estab-

lished methodology in public health research [34]. MLM

has a range of advantages over other methods [35]. Any

attempt to understand behaviour without taking account

of data hierarchies can severely handicap explication of

the underlying processes [36] because inter-observation

dependency in the data can lead to the underestimation

of standard errors of regression coefficients and an over-

statement of statistical significance. MLM avoids this

problem by partitioning the within- and between-

subjects variance of the dependent variable. In addition,

unlike in a repeated measures ANOVA, only the missing

observations themselves are deleted if data are missing

for any time point. The final advantage of MLM is that

it facilitates the easy fitting of within-subjects auto-

correlation, and thereby acknowledges the sequential re-

peated collection of observations from the same subject.

In this study, MLM was implemented using a four-

step analytical process. First, an unconditional model

was run – i.e., a model with no predictors, just partition-

ing of within-subject and between-subject variance. The

Fig. 1 The bActive app. [This is a picture of a hand holding a

mobile phone]
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Model Deviance statistic of this model provided a base-

line fit against which subsequent models could be tested.

It also enabled the assessment of the variance to be ex-

plained at the within-subject and between-subject levels.

Finally, it allowed calculation of the percentage of vari-

ance in the outcome that was attributable to differences

between subjects (the ICC-1 statistic).

The second step was to fit a fixed-effects growth

model in order to examine and control the shape and

direction of any change over time in the number of steps

taken per day. Linear and quadratic effects of time were

therefore added as predictors. To control for any associ-

ation of step-counts with weekly behaviour patterns, a

dummy variable was created for day of the week.

The third step was a test for variability, between the

participants, in changes in the step-count. This was

achieved by allowing the coefficients of the growth

parameters (the linear and squared effects of time) to

vary between subjects. The final step was the addition

of the effects of the Experimental Group (defined as

both interventions groups together) and its interaction

with time-point. This tested whether the Experimental

Group accounted for any variation in the intercept level

or any change in the outcome variable. The following vari-

ables were controlled for at this stage: marital status, num-

ber of children in the household age sixteen or under,

employment status, ownership of a motorised vehicle or

bicycle, and previous ownership of a smartphone.

At each of the stages, model improvement was evalu-

ated by testing the reduction in the model deviance and

assessing the extra variance explained. Within-subjects

auto-correlation was modelled using an AR1-type cor-

relation matrix. To negate the distorting effects of the

handful of participants that had very large numbers of

steps in any one day, the outcome variable was log-

transformed.

Results

Of the 165 original recruits, 161 participants completed

the study in its entirety. No participants were excluded

from the study for non-compliance. Nine participants

were excluded from the statistical analysis because of

missing demographic data. Two were unable to complete

because their phone was damaged or stolen, one withdrew

Fig. 2 The Today, Yesterday, and Past Week screens. [This image includes three photographs of the smartphone screen]

Table 1 Examples of the SMS messages sent to participants during the trial

Total
number

Example 1: 24th Oct;
day 1, week 1

Example 2: day 1,
week 3

Example 3: day 4,
week 3

Example 4: day 4,
week 5

Control group 9 [First name], thank you for
taking part in this important
research! Except when doing
sport, please keep the phone
in your trouser pocket from
now on.

no message In the bag? That’s a snag!
Remember to keep your
phone in your pocket!

We’re half-way through
the study. Many thanks!

Individual group 16 Your bActive app is
now fully activated.
Please open it and
take some time to
explore and use it.

Walking is one of the best
activities for your health.
How much are you doing?
Check the app!

To improve your fitness,
‘brisk is best’. But it is a
good idea to use the
‘talk test’: can you talk
while you walk?

Social group 16 Walking is one of the best
activities for your health.
Are you doing more than
others, or less? Check the app!
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without giving a reason and one gave data costs as the rea-

son for withdrawal. There was no statistically significant

relationships between those who dropped out, or were ex-

cluded from the analysis, and step-counts or the experi-

mental group. The characteristics of the 152 participants

included in the analysis are summarised in Table 2. A flow

diagram is provided in Fig. 3.

