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Abstract: Vaccine effectiveness (VE) and the urgency of booster vaccination against SARS-CoV-2
Omicron variant need evaluation. A systematic search was conducted from 1–6 April, 2022. VE
difference (VED) estimates were assessed using random-effects and meta-regression analyses were
performed for evaluating VE over time. Compared to full dose, booster dose of overall vaccines
provided better protection against any and severe Omicron infections within 3 months (p < 0.001), and
within 3 months or more in any, severe, and symptomatic infections (p < 0.001). From meta-regression
analysis of overall vaccines, the full-dose VE against any and symptomatic Omicron infections
reduced per month by 2.45% and 5.5%, respectively; whereas booster dose effectiveness against any
and symptomatic Omicron infections reduced per month by 1.79% and 1.14%, respectively. The VE
estimates of booster dose provide excellent protection against symptomatic infection compared to full
dose. The VE estimates of Ad26.COV2.S, BNT162b2, ChAdOx1 nCov-19, and mRNA-1273 against
Omicron infection are generally moderate, despite the VE estimates declining over time.

Keywords: COVID-19; SARS-CoV-2; Omicron variant; vaccine effectiveness; booster vaccination

1. Introduction

As of April 2022, there were at least two circulating SARS-CoV-2 variants of con-
cern: the B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants [1]. In November 2021, the
Omicron variant was first identified in South Africa and was immediately declared a
variant of concern by the World Health Organization. Alongside the massive rise in the
confirmed cases of SARS-CoV-2 infection in South Africa, the Omicron variant started to
spread across the globe in no time. The identification of several concerning mutations in
the SARS-CoV-2 Omicron variant and evidence of an enhanced immune escape ability
contributed to the rapid spread of the Omicron variant worldwide [2]. Compared to the an-
cestral variants (Wuhan-Hu-1 or Wuhan-1), the Omicron variant contains more mutations
(i.e., 60 mutations), 32 of which occur in the spike gene which encodes the primary antigen
target for a wide variety of COVID-19 vaccines [3]. These mutations have been linked to
increased transmissibility, a high rate of immune evasion following natural infection and
vaccination, and the impairment of the efficacy of SARS-CoV-2 vaccines [4].

Vaccine effectiveness (VE) is a measure of how well vaccines protect people from
infections in the real-world setting [5]. It played a critical role in restricting the spreading
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of SARS-CoV-2 infections in the current COVID-19 pandemic [6]. Earlier in the COVID-19
pandemic, studies predicted a 60–90% herd immunity threshold to limit the disease spread-
ing, which could be achieved through several measures, including a mass vaccination
campaign [7,8]. Indeed, several COVID-19 vaccines have been shown to be promising by
numerous large randomized-controlled trials (RCTs) [9–13]. Since then, many countries
have extensively implemented COVID-19 vaccination programs. However, prior laboratory
and clinical studies have indicated a reduction in VE against the Omicron variant as com-
pared to the earlier variants [14–16], potentially affecting the current COVID-19 vaccination
strategy. Therefore, with the surge of new SARS-CoV-2 variants, booster vaccine doses were
administered to confer stronger immunity, which hopefully could increase VE [17,18]. How-
ever, due to global disparity in the availability and distribution of COVID-19 vaccines and
the vaccination rates, developing countries were pushed to expedite booster vaccination
with (limited) available resources to foster their booster vaccination rates [19,20].

Since an equal distribution of booster vaccines remains a challenge and Omicron’s
spike antigen landscape is heavily altered, there is a need for explorations regarding the
effectivity of currently available vaccines and the urgency of booster vaccination against
the SARS-CoV-2 Omicron variant. Here, we performed systematic review and meta-
analysis to unravel the effectiveness of full and booster vaccinations against the SARS-CoV-2
Omicron variant.

2. Materials and Methods

This systematic review conformed with the guidelines of Preferred Reporting Items
for Systematic Review and Meta-Analysis (PRISMA) 2020 [21] and has been registered in
the PROSPERO database (CRD42022302267).

2.1. Eligibility Criteria

This review included any study designs, including RCT, cohort, case-control, and
cross-sectional studies. Studies were selected according to the following criteria: (1) admin-
istration of COVID-19 vaccine during the Omicron variant’s wave as the study of interest;
(2) eligible studies reporting at least one of our outcomes of interest; and (3) English lan-
guage. Our outcomes included VE difference (VED) between the booster and full dose, the
correlation of booster dose VE with time, and the correlation of full-dose VE with time. We
excluded review articles, nonhuman studies, irrelevant articles, and duplications.

