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Abstract: Diabetic patients frequently develop wounds, which can be colonized by bacteria, mainly
Staphylococcus aureus and Pseudomonas aeruginosa, with the ability to form biofilms. This study aimed
to evaluate the colonization and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa
in chronic wounds of diabetic patients treated with a bioactive dressing (EGF-CMC), which consisted
of a 2% carboxymethylcellulose (CMC) hydrogel loaded with epidermal growth factor (EGF). This
randomized clinical trial was conducted with 25 participants: 14 treated with EGF-CMC hydrogel and
11 treated with CMC hydrogel for 12 weeks. Participants with type 2 diabetes mellitus were selected.
All had diabetic foot ulcers or chronic venous ulcers. Swab collections were performed on weeks 1,
6, and 12. The laboratory analyses included the identification of strains, microbial quantification,
virulence gene investigation, and the evaluation of biofilm formation. In total, 13 S. aureus strains
and 15 P. aeruginosa strains were isolated. There were no statistically significant differences regarding
bacterial loads and virulence genes. However, EGF-CMC-hydrogel-treated wounds were colonized
by strains with lower biofilm formation abilities. The probability of isolating biofilm-producing
strains from CMC-hydrogel-treated wounds was 83% greater than the probability of isolating biofilm-
producing strains from EGF-CMC-treated wounds.

Keywords: epidermal growth factor; biofilm; Staphylococcus aureus; Pseudomonas aeruginosa; diabetic foot

1. Introduction

The prevalence of chronic wounds is estimated at 1.67 per 1000 inhabitants of the
general population, largely composed of diabetes mellitus patients [1]. The estimated cost
of wound care for diabetic patients reaches up to USD thirteen billion annually in the
United States [2]. The number of diabetic patients is growing [3], and it is known that
changes in skin integrity can be prevalent in up to 34% of cases [4]. Hyperglycemia-induced
microvascular dysfunction may be one of the major causes of diabetic complications [5],
which reiterates the importance of a treatment program with standardized therapeutic
components, including metabolic control, the debridement of necrotic tissues, and the
application of dressings [4].

Modern dressings, such as hydrogels, are biocompatible, degradable, and present
moisture retention ability in clinical practice. Thus, they can provide a physical barrier to
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protect the wound and a moist environment for wound healing, promote pain relief, and
improve the hypoxic or anaerobic environment in the wound bed [6].

Hydrogels are three-dimensional networks that can swell in water or biological fluids
and can hold large amounts of liquids. They are hydrophilic polymers formed through
physical or chemical crosslinks [7,8]. Thus, the main components of this solid-like structure
are an elastic crosslinked network and a solvent. In an aqueous medium, swollen hydrogels
mimic the extracellular matrix (ECM) of living tissues [6]. These properties make hydrogel-
based materials good candidates for wound dressing applications. Several synthetic or bio-
based matrices can be used in hydrogel dressings, including carboxymethylcellulose (CMC).

In particular, 2% carboxymethylcellulose hydrogel is considered a standard treat-
ment for chronic wounds in diabetic patients [9]. Carboxymethylcellulose (CMC) is a
polysaccharide derived from the chemical modification of cellulose. Its chemical structure
is composed of carboxymethyl groups (-CH2-COOH) bound to the hydroxyl groups of
the glucopyranose chain of cellulose. It is non-toxic for humans, abundant in nature, and
cost-effective. CMC presents strong hydrophilicity due to its carboxyl and hydroxyl groups
and high absorption capacity, which helps the proliferation and migration of fibroblasts
and keratinocytes, provides the autolytic debridement of necrotic tissue and the removal of
foreign bodies, and impairs bacterial growth [10].

In recent years, a better understanding of the biological steps in the wound healing
process motivated the development of the next generation of biologically enhanced wound
dressings. These bioactive dressings play an active role in the healing process by activat-
ing or driving the appropriate physiological responses required for cellular regeneration
and tissue reconstruction in wounds. This biological response can be achieved by incor-
porating delivery systems of active agents, such as antimicrobial agents, growth factors,
and cells [10].

Thus, these dressings can combine the protection and moisture control of modern
dressings with the abilities of specialized bioactive molecules to stimulate cell regeneration,
increase collagen synthesis, combat bacterial infections, and provide drug delivery func-
tions for enhancing the wound healing process. For example, a prior study on an in situ
injectable hydrogel loaded with quaternary ammonium and fibroblast growth factor (FGF)
found good in vivo and in vitro efficacy concerning antimicrobial activity [11].

Other possibilities include improving the therapeutic effects of hydrogel-based dress-
ings with molecules such as epidermal growth factor (EGF), vascular endothelial growth
factor (VEGF), and platelet-derived growth factor (PDGF) [8]. These bioactive molecules play
direct roles in wound closure, epithelization, ECM deposition, and neovascularization processes.

