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Effectiveness of the - method in a parallel computing with an iterative domain decomposition method is considered. Convergence
of interface problems is faster with the electric scalar potential than without it. A simple model is considered as a numerical example.

Index Terms—Domain decomposition method, eddy current problem, finite-element method, parallel processing.

I. INTRODUCTION

THERE ARE many machines or devices where the electro-
magnetic phenomena are applied such as a motor, a mag-

netic head, a magnetic shield, and a magnetic sensor, etc. In
order to analyze these engineering or physical phenomena, com-
puter simulation is a reliable and yet economical approach.

Moreover, a computational object is made to a large scale and
is complicated for numerical analysis recently. In addition, sub-
division of the mesh is performed for the improvement of accu-
racy. Therefore, the requirement of large-scale computations in-
creases greatly in electromagnetic field problems. To meet this
requirement, we have already applied the hierarchical domain
decomposition method (HDDM) [1], [2] to three-dimensional
(3-D) eddy current problems using the method, where the
magnetic vector potential is used as an unknown function [3].

On the other hand, 3-D eddy current problems using the -
method that uses furthermore the electric scalar potential are
also considered. Apparently, it might be that the method is
more effective, and that the central processing unit (CPU) time
of the method is less than that of the - method, because the
number of unknown variables is reduced. However, recent pa-
pers insist that convergence of the iterative solver, the conjugate
orthogonal conjugate gradient method (COCG) [4], is faster
with the electric scalar potential than without it, see [5]–[11],
and [12].

In this paper, we introduce HDDM to 3-D eddy current prob-
lems using the - method. We analyze a simple model to com-
pare CPU time and number of iterations of the - method with
those of the method, changing degrees of freedom (DOF) sev-
eral times up to 5 000 000.

II. FORMULATION

A. - Method

Let be a polyhedral domain with boundary . Assume
that the domain consists of two nonoverlapping regions, a
conducting part and a nonconducting one , with the interface

between two regions. In this section, for simplicity, assume

Digital Object Identifier 10.1109/TMAG.2006.871445

that the conducting part is also a polyhedral region, and that
the part is strictly included in .

We use the magnetic vector potential [Wb/m] and the elec-
tric scalar potential [V] as unknown complex functions, and
neglect the Coulomb gauge condition. Then, the following 3-D
eddy current problem is considered:

(1a)

(1b)

(1c)

(1d)

where denotes an excitation current density [A/m ], the
magnetic reluctivity [m/H], the conductivity [S/m], the an-
gular frequency [rad/s], and the imaginary unit. In this section,
assume that is a piecewise positive constant, that is a posi-
tive constant in , and is equal to 0 in , and that the divergence
of vanishes in

(2)

Now we consider a weak form for (1) and a finite-element
method for this form. The domain is decomposed into a
union of tetrahedral elements. Let be a magnetic vector po-
tential approximated by the Nedelec elements of simplex type
so that on , and let be corresponding test
functions. Let be an electric scalar potential approximated
by the conventional piecewise linear tetrahedral elements, and
let be corresponding test functions. Then the finite-element
approximation is as follows.

Find and such that

(3a)

(3b)

where is the complex valued -inner product and is a
corrected excitation current density so that (2) holds in a weak
sense; for example, see [3].

B. A Method

For the method, we can consider similarly. We use only
the magnetic vector potential [Wb/m] as an unknown com-
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plex function. Then the following 3-D eddy current problem is
considered.

in (4a)

in (4b)

on (4c)

(4d)

Neglecting again the Coulomb gauge condition, the finite-ele-
ment approximation for (4) is as follows.

Find such that

(5)

For details and a practical example, see [3].

III. ITERATIVE DOMAIN DECOMPOSITION METHOD

We introduce an iterative domain decomposition method to
eddy current problems using the - method and the method.
Let us denote the finite-element equations of these methods by
the matrix form as follows:

(6)

where denotes the coefficient matrix, the unknown vector,
and the known vector.

The polyhedral domain is partitioned into the nonover-
lapping subdomains. Then the linear system (6) is rewritten as
follows:

(7)

where the subscripts correspond to the nodal points in
the interior of subdomains, on the interface boundary, and on
the essential boundary. (7) leads to linear systems as follows:

(8)

(9)

where is a generalized inverse of .
At first, the unknown vector is obtained from the applica-

tion of the following algorithm based on the COCG method to
(9):

Choose u0B ;
Compute u0I by (KII KIB KIE)(u

0
I u0B uE)

T = fI ;
p0 = r0 = (KBI KBB KBE)(u

0
I u0B uE)

T � fB ;
for n = 0; 1; . . .;

Compute pnI by (KII KIB KIE)(p
n

I pn 0)T = 0;
qn = (KBI KBB KBE)(p

n

I pn 0)T ;
�n = rn � rn=pn � qn;
un+1
B

= unB � �npn;
rn+1 = rn � �nqn;
If krn+1kh�kr0k, break;
�n = rn+1 � rn+1=rn � rn;

pn+1 = rn+1 + �npn;
end;

Fig. 1. Hierarchical domain decomposition.

where is the Euclidean norm and is a positive constant.
Because the matrix is block diagonal corresponding to each
subdomain, the vectors and can be solved independently
in each subdomain. After solving , the unknown is ob-
tained from (8). The vector is solved by the COCG method
with a preconditioner, and can also be solved independently in
each subdomain. Hence, we can get the unknown in the whole
domain.