2.2. Search Strategy and Selection of Studies

Two authors (I.A.W and D.S.B) conducted a keyword search for articles published in
databases (PubMed, ScienceDirect, Cochrane Central Register of Controlled Trials [CEN-
TRAL], Web of Science, and Scopus) from 1 to 6 April 2022. Extended manual search
(e.g., in medRxiv, bioRxiv) and bibliographical search were also conducted to obtain
additional potential articles. The following keywords were used: “((SARS-CoV-2) OR
(COVID-19)) AND ((Omicron) OR (B.1.1.529)) AND ((Vaccine) OR (Vaccination)) AND
((Vaccine efficacy) OR (Vaccine effectiveness))”. Detailed search strategies are available in
Supplementary Materials (Table S1). We exported all studies retrieved from the electronic
search into the Mendeley reference manager for duplication removal and independent
screening. Any disagreements between these two authors were resolved by discussion with
all authors until consensus was reached. The number of excluded studies was specified in
the PRISMA flow diagram alongside their reasons for exclusion (Figure 1).
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Figure 1. PRISMA flow diagram of study selection process.

2.3. Data Extraction

Two review authors (N.R.P. and D.S.B.) independently extracted relevant data from
each selected study using a structured and standardized form. For each included study,
the following relevant data were collected: first authors’ names and publication year,
study design, country of origin, sample size, patient age, Omicron strain confirmation
method, follow-up duration, dose, types and administration interval of COVID-19 vaccines,
endpoints, and VE.

2.4. Quality Assessment

The methodological quality of each study was assessed independently by two authors
(I.A.W and D.S.B) using the original Newcastle–Ottawa Scale (NOS) for case-control and
cohort studies [22]. The tool evaluates the quality of observational studies from the fol-
lowing 3 domains: (1) sample selection; (2) study comparability; and (3) study outcome.
The NOS contains 8 items with scores ranging from 0 to 9. The total score of 0–3, 4–6, and
7–9 indicated low-, moderate-, and good-quality studies, respectively. Any discrepancies
were resolved by discussion until consensus was reached.

2.5. Outcomes Measure

We evaluated three outcomes: (1) VED between the booster and full dose, which was
evaluated by two models: ‘within 3 months’ and ‘within 3 months or more’; (2) correlation
of booster dose VE with time; and (3) correlation of full-dose VE with time. We further
evaluated each of these outcomes for three different endpoints: any, symptomatic, and
severe Omicron infections. The ‘any infection’ endpoint included positively-tested COVID-
19, symptomatic COVID-19, and severe COVID-19. Meanwhile, the ‘symptomatic infection’
endpoint comprised any individuals who had tested positive and showed COVID-19
symptoms as well as individuals who required hospital visits without hospitalization.
Those who were hospitalized due to COVID-19, regardless of the received treatment, were
deemed as having a severe infection.

For VED between the full and booster doses, we analyzed the results using 2 models:
the ‘within 3 months’ and the ‘within 3 months or more’ models. The ‘within 3 months’
model included data in the first 3 months reported by each study and the ‘within 3 months
or more’ model included data in the first 3 months or more reported by each study.
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2.6. Statistical Analysis

Primary analyses were carried out using R version 4.0.5 with meta and dmetar package.
VE was calculated as (1 − OR) ×100% for case-control studies, while (1 − RR) × 100% or
(1 − HR) × 100% for cohort studies. VED was defined as the difference of VE between the
booster and full-dose vaccines, i.e., VE of booster dose—VE of full dose. We used the I2 test
to quantify the heterogeneity between studies, with values I2 > 50% representing moderate-
to-high heterogeneity. Random effects were used with the inverse variance method for
pooling the results and DerSimonian–Laird for estimating τ2. Egger’s test was performed
for the evaluation of publication bias. All statistical analyses with a p-value < 0.05 was
considered statistically significant. Leave-one-out sensitivity analysis was conducted to
find the source of statistical heterogeneity and demonstrate how each study influenced
the overall result. Meta-regression analysis was also performed using inverse-variance
and restricted-maximum likelihood with Hartung–Knapp adjustment. VE reduction per
month was approximated by multiplying the VE reduction per day—the slope of VE vs.
time—by 30.

