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INVESTIGATION
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ABSTRACT Genomic prediction is expected to considerably increase genetic gains by increasing selection

intensity and accelerating the breeding cycle. In this study, marker effects estimated in 255 diverse maize

(Zea mays L.) hybrids were used to predict grain yield, anthesis date, and anthesis-silking interval within the

diversity panel and testcross progenies of 30 F2-derived lines from each of five populations. Although up to

25% of the genetic variance could be explained by cross validation within the diversity panel, the prediction

of testcross performance of F2-derived lines using marker effects estimated in the diversity panel was

on average zero. Hybrids in the diversity panel could be grouped into eight breeding populations differing

in mean performance. When performance was predicted separately for each breeding population on the

basis of marker effects estimated in the other populations, predictive ability was low (i.e., 0.12 for grain

yield). These results suggest that prediction resulted mostly from differences in mean performance of the

breeding populations and less from the relationship between the training and validation sets or linkage

disequilibrium with causal variants underlying the predicted traits. Potential uses for genomic prediction in

maize hybrid breeding are discussed emphasizing the need of (1) a clear definition of the breeding scenario

in which genomic prediction should be applied (i.e., prediction among or within populations), (2) a detailed

analysis of the population structure before performing cross validation, and (3) larger training sets with

strong genetic relationship to the validation set.

In a hybrid maize breeding program, numerous crosses between in-

bred lines and testers need to be evaluated in extensive field trials to

identify hybrids with greater yield potential in the target environment.

Most crosses are discarded after field evaluation due to low general

performance. To save resources, it would be advantageous to select

inbred lines with high general combining ability by the use of mo-

lecular markers, because line performance per se is a poor predictor

of hybrid performance (Melchinger et al. 1998; Hallauer et al. 2010).

Although a large number of quantitative trait loci (QTL) have been

identified, the impact of marker-assisted selection for improving maize

hybrid performance in low- and high-yielding environments has

been marginal (Tuberosa et al. 2007; Araus et al. 2008). This is pri-

marily attributed to the small effects of the detected QTL and the fact

that many detected QTL are specific to a particular genetic back-

ground. Genomic prediction provides an alternative method to use

genomic information in breeding decisions. Rather than using only

significant marker-trait associations to build up the prediction model,

genomic prediction uses all markers simultaneously. The resulting

genomic estimated breeding value (GEBV) is the sum of all marker

Copyright © 2012 Windhausen et al.
doi: 10.1534/g3.112.003699
Manuscript received July 10, 2012; accepted for publication September 14, 2012
This is an open-access article distributed under the terms of the Creative
Commons Attribution Unported License (http://creativecommons.org/licenses/
by/3.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.112.003699/-/DC1.
1Corresponding author: Institute of Plant Breeding, Seed Science and Population
Genetics, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany.
E-mail: melchinger@uni-hohenheim.de

Volume 2 | November 2012 | 1427

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.003699/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.003699/-/DC1
mailto:melchinger@uni-hohenheim.de


effects (Meuwissen et al. 2001). After successful implementation of

genomic prediction of breeding values of Holstein and Jersey dairy

cattle (Hayes et al. 2009a; Goddard and Hayes 2009; Habier et al.

2010) and genetic risk of human diseases (Daetwyler et al. 2008), it

is now beginning to be used in plant breeding programs (Lorenzana

and Bernardo 2009).

Using genomic prediction, simulation studies and initial exper-

imental results indicate that grain or biomass yield of maize hybrids

can be predicted with high accuracy utilizing one of several different

prediction models (de los Campos et al. 2009; Crossa et al. 2010, 2011;

Albrecht et al. 2011; González-Camacho et al. 2012; Riedelsheimer

et al. 2012; Zhao et al. 2012a). This suggests that rapid increases

in rates of genetic gain are possible because prediction accuracy of

GEBVs is linearly related to the response to selection. Ideally, a train-

ing set composed of genetically diverse individuals, such as different

animal breeds (Hayes et al. 2009a), would be used for prediction.