A total of 6214 observations were recorded over

42 days across the 152 subjects, with 92 % of the sub-

jects (i.e., all but 13) providing observations on at least

40 days. Average daily levels of recorded activity were

higher in the individual and social feedback groups

(3842 and 3984 steps, respectively) than in the control

group (2822 steps). Information on the average number

of steps taken by participants in each treatment group is

provided in Table 3; Fig. 4 visualises this data, showing

the week-by-week variation in average step-counts for

weeks 1 to 6 of the intervention.

As one would expect, the variation in steps showed a

high level of clustering within participants. However, an

ICC (1) statistic of 0.33 indicated that a third of the total

variation was due to between-participant differences.

The introduction of linear and quadratic effects of time

(i.e., modelling change over time in individuals’ walking

habits) alongside dummy codes for day of the week ex-

plained a statistically significant, but small (4 %), within-

participant variance. Tests of fixed effects coefficients

indicated that of the three predictors (the linear effect of

time, the quadratic (curvilinear) effect of time and day of

the week), the third was the primary explanatory variable

(see Fig. 4); this suggests that within-individual variation

in walking was also due to variation in daily routine. Since

modelling of curvilinear change offered no improvement

over a simple linear effect, the quadratic effect of time was

dropped from the model.

There was evidence that the linear effect of time varied

between individuals. When this random effect was

added, along with the covariance between starting level

and extent of linear change, the model deviance reduced

significantly (SD = 111 on 2df, p < 0.0005) and the unex-

plained within-participant variance was reduced by a

further 4 %. Of the demographic and control variables,

only employment status and car ownership had a signifi-

cant effect on step counts, with full-time and part-time

employees likely to have a higher step count than other

groups and car owners likely to have lower step counts

than non-car owners.

The tests for hypotheses H1 and H3 show that Experi-

mental Group (a dummy variable with control group as

the reference category) had a statistically significant ef-

fect on step-count (F = 6.626, p < 0.0005). Furthermore,

adding Experimental Group to the model significantly

reduced its deviance (change in deviance = 13 on 2df,

p < 0.0005) and explained a further 7.7 % of the between-

participants variance in step-count. The coefficients for

differences between the individual and social feedback

groups vs. the control group were both statistically signifi-

cant (individual vs. control B = 0.474; 95 % CI = 0.166–

0.782; p < 0.05, and social vs. control B = 0.526; 95 %

CI = 0.212–0.840; p < 0.05). When the log-transformed

Table 2 Demographic information of participants

Total (n =152) Control group (n = 49) Individual feedback group (n = 53) Social feedback group (n = 50)

Marital/family status

- single no children 70 46 % 25 24 21

- single with children 6 4 % 0 3 3

- with partner, no children 40 26 % 11 14 15

- with partner and children 29 19 % 10 10 9

- other 7 4 % 3 2 2

Employment status

- full-time employed/self-employed 104 69 % 32 35 37

- part-time employed 13 9 % 2 7 4

- carer/unemployed 14 8 % 6 3 3

- student 21 14 % 8 7 6

Type of employment

- sedentary (e.g., office worker) 58 50 % 25 20 13

- moderately active (e.g., teacher) 51 44 % 8 19 24

- very active (e.g., postal worker) 7 6 % 1 3 3

Regularly participate in sport 89 59 % 31 29 29

Own motorised transport 95 63 % 30 31 34

Previously owned a smartphone 108 72 % 36 38 34
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outcomes were transformed back, these coefficients

gave an expected step-count 60 % higher for those in the

individual group (exponential(0.474) = 1.60) and 69 %

higher for the social group (exponential(0.526) = 1.69).

The null hypothesis was therefore rejected for both H1

and H3 in favour of the alternative: that those receiving ei-

ther form of feedback had higher step-counts than those

in the control group. However, there was no statistically

significant difference in step-count between the two ex-

perimental groups, so the null hypothesis for H2 could

not be rejected.

The interaction of Experimental Group and time-point

was not statistically significant, so the effect of individual

and social feedback on step-count was immediate and

did not increase or decrease across the study period.