3. Results
3.1. Study Selection and Quality Assessment

From databases and manual search, 1278 and 786 records were retrieved, respec-
tively. A total of 147 duplicates were subsequently removed. Following the screening
of titles and abstracts, 66 potential articles were selected for review. After a full-text re-
view, 20 observational studies, consisting of 4 cohorts and 16 test-negative case-control
studies, were included in the systematic review, meta-analysis, and meta-regression. The
overall screening process of this systematic review and meta-analysis is summarized in
the PRISMA flow diagram (Figure 1). The quality assessment of each study using the
NOS critical appraisal checklist is listed in Tables S2 and S3. All included studies were
considered good-quality studies according to the quality assessment.

3.2. Study Characteristics

We included 20 studies, consisting of 4 cohorts and 16 test-negative case-control
studies with a total of 12,409,084 participants. The summary of study characteristics was
tabulated in Table 1. Each study is further divided by the type of COVID-19 vaccines and
the number of doses, i.e., full doses (Table S4) or booster doses (Table S5). Four types of
COVID-19 vaccine (i.e., Ad26.COV2.S, BNT162b2, ChAdOx1 nCov-19, and mRNA-1273)
were included in the VE analyses of the full and booster doses. Full-dose vaccination
represents two doses of BNT162b2, ChAdOx1 nCov-19 and mRNA-1273 vaccines, or one
dose of the Ad26.COV2.S vaccine, whereas booster dose vaccination was defined as the
administration of an extra dose of COVID-19 vaccine on top of the full-dose vaccination.
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Table 1. Characteristics of the included studies.

Reference Study Design County of Origin Sample Sizes Age
/Years

Omicron Strain
Confirmation Method

Follow-up Duration &
(Median (IQR)) or Range) +/Days Type of Vaccines Endpoints

Vaccine
Effectiveness §

/100%Dose 2 Dose 3

Buchan
et al. [23]

Case-
control ˆ Canada 134,435 ≥18 Viral whole genome or

S-gene sequencing NR NR BNT162b2,
mRNA-1273

Symptomatic
infection and

severe infection
1-OR

Gray
et al. [24]

Case-
control ˆ South Africa 52,468 ≥18 Omicron period N/A

0–13 days group
8 (5–11) days

14–27 days group
20 (17–24) days

1–2 months group
32 (29–34) days

Ad26.
COV2

Positive COVID-19
and severe infection 1-OR

Accorsi
et al. [25]

Case-
control ˆ United States 70,155 ≥18 Viral ORFlab, S, and

N gene sequencing 8.0 (1.0) months 1.0 (1.0) month BNT162b2,
mRNA-1273

Symptomatic
infection 1-OR

Andrews
et al. [26] Case-control ˆ United Kingdom 2,663,549 ≥18 Viral whole genome and

S-gene sequencing NR 39 (range, 14–118) ChAdOx1, BNT162b2,
mRNA-1273

Symptomatic
infection 1-OR

Chemaitelly
et al. [27]

Case-
control ˆ Qatar 133,327 No ≥ restriction Viral whole

genome sequencing NR NR BNT162b2,
mRNA-1273

Symptomatic
infection 1-OR

Collie
et al. [28]

Case-
control ˆ South Africa 211,610 ≥18 Viral S-gene sequencing NR NR BNT162b2

Symptomatic
infection and

severe infection
1-OR

Ferdinand et al. [29] Case-
control ˆ United States 93,408 ≥18 Omicron-

predominance period 214 (164–259) 49 (30–73) any mRNA
vaccines ***

Symptomatic
infection 1-OR

Klein et al. [30] Case-
control ˆ United States 39,217 ≥18 Omicron-

predominance period

5 to 11 y.:
14–67

12–15 y.: NR
16–17 y.: NR

NR BNT162b2 Symptomatic
infection 1-OR

Lauring
et al. [31]

Case-
control ˆ United States 11,690 ≥18 Viral whole

genome sequencing NR 69.5 (41.5–97) any mRNA
vaccines *** Severe infection 1-OR

Natarajan et al. [32] Case-
control ˆ United States 80,287 ≥18 Omicron-

predominance period

Ad26.
COV2.S:

52 (33–71)
any mRNA: 48

(32–71)