Epidermal growth factor (EGF) is one of the bioactive molecules associated with
wound dressings. EGF interacts with a receptor tyrosine kinase, activating a signaling
cascade that results in successive biochemical changes that lead to the proliferation of
keratinocytes, the stimulation of angiogenesis, and the activation of fibroblasts [12], which
are essential for wound healing. Previous studies have demonstrated the good tolerability
and safety of continuous EGF injections in humans and experimental animals [13,14].

The choice of appropriate delivery systems is a key aspect regarding the use of growth
factors in wounds, as these molecules need to remain bioactive to achieve wound healing.
EGF tends to degrade when exposed to proteinase and oxygen in the wound environ-
ment [15]. A prior study showed that incorporating EGF into a CMC hydrogel effectively
enhanced chronic wound healing, especially the healing of diabetic ulcers, reducing the
wound area and improving the tissue and exudate quality [16].

Diabetic patients frequently develop wounds, which can be colonized by bacteria,
mainly Staphylococcus aureus and Pseudomonas aeruginosa [17,18]. These bacteria have numer-
ous virulence factors, including the ability to form biofilms [19–21]. Biofilms are structures
composed of aggregated microorganisms attached to wound surfaces that accumulate a
protective extracellular polysaccharide matrix (EPS) to optimize, for example, the use of
available nutritional resources. The microorganisms of biofilms have increased antibiotic
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tolerance and evaded host immune defenses [17]. Thus, the presence of biofilms is one of
the major contributors to impaired wound healing.

Microbiological evaluations of wounds treated with growth factors were performed in
preclinical studies [11,22]. A 2019 study addressed wound care with EGF, considering the
outcomes of reduced colonization and infection by S. aureus and P. aeruginosa. The authors
found a higher prevalence of the isolation of S. aureus strains at the beginning of follow-up,
while there was an increase in the isolation of P. aeruginosa strains at the end of treatment
with EGF [23]. This reiterates the novelty of studies on this topic.

In this context, this study aimed to evaluate the colonization and biofilm formation of
Staphylococcus aureus and Pseudomonas aeruginosa in chronic wounds of diabetic patients
treated with a bioactive dressing (EGF-CMC) that consisted of a 2% carboxymethylcellulose
(CMC) hydrogel loaded with epidermal growth factor (EGF).

2. Results

In total, 25 patients were followed in the study: 14 in the EGF group (56%) and 11 in
the hydrogel group (44%). The sample was evenly distributed concerning the treatment
(binomial test, p-value = 0.690).

2.1. Health History and Wound Characteristics

Participants with type 2 diabetes mellitus were selected. They were male, aged
between 52 and 70 years, and had uncontrolled glycated hemoglobin (greater than 7%) and
a normal ankle–arm index (ABI) (greater than 0.91). Their lesions had partial depth (100%,
25/25) and showed no edema (92%, 23/25), pruritus (96%, 24/25), necrosis (100%, 25/25),
heat (100%, 25/25), or odor (100%, 25/25). Table 1 shows the characteristics of the wounds
and the health history of the patients, showing that the groups were homogeneous.

Table 1. Initial characteristics of the wounds and the health history of the patients.

Variable
Global (n = 25) EGF-CMC (n = 14) CMC (n = 11) p-Value *
F RF F RF F RF

Gender
0.656 (a)Female 7 28.0% 3 21.4% 4 36.4%

Male 18 72.0% 11 78.6% 7 63.6%

Age (years)

0.267 (b)46|—52 1 4.0% 0 0.0% 1 9.1%
52|—64 11 44.0% 8 57.1% 3 27.3%
64|—76 13 52.0% 6 42.9% 7 63.6%

ABI classification
0.536 (a)PAD mild to moderate 9 36.0% 5 35.7% 4 36.4%

Normal 16 64.0% 9 64.3% 7 63.6%

Glycated Hemoglobin > 7% 15 60.0% 9 64.3% 6 54.5% 0.697 (b)

Injury type
1.000 (a)Diabetic 17 68.0% 9 64.3% 8 72.7%

Venous 8 32.0% 5 35.7% 3 27.3%

Injury area (cm2)
0.727 (b)2.0|—12.0 16 64.0% 8 57.1% 8 72.7%

12.0|—|52.0 9 36.0% 6 42.8% 3 27.2%

Exudate
0.407 (a)Serous 18 72.0% 9 64.3% 9 81.8%

Serosanguineous 7 28.0% 5 35.7% 2 18.2%

Exudate Amount

0.572 (b)Minimal 8 32.0% 3 21.4% 5 45.5%
Moderate 11 44.0% 8 57.1% 3 27.3%
Large 6 24.0% 3 21.4% 3 27.3%
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Table 1. Cont.