The rate and direction of change in step-count over the

study period did not vary significantly according to Ex-

perimental Group: adding this interaction effect reduced

model deviance by just 1 on 1df (p > 0.05) and explained

only 0.6 % of the variation in slopes.

Discussion

This study indicates that always-on, accelerometer-based

smartphone apps can generate a substantial increase in

walking amongst relatively healthy, young to early-

middle-aged men. These behaviour changes were inde-

pendent of marital or employment status, whether there

are children in the home and ownership of motorised

transport. This suggests that this approach may success-

fully be applied to population segments that currently

fail to meet physical activity targets [37, 38]. As technol-

ogy makes working and domestic life increasingly seden-

tary [39], such interventions can alert people to their

levels of inactivity and prompt them to counter this

change with subtle changes to their daily practices. In

addition, the bActive approach minimises conscious cog-

nitive effort rather than eliminating it, and influences both

the behaviour and the understanding of participants [40].

As a result, unlike the nudges delivered by Thaler and

Sunstein’s [41] libertarian paternalism, it cannot be criti-

cised for being manipulative and non-reflective.

Fig. 3 The flow diagram of bActive study. [This image provides a flow diagram of the study]

Table 3 Average numbers of steps recorded over the 6-week trial

Day of
the week

Control (n = 49) Individual feedback group (n = 53) Social feedback group (n = 50) Complete sample (n = 152)

Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Monday 2399 1373 2837 3848 2772 3989 4181 2714 4252 3495 2348 3829

Tuesday 2651 1548 2937 4344 3196 4168 4320 3023 4498 3796 2653 4011

Wednesday 2955 1940 2986 4066 3178 3640 4285 2955 4296 3781 2884 3722

Thursday 3182 2030 3097 4197 3477 3916 4539 3150 4501 3980 3005 3919

Friday 3293 2142 3502 4371 3058 4654 4318 3170 4068 4010 2808 4149

Saturday 2756 1727 3373 3322 2153 3519 3289 2144 3566 3132 1978 3494

Sunday 2080 973 2842 2811 1749 3474 2452 1676 2697 2462 1411 3052
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Furthermore, the intervention reported here relied solely

on automated feedback displays and easily-automated mo-

tivational text messages. Unlike interventions used in many

previous population-level studies [42–44], it did not rely

on a programme of expensive face-to-face support, motiv-

ation or instruction such. Hence, it can be delivered easily

and affordably to large populations.

Some comment is needed on the larger than expected

differences in step-counts between the feedback groups

and the control. It is possible that Bristol’s reputation as

a ‘green’ city may have made users more amenable to

extra walking than men in other UK areas and that the

scale of the change is not therefore generalizable. How-

ever, as reported elsewhere [38], use of the app had a

transformative effect on some users, leading them to at-

tribute greater benefit to the walking that was part of

their normal activities and to recognise that they could

become more physically active simply by changing the

way they organised existing everyday practices. As strat-

egies for increasing their step-counts, participants in the

feedback groups reported, for example making add-

itional trips to the shops, taking dogs for longer walks

and going to see colleagues when they would previously

have sent them emails. These behaviour changes re-

sulted, it appears, from an awareness, facilitated by the

app, of long sedentary periods within their daily lives

and the number of steps inherent in simple, day-to-day

practices (or variations of practices) that they had not

formerly associated with physical activity. There are

many potential sources of variation in physical activity

including seasonal factors, emotional factors, support

from others, weather, and competing demands on time.

Although qualitative interviews conducted ten months

after trial-end suggest that some participants still had a

raised level of physical activity [14], it is likely that some

of the more outlandish behaviours (e.g., walking round

the house simply in order to reach step targets) will have

ceased with time. No data was available to test long-term

outcomes for the sample as a whole because the length of

this trial was constrained by the burden placed on partici-

pants by the need to forgo the use of their usual phones

and carry the study phone with them at all times. Future

studies will need to find a way around this problem.