Median (IQR)
59 (38–79)

any mRNA
vaccines ***

Symptomatic
infection and

Hospitalization
1-OR

Tartof et al. [33] Case-
control ˆ United States 14,137 ≥18 Viral whole genome and

S-gene sequencing NR NR BNT162b2
Symptomatic
infection and

severe infection
1-OR

Tenforde et al. [34] Case-
control ˆ United States 7544 ≥18 Omicron-

predominance period 256 60 any mRNA
vaccines *** Severe infection # 1-OR

Thompson
et al. [35]

Case-
control ˆ United States 222,772 ≥18 Omicron-

predominant period
<180 days group: 137
≥180 days group: 223

Median interval:
41–44

any mRNA
vaccines ***

Positive COVID-19
and severe infection 1-OR

Tseng et al. [36] Case-
control ˆ United States 136,345 ≥18 Viral whole genome and

S-gene sequencing 14–365 days NR mRNA-1273 Positive COVID-19
and severe infection 1-OR

Young-Xu et al. [37] Case-
control ˆ United States 69,215 ≥18 Omicron-

predominant period NR NR any mRNA
vaccines *** Positive COVID-19 1-OR

Zambrano et al. [38] Case-
control ˆ United States 283 12 to 18 Viral genome

sequencing
MIS-C:

63 (48–89) N/A BNT162b2 Severe infection & 1-OR

Abu-Raddad
et al. [39] Retrospective Cohort Qatar 2,239,193 No restriction Viral genome

sequencing 21 (11–38) 22 (12–38) BNT162b2,
mRNA-1273

Symptomatic
infection and

severe infection
1-HR
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Table 1. Cont.

Reference Study Design County of Origin Sample Sizes Age
/Years

Omicron Strain
Confirmation Method

Follow-up Duration &
(Median (IQR)) or Range) +/Days Type of Vaccines Endpoints

Vaccine
Effectiveness §

/100%Dose 2 Dose 3

Hansen et al. [40] Retrospective Cohort Denmark 5767 12
to 60

Sequencing of viral
whole genome or a

novel variant specific
targeting the

452L mutation

1–150 1–30 BNT162b2,
mRNA-1273 Positive COVID-19 1-HR

Monge
et al. [41] Retrospective Cohort Spain 6,222,318 ≥40 Omicron-

predominant period 0–34 0–34
ChAdOx1-S, Ad26.

COV2.S, mRNA-1273,
BNT162b2

Positive COVID-19 1-RR

Fowlkes et al. [42] Prospective cohort United States 1364 5 to 18 Viral genome
sequencing

5 to 11 y.: 14–82
12 to 15 y.: NR N/A BNT162b2 Any infection 1-HR

Data obtained from the emergency department and urgent care. ˆ Test-negative case-control design. # Data from IMV or hospital-related death. & Multisystem Inflammatory Syndrome
in children (MIS-C). + The number shows a median (IQR) or range between dose receipt date and endpoint date. The purpose is to depict how data distribution between booster and full
dose differ. If the study did not report the limit of follow-up interval, then it would be written as not reported. A detailed outcome summary with 95%CI is compiled in Tables S5 and S6
for full and booster doses, respectively. Test-negative case-control study design. § 1–OR is 1–(odds among vaccinated group)/(odds among unvaccinated group); 1–RR is 1–(risk among
vaccinated group)/(risk among unvaccinated group); 1–HR is 1–(hazard among vaccinated group)/(hazard among unvaccinated group)). *** any mRNA vaccine is designated for
studies that describe the vaccines as mRNA vaccines but do not specify further the name of vaccines. Abbreviations: MIS-C, Multisystem Inflammatory Syndrome in children; N/A, not
available; NR, not reported; y., year.
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Six studies [29,31,32,34,35,37] used mRNA vaccines but did not further specify the
manufacturers. In this case, we defined them as any mRNA vaccines. Two studies [38,42]
evaluated the effectiveness of COVID-19 vaccines only among children and adolescents,
while the rest of the studies included adults as their participants. Geographically, the
included studies originated from seven countries/locations: twelve studies were conducted
in the United States, three studies in Europe, two studies in South Africa, three studies
in Qatar, and one study in Canada. The follow-up time intervals varied among studies.
Between booster and full doses, only three studies [32,39,41] had a similar median or
range from the date of dose receipt to the date of endpoint events. The VE was calculated
as (1 − OR) × 100% among all case-control studies, while VE among cohort studies was
calculated as (1 − OR) × 100%, (1 − RR) × 100%, or (1 − HR) × 100% (Table 1). The VE
from each study with its 95% clinical interval (CI) for full and booster doses are summarized
in Tables S5 and S6, respectively. The results of the VED calculation are summarized
in Table S7.