IV. HIERARCHICAL DOMAIN DECOMPOSITION METHOD

The original domain is hierarchically divided into parts,
which are further decomposed into smaller domains called
subdomains (Fig. 1). This is called the hierarchical domain
decomposition method (HDDM). HDDM is one of techniques
for parallel computing. HDDM has some modes depending on
roles of processors.

A. Hierarchical Processor Mode

Hierarchical processor mode (H-mode) [2] classifies proces-
sors into three groups, “Grand Parent,” “Parent,” and “Child.”
One of the processors is assigned as Grand Parent, a few as
Parent, and others as Child. The number of processors assigned
as Parent is the same as that of parts. The number of Child pro-
cessors can be varied; and it affects the parallel performance.

The role of Grand Parent is to organize all processor com-
munications (i.e., message passing) which occur between all
processors. Parents prepare mesh data, manage finite-element
analysis (FEA) results, and coordinate the COCG iteration, in-
cluding convergence decision for the COCG iteration. Parents
send data to Child processors, where FEA is performed in par-
allel. After the FEA, Child processors send the results to Parents.
This computation will be repeated until the COCG iteration is
convergent (Fig. 2).

B. Parallel Processor Mode

The traditional HDDM [2] was introduced in the previous
section. However, because most computation is performed in
Child processors and the most communication time is taken be-
tween Parent processors and Child processors, the communi-
cation speed becomes important. Although the communication
performance has also been improved in network technology in
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Fig. 2. Hierarchical processor mode.

Fig. 3. Parallel processor mode.

recent years, the high-speed network is still expensive. On the
other hand, for the PC cluster generally used, the network speed
becomes a bottleneck to the processing performance of the CPU.
Moreover, when parallel processing performance is considered,
it is important to reduce the amount of communications as much
as possible. Therefore, the Parent-only type (Parallel processor
mode: P-mode) [13] is useful than H-mode.

In the P-mode, Parent processors perform the FEA by them-
selves, which is computed by Child processors in the H-mode
(Fig. 3). Although Parent processors store some of subdomain
analysis data and coordinate the COCG iteration as the main
work, the idling time of CPU increases in the H-mode, because
of less computation in Parent processors. On the other hand,
since all processors perform the FEA and CPU can be used
without idleness in an environment with 10–20 CPUs, the
P-mode is considered to be superior to the H-mode. In the
P-mode also, the number of Parent processors should be equal
to the number of parts.

V. NUMERICAL EXAMPLES

In this section, the P-mode is used for computing.
We consider a simple model which is a model for the accuracy

verification of the eddy current analysis and uses the solenoidal
coil with unlimited length, see Figs. 4 and 5. The radius of the
conductor is 0.1 m, and the height of -axis is 0.1 m. The mag-
netic reluctivity is [m/H]. The conductivity in the

Fig. 4. Solenoidal coil with unlimited length.

Fig. 5. Geometry of a simple model.

TABLE I
NUMBERS OF DOF, ELEMENTS, AND SUBDOMAINS

Fig. 6. History of residual norms (Mesh(1)).

conductor is [S/m]. The angular frequency is
[rad/s]. The absolute value of real (or imaginary) part of the
excitation current density (or ) in the coil is 50 (or 0)
[A/m ]. Dirichlet boundary conditions of and
are given on the surfaces of and . Table I shows
numbers of DOF, elements, and subdomains.

A simplified block diagonal scaling is used as the precondi-
tioner in the COCG procedure on the interface. Each process
is stopped when the residual norm becomes less
than 10 . In each subdomain, the COCG method is used as
the solver for the complex symmetric (not Hermitian) system
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TABLE II
CPU TIME, NUMBER OF ITERATIONS, AND AMOUNT OF MEMORY

arising in approximations. A shifted incomplete Cholesky
factorization is used as the preconditioner with the accelera-
tive parameter 1.2. The COCG method in each subdomain is
stopped when the preconditioned residual norm becomes less
than 10 .

Computation was performed by eight CPUs using Pentium 4
2.0-GHz processors. Fig. 6 shows history of residual norms for
Mesh(1), and Table II shows CPU time, number of iterations
to solve interface problems, and amount of memory per CPU
versus formulation cases. In Mesh(1)-(3), the - method needs
much more memory than the method by about 27%, but the
CPU time and number of iterations of the - method are much
less than those of the method.

VI. CONCLUSION

We have introduced HDDM to 3-D eddy current problems
using the - method and have shown the possibility of large-
scale analysis in eddy current problems. Moreover, we have con-
firmed the effectiveness of the - method in CPU time and
number of iterations.

In future research, it is very important for us to reduce number
of iterations and computational time.
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