There is also the question of whether, when they were

not obliged to do so, users’ intrinsic motivation to carry

the phone with them would be sufficient to provide suffi-

cient data to prompt behaviour change. Previously pub-

lished evidence from this trial suggests that it would be

[14]. It reported that feedback participants opened the app

an average 3.9 times per day, each time keeping it open

for an average of 32.0 s, and that in the final week they

were still opening it 2.3 times a day. Furthermore, 91 %

described the app as ‘interesting’, 67 % as ‘fun’ and 73 %

said they would continue to use the app after the trial.

Ultimately, the ideal target population for this app

would be people who are at risk of adverse health out-

comes related to inactivity. Some of those in this category

might have no more than a passing interest in becoming

more active. This is why the intervention was designed to

require minimal commitment (the app runs automatically),

minimal financial investment (no additional devices are

needed) and to promote engagement through simple curi-

osity about the feedback rather than through any particular

desire to exercise. The app used in this study has two main

Fig. 4 Results plotted over the six-weeks of the trail for the control group and two treatment groups. [This image provides a graphical display of

the daily number of steps taken by the three groups in the study]
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strengths in this regard: being on continuously, it measures

the walking inherent in practices not usually considered as

‘exercise’, and it required neither the purchase of specialised

equipment, commitment to an exercise regime or self-

identification as fitness-conscious and exercise-oriented.

As a result, it is likely to have greater appeal to this popula-

tion than many of the pedometer-style systems that are

currently available and, therefore, to be more successful at

changing their walking behaviours.

The use of the approach for both men and women re-

mains problematic however. New technology does allow

step-data to be collected by devices that do not need to be

located in any particular part of the body and that could

more easily be carried by those not wearing trousers with

pockets. However, the costs of purchasing additional elec-

tronic devices would undermine the scalability of an inter-

vention, and the need to carry an extra piece of equipment

might deter some of the population being targeted. Further-

more, the focus on men does have some justification: al-

though a range of apps have previously been developed

specifically for female users [24, 27, 45], few studies have ex-

plored the effects on males of using this type of approach.

A key finding of this research was the lack of significant in-

cremental effect related to social norm feedback. This unex-

pected outcome appears to contradict the literature on social

norms, which argues that normative comparisons signifi-

cantly enhance the impact of behavioural feedback – includ-

ing in health-related behaviours such as substance abuse

[19, 41]. An alternative interpretation, however, is that this

finding indicates issues with the design of the social feed-

back used. Practitioners of the social norms approach

argue that the most effective reference group consists of

those that participants consider most like themselves [23,

46, 47]. Although all participants were of the same gender

and of approximately the same age, the social feedback might

have been more effective if the age-band had been narrower

or if a distinction had been made between, for example,

those in physically active occupations and those doing more

sedentary work. Alternatively, the social feedback may have

distracted users from the individual feedback, thereby mask-

ing the incremental impact of the former.

Work is needed to explore the effectiveness of this type of

intervention for other parts of the population, including

older men and people with health conditions that were ex-

cluded by the screening used in this study. Although the

sample included people who were not inclined to exercise,

research is also needed that focuses exclusively on this

population. Future studies should assess the extent to which

changes in walking behaviour are sustained over time.

Conclusion

This study provides evidence that the techniques used in

this app significantly increase physical activity levels in

male adults. For those in this category not actively seeking

to become more active, the minimal requirements for

commitment (the app runs automatically) and financial

investment (no additional devices are needed) should be

an advantage, as too should the lack of any need to com-

mit to a physical activity regime or self-identify as fitness-

conscious and exercise-oriented. Another advantage for

this group is the promotion of engagement through sim-

ple curiosity and the absence of any reliance on a desire to

do more physical activity. Being on continuously, the app

measures the walking inherent in practices not usually

considered as ‘exercise’. This, it has been found [38], pi-

ques the curiosity of users and provides encouragement to

those who were not previously aware that day-to-day

walking could be seen in this way [48, 49]. The app is

therefore likely to have greater appeal to this population

than many of the pedometer-style systems that are cur-

rently available and to be more successful at changing

their walking behaviours.
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