3.3. VED Estimates between Booster and Full Dose
3.3.1. Overall Analysis

Results from two meta-analysis models, i.e., the ‘within 3 months’ (Figure 2A) and
‘within 3 months or more’ (Figure 2B) models, were compared. In the ‘within 3 months’
model, there were 22 separate analysis data involving any mRNA vaccines (n = 7), BNT162b2
(n = 9), mRNA-1273 (n = 5), and ChAdOx1 nCov-19 (n = 1). Meanwhile, in the ‘within
3 months or more’ model, we obtained 26 separate analysis data that involved any mRNA
(n = 10), BNT162b2 (n = 9), mRNA-1273 (n = 6), and ChAdOx1 nCov-19 (n = 1). As a
comparison between these two models, pooled results of the ‘within 3 months or more’
model generally had a higher VED, both for any infection or severe infection.
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Figure 2. Forest Plot summary representing VED between the booster and a full dose of COVID-19
vaccine against SARS-CoV-2 infections. Panel (A) and (B) show subgroup summary of VED ‘within
3 months’ and ‘within 3 months or more’ models, respectively.

In the ‘within 3 months’ model, the pooled results for preventing any, severe, and
symptomatic infection showed that booster dose had a significantly higher VE than that of
the full dose (VED of 20% (95%CI 12% to 27%), 14% (95%CI 6% to 23%), and 27% (95%CI
0% to 54%), respectively). In the ‘within 3 months or more’ model, the pooled results also
showed a better VE on booster dose for any, severe, and symptomatic infection (VED of 30%
(95%CI 23% to 37%), 37% (95%CI 27% to 47%), and 15% (95%CI 9% to 21%), respectively).

Leave-one-out sensitivity analyses were performed on the overall analysis, yielding
similar results in terms of effect estimates or statistical heterogeneity (Figures S7–S12). For
publication bias analysis, Egger’s tests were significant only for the case-control subgroup
of any infection at ‘within 3 months’ model (p = 0.04) (Figure 2A) and the overall analysis
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of ‘within 3 months or more’ model (p = 0.04) (Figure 2B). Egger’s test was not performed
for subgroups with n < 10.

3.3.2. Subgroup Analysis of ‘Within 3 Months’ Model

For any infection, the cohort and the case-control subgroup had a VED of 20%
(95%CI 3% to 36%) and 20% (95%CI 9% to 30%), respectively. A further subgroup anal-
ysis with respect to vaccine type showed that any mRNA, BNT162b2, mRNA-1273, and
ChAdOx1 nCov-19 had VEDs of 20% (95%CI 1% to 39%), 22% (95%CI 6% to 38%), 14%
(95%CI 5% to 22%), and 16% (95%CI 2% to 30%), respectively. All of these results were
statistically significant.

For severe infection, cohort and case-control subgroups showed significant results
(VEDs of 13% (95%CI 3% to 23%) and 17% (95%CI 2% to 32%), respectively). A further sub-
group analysis showed statistically significant results for VED of any mRNA and ChAdOx1
nCov-19 (VED 27% (95%CI 18% to 35%) and 16% (95%CI 2% to 30%), respectively).

For symptomatic infection, cohort and case-control subgroups also showed VEDs of
51% (95%CI 48% to 53%) and 22% (95%CI −10% to 54%), respectively. In any mRNA and
BNT162b2 subgroups, the booster dose had a better VE than that of the full dose (VED of
17% (95%CI −26% to 60%) and 48% (95%CI −4% to 99%), respectively), yet these results
did not reach statistical significance.

3.3.3. Subgroup Analysis of ‘Within 3 Months or More’ Model

For any infection, the cohort subgroup had a VED of 40% (95%CI 24% to 57%), but
results obtained from the case-control subgroup showed a lower VED, with a VED of 26%
(95%CI 18% to 34%). A further subgroup analysis with respect to vaccine type showed that
any mRNA, BNT162b2, mRNA-1273, and ChAdOx1 nCov-19 had VEDs of 20% (95%CI
13% to 28%), 39% (95%CI 23% to 56%), 34% (95%CI 12% to 55%), and 27% (95%CI 16% to
38%), respectively. All of these results were statistically significant.