This would reduce the cost of implementing genomic prediction in

breeding programs considerably as the training set would have wide

applicability. Nevertheless, more validation experiments are neces-

sary to investigate whether published high prediction accuracies can

be applied with as much success in populations different from

those in which the marker effects were estimated (Goddard and

Hayes 2007). Prediction accuracy of genotypes originating from

different populations may be lower than reported in previous studies

using genotypes originating from the same population, particularly,

if (1) the sample size of the training set is small, (2) broad-sense

heritability (H) of the trait of interest is low, (3) information from

close relatives is not available (Habier et al. 2010; Saatchi et al.

2011), and/or (4) linkage phases between single-nucleotide poly-

morphism (SNP) markers and QTL change in sign as suggested for

heterotic pools that evolved separately over a long time (Charcosset

and Essioux 1994).

The accuracy of genomic prediction is estimated by the correla-

tion between the true breeding value and the GEBV. To date,

prediction accuracy has been estimated by evaluating training

and validation sets in single and/or the same set of environments.

Multienvironment models can benefit from genetic correlations

between environments (Burgueño et al. 2012). However, it is un-

known whether marker effects estimated in a set of environments

are predictive of genotype performance in a different set of envi-

ronments. Furthermore, Riedelsheimer et al. (2012) and Saatchi

et al. (2011) indicated that population structure might affect pre-

diction accuracies. If the genotype set can be subdivided into several

clusters or breeding populations that differ in performance level,

the correlation between the true breeding value and the GEBV is

likely, in part, to be driven by these differences as was also reported

for marker assisted selection (Kang et al. 2008) and genomic pre-

diction (Albrecht et al. 2011; Habier et al. 2010; Saatchi et al. 2011).

The objectives of this study were to (1) investigate the effects of

sample size and number of test environments on prediction accuracy

and to evaluate the prediction accuracies in a diversity panel of maize

single crosses with the training and validation set drawn from either

the same or different environments; (2) examine the prospects for

genomic prediction based on testcross data from a diversity panel

with a given tester to predict the performance of testcross progeny

from segregating biparental populations derived from crosses of lines

included or not included in the training set in combination with a

different tester in different environments; (3) evaluate prediction

accuracy in the presence of population structure; and (4) discuss

potential uses for genomic prediction in maize hybrid breeding.

MATERIALS AND METHODS

Genotypes and experimental design

The study used data from two experiments. In Experiment 1, a set of

255 diverse maize inbred lines was used. To summarize in brief, lines

were selected to represent the genetic diversity across drought, low-N,

soil acidity, and pest and disease resistance breeding programs of the

International Maize and Wheat Improvement Center (CIMMYT) and

the International Institute of Tropical Agriculture (Wen et al. 2011).

The lines could be grouped into eight breeding populations based on

pedigree information, environmental adaptation, and main breeding

target (F. San Vicente, personal communication): lines from the re-

gional CIMMYT breeding program in Zimbabwe (n = 36), from the

CIMMYT acid soil tolerance breeding program in Colombia (n = 24),

from the CIMMYT insect resistance breeding program (n = 39), from

the CIMMYT physiology breeding populations selected for drought

tolerance, including the drought tolerant population white (DTPW

C9, n= 17) and yellow (DTPY, n = 15) as well as the La Posta Sequía

breeding population (n = 39), and from CIMMYT’s subtropical

(n =37) and tropical breeding programs (n = 38) in Mexico. For

the remaining 10 genotypes, no information on the breeding origin

was available. Lines were separated into early- and late-flowering

maturity groups and crossed with tester CML312. In total, six trials

were conducted in 2010 to 2011 in Mexico and Thailand for both

maturity groups.

Experiment 2 comprised five biparental F2 populations generated

using nine parental lines, four of which were part of Experiment 1.

The other five parental lines were distantly related to the lines com-

prising Experiment 1 (Supporting Information, Figure S1). One hun-

dred fifty test cross progenies were generated by crossing 30 F2-derived

lines from each cross with tester CML395/CML444 and evaluated in

four trials conducted in 2011 in Zimbabwe and Kenya.