Variable
Global (n = 25) EGF-CMC (n = 14) CMC (n = 11) p-Value *
F RF F RF F RF

Margin

0.317 (b)Epithelized 15 60.0% 7 50.0% 8 72.7%
Hyperkeratotic 6 24.0% 4 28.6% 2 18.2%
Maceration 4 16.0% 3 21.4% 1 9.1%

Granulation (% of bed that was covered)
0.851 (b)1|—50 8 32.0% 3 21.4% 5 45.5%

51|—|100 17 68.0% 11 78.6% 6 54.6%

Slough (% of bed that was covered)
0.317 (b)0|—25 17 68.0% 9 64.3% 8 72.7%

26|—|100 8 32.0% 5 35.7% 3 27.3%

Time of injury (months)

0.809 (b)Up to 6 months 4 16.0% 1 7.1% 2 18.2%
7|—59 10 40.0% 6 42.9% 5 45.4%
60|—|480 11 44.0% 7 50.0% 4 36.4%

* Tests comparing variable distributions in control and intervention groups: (a) Fisher’s exact test; (b) Mann–Whitney
test. Abbreviations: F: absolute frequency; RF: relative frequency; ABI: ankle–brachial index; PAD: peripheral
obstructive arterial disease.

The median conditions of the patients were 64 years old (interquartile range (IR) = (54.0; 69.0));
injury area equal to 7 cm2 (IR = (4.0; 27.6)); granulation equal to 62.3% (IR = (43.7%; 78.7%));
and slough equal to 13.5% (IR = (0.0%; 36.9%)).

2.2. Identification of S. aureus and P. aeruginosa Strains

Table 2 shows the incidence of colonization by S. aureus and P. aeruginosa in the EGF-
CMC and CMC groups. Eight isolates of S. aureus were identified in the CMC group, while
five isolates were obtained in the EGF-CMC group. The mean identification of S. aureus
was 0.36 per patient in the EGF-CMC group and 0.73 per patient in the CMC group. There
was no significant difference between the groups (p-value = 0.241).

Table 2. Incidence of P. aeruginosa and S. aureus at three assessment points and overall incidence in
the EGF-CMC and CMC groups.

Evaluation

EGF-CMC Group (n = 14) CMC Group (n = 11) Fisher’s Exact Test p-Value Comparing
the Incidences in Both GroupsP. aeruginosa S. aureus P. aeruginosa S. aureus

Number
of Cases Incidence Number

of Cases Incidence Number
of Cases Incidence Number

of Cases Incidence P. aeruginosa S. aureus

Week 1 3 21.4% 3 21.4% 2 18.2% 2 18.2% 1.000 1.000

Week 6 3 21.4% 1 7.1% 1 9.1% 3 27.3% 0.604 0.288

Week 12 5 35.7% 1 7.1% 1 9.1% 3 27.3% 0.180 0.288

Just one
evaluation * 8 57.1% 4 28.6% 3 27.3% 6 54.5% 0.227 0.241

* Patients who presented isolation in at least one of the three evaluations.

Regarding the incidence of colonization by P. aeruginosa, 11 isolates were identified in
the EGF-CMC group, and 4 were identified in the CMC group. The mean identification
of P. aeruginosa was 0.79 per patient in the EGF-CMC group and 0.36 per patient in the
CMC group. There was no significant difference between the groups (p-value = 0.227 using
Fisher’s exact test). In 7 of 25 patients, neither S. aureus nor P. aeruginosa were isolated.

2.3. Antimicrobial Susceptibility

Regarding the analysis of the resistance of P. aeruginosa strains to antibiotics, no strain
isolated from the CMC group (0.0%) showed resistance to any antibiotic; all were sensitive to
all tested antibiotics. On the other hand, two strains isolated from wounds treated with EGF-
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CMC hydrogel (18.2%) showed resistance to at least one antibiotic. One strain was resistant
to aztreonam and ciprofloxacin, and the other strain was considered multidrug-resistant,
as it showed resistance to all tested antimicrobials (aztreonam, ciprofloxacin, levofloxacin,
gentamicin, meropenem, imipenem, ceftazidime, and piperacillin with tazobactam) except
for polymyxin B. There was no significant difference in the resistance frequencies between
treatment groups (p value = 1.000 using Fisher’s exact test).

Regarding the S. aureus samples, seven strains from the CMC group (87.5%) were
resistant to at least one antibiotic: 25% (2/8) were resistant to chloramphenicol, 25% (2/8)
were resistant to cefoxitin, 75% (6/8) were resistant to ciprofloxacin, and 100% (8/8) were
resistant to penicillin. Three strains from the EGF-CMC group (60.0%) were resistant to at
least one antibiotic: 20% (1/5) were resistant to ciprofloxacin, 20% (1/5) were resistant to
cefoxitin, and 100% (5/5) were resistant to penicillin. Although these statistics suggest that
antibiotic resistance was higher among strains in the CMC group, there was no significant
difference between the two groups (p value = 0.510 using Fisher’s exact test).