For severe infection, cohort and case-control subgroups showed significant results
(VEDs of 39% (95%CI 24% to 54%) and 35% (95%CI 20% to 51%), respectively). A further
subgroup analysis showed that the VED of any mRNA, BNT162b2, mRNA-1273, and
ChAdOx1 nCov-19 vaccine was 28% (95%CI 13% to 43%), 41% (95%CI 22% to 60%), 40%
(95%CI 3% to 76%), and 27% (95%CI 16% to 38%) respectively. Likewise, all these results
were statistically significant.

For symptomatic infection, cohort and case-control subgroups also showed significant
results with VEDs of 24% (95%CI 21% to 26%) and 13% (95%CI 7% to 19%), respectively. In
any mRNA and BNT162b2 vaccines subgroups, the booster dose also presented a better VE
than that of the full dose (VEDs of 12% (95%CI 3% to 20%) and 23% (95%CI 15% to 32%),
respectively). All of these results were statistically significant.

3.4. VE Estimates and VE Reduction for Booster Dose and Full Dose

In the meta-regression analysis, the VE of full vaccination dose against any (Figure 3A),
severe (Figure 3B), and symptomatic (Figure 3C) infections were significantly correlated
with time (p < 0.001). The VE of booster vaccination dose against any (Figure 3D), severe
(Figure 3E) and symptomatic (Figure 3F) infections were significantly correlated with time
(p < 0.001). The correlation of VE (%) with time (day) was 49.45–0.08 per day (Figure 3A);
56.36–0.18 per day (Figure 3B); 64.81–0.02 per day (Figure 3C); 56.78–0.06 per day (Figure 3D);
53.58–0.04 per day (Figure 3E); 92.53–0.04 per day (Figure 3F).
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Figure 3. Meta-regression plot for VE vs. Time in days. VE on panels (A–C) represent VE of full
dose against any infection, symptomatic infection, and severe infection, respectively. VE on panels
(D–F) represent VE of booster dose against any infection, symptomatic infection, and severe infection,
respectively. VE estimate (%) was 49.45 (95%CI 38.01 to 38.01), p < 0.001 (A); 56.36 (95%CI 47.21 to
47.21), p < 0.001 (B); 64.81 (95%CI 49.90 to 49.90), p < 0.001 (C); 56.78 (95%CI 47.11 to 66.45), p < 0.001
(D); 53.58 (95%CI 44.18 to 62.98), p < 0.001 (E); 92.53 (95%CI 85.54 to 99.52), p < 0.001 (F).

For the full-dose vaccination, our meta-regression model estimated that the VE of full
dose against any and symptomatic infections were decreased in each month approximately
by 2.45% (95%CI 0.63% to 4.26%) and 5.5% (95%CI 3.99% to 7.01%), respectively. The
detailed results displaying the correlation of VE with time for each vaccine were presented
in Table 2.
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Table 2. VE estimates and VE reduction for booster dose and full dose of each vaccine.

Vaccine

Full Vaccination Dose Booster Vaccination Dose

n VE Estimate (%)
(95%CI)

VE Reduction §

(% per Month) (95%CI) n VE Estimate (%)
(95%CI)

VE Reduction §

(% per Month)
(95%CI)

Any infection

Overall Results 89 49.45 (38.01 to 60.88) −2.45 (−4.26 to −0.63) 52 56.78 (47.11 to 66.45) 1.79 (−1.25 to 4.82)

Any mRNA 23 54.96 (30.63 to 79.29) −0.93 (−4.64 to 2.78) 15 76.81 (59.99 to 93.63) 0.05 (−3.79 to 3.89)

Ad26.COV2.S 2 26.38 (−15.77 to 68.54) N/A 8 48.66 (0.31 to 97) 0.58 (−19.47 to 20.62)

BNT162b2 39 52.15 (33.84 to 70.47) −3.36 (−6.19 to −0.53) 17 53.04 (34.27 to 71.81) 1.82 (−4.61 to 8.24)

mRNA-1273 19 47.8 (25.48 to 70.12) −2.98 (−6.44 to 0.47) 9 57.12 (30.57 to 83.68) −0.88 (−15.27 to 13.5)