All trials were conducted using alpha-lattice designs with two

replicates in the dry season under well-watered conditions. Hybrids

were evaluated for grain yield, anthesis date, and anthesis-silking in-

terval. Grain yield was recorded in t/ha and adjusted to 12.5% moisture

content. Anthesis date was recorded in days after sowing when 50%

of plants within a plot shed pollen. Anthesis-silking interval was

estimated as the number of days between silking and anthesis date.

SNP genotyping and marker selection

All 255 inbred lines in Experiment 1 and 30 F2-derived lines per

population in Experiment 2 (n = 150) were genotyped with the

MaizeSNP50 Bead Chip from Illumina, Inc. SNP markers were pre-

processed according to the following criteria: (1) less than 5% missing

values, and (2) minor allele frequency greater than 5% to exclude SNPs

with a high rate of genotyping error and low frequency. A total of

37,403 SNPs met these criteria in Experiment 1 and were subsequently

used for validation within Experiment 1. Across Experiment 1 and 2,

18,695 SNP markers were in common after SNP preprocessing. This

set of markers was used for validation between Experiments 1 and 2.

Statistical analysis

Variance components and heritability: Variance components were

estimated treating all effects as random effects. Two genotypes were

in common across maturity groups.

Yijklm ¼ mþ gi þ ej þ geij þmðeÞkðjÞ þ rðemÞlðjkÞ þ bðemrÞmðjklÞ þ eijklm; [1]

where Y is the mean performance of a certain genotype, m is the

overall mean, gi the effect of genotype i, ej the effect of the
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environment j, geij the interaction between genotype i and environ-

ment j, mðeÞkðjÞ the effect of the maturity group k nested in envi-

ronment j, rðemÞlðjkÞ the effect of replicate l nested within maturity

group k and environment j, bðemrÞmðjklÞ the effect of block m nested

within replicate l, maturity group k and environment j, and eijklm the

residual associated with a single plot. The genetic variance among

and within breeding populations and clusters (Qst) was estimated by

partitioning the genotype effect in model [1] into the effect of the

group (breeding population or cluster) and that of the genotype

nested within the group. The environment was defined as the

year-site combination in which the trials were conducted. It should

be noted that individual trials were treated as random samples from

the target environment as the purpose of hybrid testing was to pre-

dict future performance in farmers’ fields.

Broad-sense heritability (H) was estimated across e environments

and r replicates (Hallauer et al. 2010):

H ¼
s
2
g

s2
g þ

s
2
ge

e
þ
s
2
e

er

; [2]

where s
2
g , s

2
ge, and s

2
e
are the genetic, genotype-by-environment,

and residual variance components, respectively. H was estimated

for means over all environments (e = 6) as well as in pairs of e = 4

and e = 2 environments.

On the basis of best linear unbiased estimation, hybrid means

were derived in each set of environments (e = 6, 4 or 2) applying

model [1] treating the genotype main effects as fixed and all other

effects as random.

Genetic relationship between lines: The genetic relationship matrix

was estimated by applying method 1 reported by VanRaden (2008).

The resulting estimate was divided by two to obtain the kinship

among lines. Mean kinship within breeding populations was esti-

mated across all off-diagonal elements. Lines were grouped by spec-

ifying the desired number of clusters to n = 5, 10, and 15 using the

complete linkage method (Sorensen 1948). Furthermore, the molec-

ular variance among and within breeding populations and clusters

(Fst) was assessed applying an analysis of molecular variance.

We investigated the linkage disequilibrium (LD) structure in the

largest three breeding populations (i.e., La Posta Sequía, Zimbabwe, and

Entomology) by fitting second-order natural smoothing splines onto

the scatter plot of LD vs. the physical distances between markers on

the same chromosome. Only markers with a marker allele frequency

.0.05 within the respective breeding population were considered for

computing the LD. Furthermore, we investigated the persistence of

linkage phases across the three breeding populations following Tech-

now et al. (2012). Here, only markers with an allele frequency .0.05

within both breeding populations in the comparison were considered.