Three strains of S. aureus with resistance to cefoxitin were identified, which character-
ized the strains as resistant to all beta-lactams (MRSA). Of these, two were isolated from
patients whose wounds were treated with CMC hydrogel, and one was isolated from a
patient treated with EGF-CMC hydrogel. Although this suggests that the incidence of
MRSA was higher among strains isolated from the control group, there was no significant
difference between the two groups (p value = 1.000 using Fisher’s exact test).

2.4. Microbial Load

Figure 1 shows the distribution of patients according to the bacterial loads of S. aureus
and P. aeruginosa (using quantitative polymerase chain reaction (qPCR)) in the intervals
from the first to the sixth week (W1 to W6) and from the sixth to the twelfth week (W6
to W12).
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Figure 1. Distribution of patients according to bacterial load (using qPCR). Abbreviations: W1,
Week 1; W6, Week 6; W12, Week 12.

Concerning P. aeruginosa, the decreased bacterial load in patients treated with EGF was
larger between W6 and W12 (36%) than between W1 and W6 (14%). On the other hand, the
increased bacterial load was larger between W1 and W6 (43%) than between W6 and W12
(28%). There was no difference in the prevalence of an increased or maintained bacterial
load between W1 and W6; that is, in 43% of patients, there was an increase in the load, and
in another 43% there was maintenance of the bacterial load in the mentioned period. Thus,
it can be said that the use of EGF in vivo primarily increased or maintained the bacterial
load of P. aeruginosa in the first weeks of treatment.
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Regarding patients treated with CMC hydrogel, the prevalence of a decreased P. aeruginosa
load was higher between W1 and W6 (46%) than between W6 and W12 (9%). The frequency
of maintenance of the P. aeruginosa load was 36% between W1 and W6 and between W6
and W12, demonstrating no difference between the evaluation periods. On the other hand,
there was a higher frequency of an increased bacterial load between W6 and W12 (55%)
than between W1 and W6 (18%), indicating that, in vivo, the microbial load of P. aeruginosa
increased later in CMC-treated subjects.

Regarding the quantification of S. aureus, in patients treated with EGF-CMC there
was a higher prevalence of a decreased bacterial load between W1 and W6 (64%) than
between W6 and W12 (14%). An increase in the S. aureus load occurred more frequently
between W6 and W12 (36%) than between W1 and W6 (29%). Thus, the microbial load of
S. aureus decreased more frequently in the first weeks of treatment in patients treated with
EGF-CMC hydrogel.

For patients treated with CMC hydrogel, the maintenance of the bacterial load of
S. aureus occurred most frequently at both assessment points (64% between W1 and W6
and 73% between W6 and W12). There was a decrease in the load of S. aureus in 27% of
patients between W1 and W6 and between W6 and W12, indicating no difference in the
prevalence of a decreased S. aureus load between the evaluation periods. An increased
bacterial load of S. aureus was not common between W1 and W6, as it occurred in only 9%
of patients, and between W6 and W12 it did not occur in any patient.

When comparing the treatment groups, it was noted that there was a higher prevalence
of a decrease in the microbial load of P. aeruginosa in those treated with CMC hydrogel,
mainly between W1 and W6 (46%). In contrast, the decrease in the bacterial load of S. aureus
was more prevalent in patients treated with a hydrogel containing EGF, which occurred
primarily between W1 and W6 (64%).

2.5. Biofilm Formation Assays

All S. aureus isolates were biofilm producers, regardless of the EGF-CMC group. On the
other hand, among P. aeruginosa isolates, 27.3% (3/11) of strains from the EGF-CMC group
and 75% (3/4) of those isolated from the CMC hydrogel group were biofilm producers.
There was no significant difference between these frequencies (p-value = 0.235). Overall,
without differentiating species, 50% (8/16) of isolates from the EGF-CMC group and
91.7% (11/12) of isolates from the CMC group were biofilm producers, with a statistically
significant difference (p-value = 0.039). Thus, the distribution of biofilm-producing isolates
(without species distinction) was evaluated by calculating the relative risk, measured at
1.83. Therefore, the probability of isolating biofilm-producing strains from CMC-hydrogel-
treated wounds was 83% greater than the probability of isolating biofilm-producing strains
from EGF-CMC-treated wounds.

2.6. Identification of Virulence Genes

No Panton–Valentine leukocidin gene was detected in the S. aureus isolates, regardless
of the EGF-CMC group. The exoS and exoU exoenzyme genes were not found in the
P. aeruginosa strains identified from the CMC group. However, they were detected in
four P. aeruginosa isolates from EGF-CMC-treated wounds (36.4%). Despite this difference
between the groups, no statistical significance was observed (p-value = 0.077).