ChAdOx1 nCov-19 6 56.03 (47.81 to 64.25) −8.53 (−9.98 to −7.09) 3 61.12 (25.33 to 96.91) −5.87 (−27.76 to 16.02)

Symptomatic infection

Overall Results 53 56.36 (47.21 to 65.51) −5.5 (−7.01 to −3.99) 32 53.58 (44.18 to 62.98) 1.14 (−1.99 to 4.26)

Any mRNA 11 51.69 (22.71 to 80.68) −3.3 (−7.86 to 1.25) 7 63.93 (30.38 to 97.47) 0.89 (−5.97 to 7.74)

Ad26.COV2.S 1 24 (18.5 to 29.5) N/A 1 54 (44 to 64) N/A

BNT162b2 26 58.24 (45.84 to 70.64) −5.8 (−7.69 to −3.91) 14 55.65 (39.04 to 72.25) −1.68 (−8 to 4.65)

mRNA-1273 9 79.61 (68.83 to 90.39) −10.76 (−12.91 to −8.6) 7 52.88 (8.61 to 97.15) 0.91 (−37.41 to 39.23)

ChAdOx1 nCov-19 6 56.03 (47.81 to 64.25) −8.53 (−9.98 to −7.09) 3 61.12 (25.33 to 96.91) −5.87 (−27.76 to 16.02)

Severe infection

Overall Results 21 64.81 (49.9 to 79.73) 0.59 (−1.49 to 2.67) 13 92.53 (85.54 to 99.52) −1.27 (−3.07 to 0.53)

Any mRNA 12 64.3 (46.19 to 82.42) 0.72 (−2 to 3.43) 7 94.54 (90.94 to 98.14) −1.24 (−2.11 to −0.38)

Ad26.COV2.S 1 31 (21.5 to 40.5) N/A 4 81.74 (38.01 to 125.46) −3.02 (−20.41 to 14.37)

BNT162b2 6 80.17 (55.61 to 104.73) −0.58 (−3.72 to 2.56) 2 89.05 (86.39 to 91.71) N/A

mRNA-1273 2 66.86 (−1.23 to 134.94) N/A

§ VE reduction per month is approximated by multiplying the VE reduction per day—the slope of VE vs.
time—by 30. Abbreviations: n, number of analyses; N/A, not available; VE, vaccine effectiveness.

4. Discussion

This study aimed to evaluate full-dose and booster VE and their correlation with time
to evaluate waning immunity. We used two models for VED evaluation based on time
period, i.e., ‘within 3 months’ and ‘within 3 months or more’. Our models demonstrated
that there was a significant VED between the booster and the full dose in terms of preventing
any, symptomatic, and severe infections of the SARS-CoV-2 Omicron variant. Although
these results had a generally high heterogeneity, subgroup analyses showed that study
design and types of vaccine did not seem to contribute to this heterogeneity. However, VED
at a more prolonged interval model, i.e., ‘within 3 months or more’, was more elevated.
Most analyses at a longer interval contained more full-dose vaccine data since the follow-up
interval for the full vaccination dose was considerably longer than that of the booster dose.

On the other hand, our meta-regression analysis showed that the full-dose VE against
any and symptomatic infections were estimated to be reduced by 2.45% and 5.5% each
month, respectively. Meanwhile, for the booster dose VE reduction against any, symp-
tomatic, and severe infections were insignificant. Additionally, VE estimates of booster
dose were generally higher than those of full dose, in line with VED meta-analysis results.
VE estimates of booster doses were generally at more than 50% for all endpoints. Booster
doses of mRNA vaccines showed excellent protection against severe infection, with a VE of
94.54%, compared to full dose with a VE of 64.81%. This result was in agreement with the
prediction by Khoury et al. [43] In that study, it was predicted that a booster dose could
raise VE from 81.1% to 98.2% for mRNA vaccines. Moreover, in that study, BNT162b2 and
mRNA-1273 were predicted to have more than 80% VE against severe infection, and VE
against severe infection was generally higher than that of symptomatic infection [43].