Genomic prediction: Hybrid performance was predicted for grain

yield, anthesis date, and anthesis-silking interval using ridge

regression best linear unbiased prediction (rrBLUP). BLUPs of

allelic effects were estimated by assuming that all effects have the

same prior distribution and shrinking them toward zero by the same

magnitude (Whittaker et al. 2000). We define predictive ability [r(ŷ,

g)] as the Pearson correlation between the phenotype and the

GEBV. The prediction accuracy [r(ĝ,g)] was estimated as the

correlation between the true breeding value and the GEBV, obtained

by dividing the predictive ability in each run by the square root of H

of the target trait evaluated in the respective set of environments (e =

6, 4, or 2). Different validation (V) procedures were used to evaluate

the effect of different factors on genomic prediction for hybrid

performance (Figure S2):

(V1) Effect of sample size and number of test environments: Fivefold

cross validation was conducted by subdividing the 255 hybrids

of Experiment 1 randomly into five disjoint subsets. One subset

was left out for validation whereas the other four subsets were

used as training set. This procedure was replicated 20 times,

yielding in total 100 runs. Marker effects were estimated in the

training set to predict the performance of the validation set eval-

uated in the same set of environments. The sample size of the

training set was varied (n = 204, 156, or 108) as well as the number

of environments in which the training and validations set were

evaluated (e = 6, 4, or 2).

(V2) Effect of evaluating training and validation sets across differ-

ent environments: Marker effects were estimated in the training

set evaluated in four environments to predict performance of the

validation set evaluated in two different environments applying a

fivefold cross-validation as described in V1.

(V3) Effect of evaluating training and validation sets with low degree

of relationship across different environments, using a different

tester: Performance of hybrids generated by crossing 30 F2-derived

lines with a different tester (Experiment 2) was predicted using

marker effects estimated in 255 hybrids (Experiment 1) evaluated

in different environments.

(V4) Effect of ‘no’ relationship between training and validation set:

Performance of one half of the genotypes in one focal breeding

population or cluster was predicted based on marker effects es-

timated in the remaining breeding populations or clusters. This

procedure was replicated 20 times. In each replication a different

set of genotypes were placed into the two halves of the focal

breeding population or cluster.

(V5) Effect of including relationship between training and validation

set: Performance of one half of the genotypes in a focal breeding

population or cluster was predicted based on marker effects es-

timated from a combination of the remaining breeding popula-

tions or clusters and the other half of the genotypes in the focal

group. This procedure was repeated 20 times as described in V4.

(V6) Prediction based on group means, without the use of markers

effects: In each V1 run, the mean of each breeding population

or cluster in the training set was used to predict the performance

of the genotypes in the validation set. The group mean was esti-

mated across all genotypes of each breeding population and was as

such independent of the mean performance of the validation set.

All analyses were performed using the R software version 2.12.2.

For estimation of variance components and hybrid means, the ASREML

package version 3 was used (Butler et al. 2009). Breeding values were

predicted using the rrBLUP package version 2 (Endelman 2011).

RESULTS

Variance components and heritability

Mean grain yield of hybrids was 6.88 t/ha in Experiment 1 and

7.02 t/ha in Experiment 2 (Table 1). Mean anthesis date was 71 days

after flowering. The early and late maturity group differed in mean

anthesis date by 2.6 days (data not shown). The ratio between genotype-

by-environment variance and the genetic variance ranged between

0.48 and 1.21, with the greatest values observed for grain yield.

H across trials was moderate to high for all traits evaluated in Ex-

periments 1 and 2 (0.61-0.85). Within breeding populations, it
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ranged between 0.34 and 0.84 for grain yield, 0.32 and 0.90 for

anthesis date, and 0.31 and 0.71 for anthesis-silking interval (data

not shown).

Genetic relationship and LD

Mean kinship within breeding populations of Experiment 1 was

between 0.10 and 0.16 for the Colombia acid soil tolerant, La Posta

Sequía, DTPW C9, and DTPY C9 breeding populations (Figure 1).