2.7. Interference of EGF in In Vitro Bacterial Growth and Biofilm Formation

When evaluating the effect of EGF on the growth of P. aeruginosa and S. aureus cultures
in vitro, the growth of P. aeruginosa was strongly stimulated and that of S. aureus was
slightly reduced. S. aureus can be considered to be more impacted by EGF in terms of
biofilm formation capacity since EGF caused a reduction in the expression potential of this
species. In contrast, there was no change in the production of P. aeruginosa biofilm in the
presence of EGF (Figures 2 and 3).
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3. Discussion

This research aimed to evaluate the colonization and biofilm formation of Staphylo-
coccus aureus and Pseudomonas aeruginosa in chronic wounds of diabetic patients treated
with a bioactive dressing (EGF-CMC) that consisted of a 2% carboxymethylcellulose (CMC)
hydrogel loaded with epidermal growth factor (EGF). To our knowledge, this is the first
study that evaluated biofilm formation in wounds treated with EGF-loaded dressings.

Regarding the health history of the patients, the results of this study were corroborated
by previous studies [1,9,19] that pointed to a higher prevalence of chronic wounds in men
aged 50 years or over than in younger persons.

Biofilms can represent an important virulence factor in the pathogenesis of chronic
wounds, as they prolong the inflammatory phase of wound healing and consequently delay
the tissue repair process [17,24].

All S. aureus strains were able to produce biofilms, regardless of the EGF-CMC group,
which corroborated previous findings of a high prevalence of biofilm-forming strains
in this species [25]. Likewise, biofilm production among P. aeruginosa strains is very
common [24]. Our results also demonstrated that the biofilm formation capacity was
significantly greater in isolates from CMC-hydrogel-treated wounds than in EGF-CMC-
hydrogel-treated wounds.

A study published in 2021 [20] that evaluated biofilm formation capacity in S. aureus
and P. aeruginosa strains isolated from venous ulcers treated with platelet-rich plasma (PRP)
demonstrated that all strains were biofilm-forming. PRP is a platelet-rich blood derivative
that is easily obtained from a patient’s blood sample after centrifugation and contains a
variety of growth factors, including EGF [26].

The high incidence of isolates capable of forming biofilms and the difficulty in macro-
scopically visualizing these structures in wounds [17] reiterates the need to use methods
that make it possible to infer the presence of biofilms in clinical practice. In vitro biofilm
production assays allow the detection of bacterial adherence to an inert substrate, such
as polystyrene. A high-adherence phenotype often correlates with high biofilm produc-
tion capacity in vivo [27]. Thus, methods that allow the analysis of biofilm production
in microorganisms isolated from chronic wounds in vitro are useful for tracking effective
treatments against biofilms in vivo.

No previous study evaluated biofilm formation in microorganisms in wounds treated
with EGF. Therefore, further research is suggested to elucidate the relationships between
EGF and the process of bacterial biofilm formation.

Hydrogel promotes the hydration of the wound bed and, with moisture balance,
provides a favorable environment for successful healing [8]. It stimulates autolytic debride-
ment without changes in outcomes related to bacterial colonization or infection [8]. Thus,
the use of hydrogel alone in the control group, compared to the results of hydrogel plus
EGF, allowed an assertive assessment of the microbiological effects of EGF.

Concerning wound colonization by P. aeruginosa, in a prior study, the authors analyzed
the effects of EGF on intralesional wound healing, focusing on risk factors for infection by
this microorganism. The microorganism was found in 25% of lesions [28]. Similarly, in our
study, 27.3% of wounds treated with a 2% carboxymethylcellulose gel were colonized by
P. aeruginosa, but the percentage of wounds treated with EGF and colonized by P. aeruginosa
was higher (57%).

Research on excisional wound healing in mice showed that a thin film of chitosan con-
taining EGF improved wound contraction without stimulating S. aureus colonization [29].
Another study on mastitis treatment by S. aureus in sheep found that infection cure rates
with an EGF treatment were similar to those obtained with the control treatment (sterile
saline); thus, the authors did not recommend treating this type of infection with EGF [30].

There are reduced incidences of antimicrobial resistance in P. aeruginosa and S. aureus
strains. Only one P. aeruginosa strain was considered multiresistant (6%), compared to
three S. aureus strains (23%). Similar results were found in previous studies carried out in
Brazil [18,19].
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Molecular methods for detecting microorganisms are known to be successful, and
they can be used with culture techniques to improve wound assessment. The adequate
sensitivity of these methods was verified in a previous study [31].

In our research, microbial quantification showed that the use of EGF contributed to
increases in or the maintenance of P. aeruginosa bacterial loads versus decreases in S. aureus
levels. The analysis of the effect of EGF in vitro on microbial growth corroborated these
findings. Likewise, S. aureus biofilm production was reduced in the presence of EGF.

In a study that evaluated S. aureus and P. aeruginosa strains in ulcers treated with
PRP [20], the authors showed that bacterial load and infection presence were unrelated. On
the other hand, in EGF-treated wounds, no similar studies were found, demonstrating the
relevance of this investigation.