Vaccination or natural infection induces some immune cell subsets to turn into memory
cells through clonal expansions [44]. These previously primed cells could deliver a more
robust immune response in the secondary response, which is protective against severe
disease. Meanwhile, neutralizing antibodies can provide sterilizing immunity to prevent
infection [44–46]. Neutralizing antibodies produced by plasma B cells decay over time,
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but long-lived plasma B memory cells continuously secrete neutralizing antibodies even
after the infection ends, maintaining their level [47]. Moreover, a robust immune response
and multiple infections or vaccinations can elicit strong immunoglobulin G (IgG)-binding
affinity as a result of an affinity maturation process [48,49]. Consequently, compared to full
vaccination doses, an additional booster vaccination dose would elicit a stronger immune
response [50], as evidenced by some studies that reported higher binding affinity and titers
of neutralizing antibodies among individuals who received three vaccination doses than
that of two doses [50–52]. For instance, with regard to the Omicron variant, the antibody
titer induced by a booster dose of BNT162b2 at 1 month were 23-fold higher than that of
full-dose recipients [53].

Some studies showed that neutralizing antibody titers in COVID-19 were predictive
of immune protection [54,55]. Neutralization titers continuously declined and appeared to
be short-lived [56,57], and immune escape was observed in several SARS-CoV-2 variants of
concern [58–61], leading to reduced VE to some extent [56]. The immune escape may cause
a reduced VE among variants of concern, regardless of how long the last vaccination is
given before the infection. A modelling meta-analysis study has previously demonstrated
the correlation between neutralization titers with VE [56].

The magnitude of VE reduction depends on the initial effectiveness. The VE against
symptomatic infection could, by day 250, drop to 77% or 33% if initial effectiveness was
95% or 70%, respectively [62]. Thus, the effectiveness of a vaccine may vary across types of
vaccine, doses, and variants. The study by Khoury et al. [43] estimated that neutralizing
antibody levels needed to protect against severe infection were six-fold lower than symp-
tomatic infection, which could explain why the VE against severe infection in our study
remained high, despite the low VE against symptomatic infection [62]. Since short-lived
or substantial decay of neutralizing antibody titers means an increased vulnerability to-
wards symptomatic infection, a persistent cellular immune memory enables a faster and
stronger secondary immune response [63,64]. An appropriate secondary immune response,
especially T-cell response, is protective against severe infection [65–67].

Our analyses showed a moderate VE reduction against the Omicron variant. Nonethe-
less, the Omicron variant did not display an increased severity despite the increased
transmissibility [68–70]. Our results showed that VE estimates against severe infection still
exhibit a high effectiveness for both the full and booster doses. However, we should be
aware that new variants of concern may emerge anytime, and always need to be anticipated.
Maintaining the COVID-19 pandemic to a low endemic level is seemingly a reasonable
target before the eradication of COVID-19 can be achieved.

We acknowledge that this study has several limitations. First, most results had high
heterogeneity. In the meta-analysis of VED outcome, we attempted to perform subgroup
analyses based on the study design and types of the vaccine, but the heterogeneity remained
high. Since there was a considerable discrepancy in the follow-up time between the booster
and full doses, we suspected that the high heterogeneity was due to covariate time, as we
have demonstrated in the other outcomes. Secondly, all included studies were observational
studies. In observational studies, some confounding factors are difficult to measure, and
therefore cannot be controlled; for example, significant differences in the follow-up time
would result in different exposure received between the two groups. Moreover, the fact
that VE declines over time should be considered because cumulative comparison would
lead to a bias. As a result, we attempted to limit the time interval in one model to only
include data within three months to minimize this bias. Third, some included studies were
obtained from preprint servers, which had not been preceded by a peer-review process and
the presented data may differ from the final, published, peer-reviewed version.

5. Conclusions

A lower initial VE supports the evidence that the SARS-CoV-2 Omicron variant has
an increased immune escape ability, and the decline of VE over time suggests that the
immunity to the SARS-CoV-2 Omicron variant infection is waned over time. The VE of
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the booster dose was generally higher than that of the full dose. A booster vaccination
dose is recommended to confer the utmost protection against the SARS-CoV-2 Omicron
variant infection. Moreover, the emergence of other variants of concern should always be
anticipated. Nevertheless, these meta-analyses and meta-regression were constructed upon
observational studies with different follow-up times, in which more extensive confounder
adjustments could be difficult to perform. Therefore, future RCTs might be able to address
several limitations of this study.
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