No strain of S. aureus with the gene encoding Panton–Valentine leucocidin was iden-
tified in previous corroborating studies [32]. This cytotoxin activates human neutrophils
and is commonly found in skin and soft tissue infections [32]. A prior study analyzing
strains from burns detected exoS and exoU genes in 59% and 41% of P. aeruginosa isolates,
respectively [33]. Both were detected more frequently in a prior study compared to ours
(36.4%). ExoS is mainly involved in bacterial colonization and invasion, and exoU induces
cell death due to cell membrane destruction [33]. Thus, strains with these virulence factors
can inhibit healing. Therefore, there is a tendency to stimulate the growth of P. aeruginosa
in chronic wounds treated with EGF-CMC, although the same conditions seem to select
strains with lower capacities for biofilm production.

This study was conducted using a convenience sample obtained in a single wound
clinic in a university hospital, which is considered a limitation. Therefore, the execution
of further research with larger samples is suggested because it could demonstrate other
differences between the groups, with statistically significant results.

4. Conclusions

Most diabetic patients have chronic wounds with biofilms produced by Staphylococcus
aureus and Pseudomonas aeruginosa, and successful wound healing depends on the control
of these microorganisms. This randomized clinical trial aimed to evaluate the colonization
and biofilm formation of S. aureus and P. aeruginosa in wounds of diabetic patients treated
with a 2% carboxymethylcellulose hydrogel containing epidermal growth factor (EGF-
CMC hydrogel) compared to those treated with a 2% carboxymethylcellulose hydrogel
(CMC hydrogel).

EGF-CMC did not increase the bacterial growth or the microbial loads of S. aureus or
P. aeruginosa compared to CMC hydrogel. Chronic wounds treated with EGF-CMC were
colonized by S. aureus and P. aeruginosa strains that were less biofilm-forming than those
isolated from CMC-hydrogel-treated wounds.

5. Materials and Methods
5.1. Materials

The EGF gel used in the intervention group was produced by incorporating 1 mL of
a 4 ppm concentrated EGF-based oil into 150 g of a 2% carboxymethylcellulose gel. The
control group was treated with a 2% carboxymethylcellulose gel without incorporating
EGF (called hydrogel).

The carboxymethylcellulose gel (CMC hydrogel) was produced by the College of
Pharmacy of the Fluminense Federal University (Niterói, Brazil). The amorphous gel
comprised 2% carboxymethylcellulose (2 g), 0.1% methylparaben, 20% propylene glycol,
and 77.9% purified water [16].

The EGF-CMC hydrogel was obtained by incorporating a commercial recombinant
human epidermal growth factor (rhEFG)-based oil (EPIfactor®®, Infinity Pharma, Rio de
Janeiro, Brazil) into CMC hydrogel in a proportion of 4000 ng/g, as described elsewhere [34].
Previous studies proved the efficiency and safety of these hydrogels for chronic wound
treatment [9,16]. Both hydrogels were sterilized before the clinical assessment.
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5.2. Study Design and Population

This randomized clinical trial was part of a larger prospective study [9] in which
wounds were treated with EGF-CMC (treatment group) or CMC (control group) hydrogels.
Participants were recruited based on the following inclusion criteria: an age of 18 years or
older, a diagnosis of diabetes mellitus, the presence of a diabetic or venous chronic wound,
an ulcer size greater than 2 cm2 and less than 100 cm2, and the presence of at least 25%
granulation tissue in the wound bed. Wounds were considered chronic when they did not
heal within four weeks [35]. Individuals were excluded if they had immunosuppressive
diseases or clinical signs of wound infection.

This study was conducted at the Wound Repair Clinic of a university hospital in
Niterói, Rio de Janeiro (Brazil). The recruitment was performed between August 2017 and
December 2017. The follow-up occurred between January 2018 and July 2018. This trial
was reviewed and approved by the Research Ethics Committee of the Faculty of Medicine
and the Antônio Pedro University Hospital/Fluminense Federal University (Niterói, RJ,
Brazil) under approval number 2,189,183 (27 July 2017). The trial was registered in the
Brazilian Registry of Clinical Trials (ReBEC UTN 12616798) and followed the principles
of the Declaration of Helsinki. Participants who agreed to take part signed informed
consent forms.

The convenience, the sample consisted of 25 patients with diabetes mellitus who had
diabetic foot ulcers or venous ulcers (14 in the EGF-CMC group and 11 in the CMC group).
These 25 patients were randomly assigned to the CMC-group or the EGF-CMC group in a
1:1 ratio. The randomization code was generated by Biostat 5.0 software and was applied
as the patients were enrolled. After randomization, losses during the follow-up period
did not occur. The participants and statisticians were blinded to the group assignment
throughout the study until the primary analysis was complete [9].

5.3. Study Procedures

Enrolled participants were submitted to weekly clinical assessments conducted by
trained nurses during the three-month follow-up period, according to an outpatient proto-
col described elsewhere [9]. Wound fluid samples were collected by two research nurses
using the swab culture technique described by Levine [36,37]. Biological material was col-
lected on weeks 1 (W1), 6 (W6), and 12 (W12) and sent to a laboratory for microbial analyses.

5.4. Identification of S. aureus and P. aeruginosa Strains and Antimicrobial Susceptibility Tests

Swabs were added to the Stuart transport medium, placed in 2 mL of sterile saline
(0.9% NaCl), and vortexed. One milliliter of this suspension was added to one milliliter of
twice-concentrated trypticase soy broth (TSB) and incubated at 35 ◦C (±2 ◦C) for 24 h to 48 h.

From these cultures, plates of salted mannitol agar and cetrimide agar were inoculated
and incubated at 35 ◦C (±2 ◦C) for 24 h to 48 h for the isolation of S. aureus and P. aeruginosa,
respectively. Samples were identified by MALDI-TOF mass spectrometry (Microflex LT,
Bruker Daltonics, Leipzig, Germany).

Antimicrobial susceptibility tests using disk diffusion were performed, and the results
were analyzed according to the guidelines of the Clinical and Laboratory Standards Institute
(CLSI) [38].

For P. aeruginosa, the following antibiotics were used: aztreonam (30 µg), ceftazidime
(30 µg), ciprofloxacin (5 µg), gentamicin (10 µg), imipenem (10 µg), meropenem (10 µg),
and piperacillin with tazobactam (110 µg) and polymyxin B (300 UI). The strain P. aeruginosa
ATCC 27853 was used as a control [38].

For S. aureus, the following antibiotics were used: ciprofloxacin (5 µg), cefoxitin (30 µg),
clindamycin (2 µg), chloramphenicol (30 µg), erythromycin (15 µg), gentamicin (10 µg),
penicillin (10 UI), sulfamethoxazole+ trimethoprim (1.25 + 23.75 µg), and tetracycline
(30 µg). The strain S. aureus ATCC 25923 was used as a test control [38].



Gels 2023, 9, 117 11 of 15

5.5. Microbial Quantification Using Quantitative Real-Time Polymerase Chain Reaction (qPCR)

The quantification of P. aeruginosa and S. aureus was performed using quantitative
real-time polymerase chain reaction (qPCR) with species-specific primers from DNA ex-
tracted from bacterial suspensions obtained directly from clinical wound specimens [39,40].
The DNA extraction was performed using the Wizard®® Genomic DNA Purification Kit
(Promega, Fitchburg, WI, USA).

Genomic DNA extracted from P. aeruginosa ATCC 27853 and S. aureus ATCC 25923
strains were used to generate a standard curve as a reference for bacterial quantification us-
ing qPCR. DNA was amplified using PCR, and amplicons were purified using an Illustra™
GFX™ kit (GE Healthcare Life Sciences, Chicago, IL, USA). The concentration of DNA was
adjusted to obtain 105 copies of amplicons/µL. A serial dilution was performed to obtain
solutions with DNA concentrations ranging from 105 copies of amplicons/µL to 1 copy of
an amplicon/µL, generating a standard curve. The primers that were used are described
in Table 3.

Table 3. Primers used in polymerase chain reactions.

Assay Primer Name 5′-3′ Sequence Size (bp) References

Quantitative PCR of
P. aeruginosa

PA-431-C-F CTGGGTCGAAAGGTGGTTGTTATC
232 [39]PA-431-C-R GCGGCTGGTGCGGCTGAGTC

Virulence genes in
P. aeruginosa strains

exoS-F TCAGGTACCCGGCATTCACTACGCGG
572 [41]exoS-R TCACTGCAGGTTCGTGACGTCTTTCTTTTA

exoU-F CCTTAGCCATCTCAACGGTAGTC
911 [41]exoU-R GAGGGCGAAGCTGGGGAGGTA

Quantitative PCR of
S. aureus

SA-442-F TCGGTACACGATATTCTTCACA
179 [40]SA-442-R ACTCTCGTATGACAGCTTC

Virulence genes in
S. aureus strains

lukS-PV F GCATCAASTGTATTGGATAGCAAAAGC
463 [42]lukF-PV R ATCATTAGGTAAAATGTCTGGACATGATCCA

Abbreviations: bp, base pairs; PCR, polymerase chain reaction.

DNA was amplified using qPCR in a standard 15 µL reaction volume, with 7.5 µL of
SYBR™ Green PCR Master Mix (Applied Biosystems, Wisconsin, USA), 2 µL of DNA, and
1 µL of each primer (10 µM). Amplification was performed using a StepOne Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). Standard amplification conditions
were used. The dissociation curve was generated after amplification. Quantification was
obtained by comparing each sample’s threshold cycle (Ct) with Cts from standard curves.
The detection limit was set at 102 genome copies/mL.

5.6. Biofilm Formation Capacity

The S. aureus and P. aeruginosa strains were inoculated in trypticase soy broth (TSB)
and incubated for 24 h. Cultures were diluted 1:100 in TSB, and 100 µL of each diluted
culture was transferred to a well of a 96-well polystyrene microplate (Nunclonk, Nunc,
InterMed, Rochester, NY, USA) and incubated for 24 h. Later, the contents of each well
were washed three times with 100 µL of phosphate-buffered saline (PBS; pH 7.4). The
microplates were dried at room temperature. One hundred microliters of 0.1% crystal violet
was added to each well, and the microplate was incubated for 15 min at room temperature.
The dye was removed, and each well was washed three times with 100 µL of PBS. The
microplates were dried at room temperature and added to 200 µL of 95% ethanol. The
absorbance was measured using spectrophotometry at a wavelength of 570 nm (OD570)
(UV-2600-UV-VIS spectrophotometer, SHIMADZU; Kyoto, Japan). Strains were considered
biofilm producers if the OD570 values were greater than the OD570 values of the control
strains [43]. Staphylococcus epidermidis ATCC 12228 and P. aeruginosa ATCC 27853 were the
reference strains for positive biofilm formation.
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5.7. Investigation of Virulence Genes

DNA from the P. aeruginosa and S. aureus strains was extracted using the Wizard®®

Genomic DNA Purification Kit (Promega, Fitchburg, WI, USA). Then, purified DNA was
used to investigate the presence of Panton–Valentine leukocidin virulence genes (in the
S. aureus strains) and exo-S and exo-U exoenzymes. The primers that were used are described
in Table 3.

5.8. Interference of EGF in In Vitro Bacterial Growth and Biofilm Formation

The interference of EGF in the growth and biofilm formation of the P. aeruginosa
ATCC 27853 and S. aureus ATCC 25923 strains was evaluated by measuring bacterial
growth in the presence of EGF in a 96-well microplate. First, 10 µL of 0.5 standard
McFarland-scale-equivalent bacterial suspensions were inoculated into wells containing
170 µL of Mueller–Hinton broth and 20 µL of EGF. The microplates were incubated for
24 h, and growth was measured every hour, using a UV-2600-UV-VIS spectrophotome-
ter (SHIMADZU; Kyoto, Japan) at a wavelength of 620 nm (OD620) [43] to generate the
growth curves.

5.9. Data Analysis

All variables of interest were organized in Microsoft Excel®® 2007, and the data were
analyzed using the Statistical Package for the Social Sciences (SPSS software, version 22.0,
Armonk, NY, USA). The descriptive analysis was based on frequency and proportion
distributions. In the inferential analysis, the following tests were used: the Mann–Whitney
test for quantitative variables, Fisher’s exact test for categorical variables, the binomial test
for differences in distribution, and relative risk (RR). All discussions of significance tests
were carried out considering a maximum significance level of 5% (0.05) [44].
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Abbreviation
Abbreviation Meaning Page
EGF Epidermal growth factor 1
EGF-CMC Epidermal growth factor loaded carboxymethylcellulose gel 1
S. aureus Staphylococcus aureus 1
P. aeruginosa Pseudomonas aeruginosa 1
CMC Carboxymethylcellulose 1
ECM Extracellular matrix 2
-CH2-COOH Carboxymethyl group 2
FGF Fibroblast growth factor 2
VEGF Vascular endothelial growth factor 2
PDGF Platelet-derived growth factor 2
EPS Extracellular polysaccharide matrix 3
F Absolute frequency 3
RF Relative frequency 3
ABI Ankle–brachial index 3
PAD Peripheral obstructive arterial disease. 3
MRSA Methicillin-resistant Staphylococcus aureus 5
qPCR Quantitative real-time polymerase chain reaction 5
W1 First week 5
W6 Sixth week 5
W12 Twelfth week 5
ExoS Exoenzyme S gene 7
ExoU Exoenzyme U gene 7
OD620 Optical density measured in 620 nanometers 8
OD570 Optical density measured in 570 nanometers 8
PRP Platelet-rich plasma 9
rhEFG Recombinant human epidermal growth factor 11
ReBEC UTN Brazilian Registry of Clinical Trials code 11
mL Milliliter 11
NaCl Sodium chloride 12
TSB Trypticase soy broth 12

MALDI-TOF MS
Matrix-assisted laser desorption/ionization–time of flight
(MALDI-TOF) mass spectrometry (MS)

12

CLSI Clinical and Laboratory Standards Institute 12
µg Microgram 12
ATCC American Type Culture Collection 12
PCR Polymerase chain reaction 12
bp Base pairs 12
DNA Deoxyribonucleic acid 12
Ct Threshold cycle 13
PBS Phosphate-buffered saline 13
SPSS Statistical Package for the Social Sciences software 13
RR Relative risk 14
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