For lines derived from the Entomology and Zimbabwe breeding pop-

ulations, mean kinship was 0.05 and 0.09, respectively. Mean kinship

was lowest for the Mexico subtropical and Mexico tropical breeding

population. Generally, the relationship within a specific breeding pop-

ulation was greater than among breeding populations. This was par-

ticularly true for La Posta Sequía, which had a low kinship to all other

breeding populations, as also reported in a previous study using the

same genotype set (Wen et al. 2011). LD decayed rapidly with physical

distance between markers (Figure 2). Furthermore, LD was greater

within La Posta Sequía than within the Zimbabwe and Entomology

breeding population. The proportion of identical linkage phases across

breeding populations was considerably lower than 1 and quickly de-

clined to values close to 0.5 with increasing marker distance.

Effects of sample size, different environments,
and tester on genomic prediction

When genotypes were randomly assigned to the training and vali-

dation sets and evaluated in the same environments, predictive ability

ranged between 0.30 and 0.45 (Table 2, V1). Predictive ability declined

slightly with decreasing number of environments but remained stable

when the size of the training set was reduced from 204 to 108

genotypes. Prediction accuracy ranged between 0.43 and 0.50.

Prediction accuracy of performance in two environments was

between 0.47 and 0.49, when based on marker effects estimated in

four environments including the two environments of the valida-

tion set (Table 2, row 3 in V1). Predictive ability decreased by 0.10

(26%), 0.06 (14%), and 0.04 (9%) for grain yield, anthesis date and

anthesis-silking interval, respectively, when the same set of environ-

ments were used to predict performance in two different environ-

ments (Table 2, V2).

Predictive ability for performance of 30 F2-derived lines per pop-

ulation (Experiment 2) was between 20.37 and 0.49 based on marker

effects estimated in Experiment 1 (Table 3, V3). Average predictive

ability across populations varied around zero.

Genomic prediction among and within breeding
populations and clusters

In Experiment 1, predictive ability for performance in a specific group

(breeding population or cluster) using marker effects estimated in the

other groups, ranged between 0.12 to 0.21 for grain yield 20.01 to

0.23 for anthesis date and 20.03 to 0.02 for anthesis-silking interval

with high standard deviations (Table 4, V4). Predictive ability de-

creased when increasing the number of clusters from 5 to 10 to 15

but was lowest when grouping the genotypes into breeding popula-

tions. When 50% of the genotypes in the validation set were included

in the training set (Table 4, V5), predictive ability increased for all

traits. This increase was greater for anthesis date and anthesis-silking

interval than for grain yield.

Breeding populations differed considerably in their mean per-

formance. The difference between the least- and greatest-yielding

population was large (1.15 t/ha, Table 5, Table S1) whereas the

standard error of means was only between 0.01 and 0.04 (data not

shown). Breeding population La Posta Sequía was high yielding,

late flowering, and had a shorter anthesis-silking interval (e.g., better

flowering synchrony) relative to the other breeding populations.

Cross validation methods V1 and V2 (Table 2) partitioned lines

from different breeding populations into both the training and

validation sets, such that some of the predictive ability was driven

by the difference in mean performance (Figure S3). When the mean

of each breeding population in the training set was used to pre-

dict performance of the genotypes in the validation set (Table 4,

V6), predictive abilities were similar to or even greater than in

V1, which used markers to predict performance. Even when the

genotype set was divided into 15 clusters, genotypes of different

breeding populations were placed into the same cluster. This im-

plied that validation in each cluster was conducted across different

breeding population means which led to higher predictive ability

than when predicting the performance of each breeding population

separately.

Analysis of genetic variance revealed that dividing the genotype

set by breeding populations maximized variance among populations

while minimizing variance within populations (Qst; Table 5). For

grain yield, the variance among breeding populations explained

26% of the genetic variance while the variance among 15 clusters

explained only 16% of the genetic variance. This difference was not

observed when estimating the molecular variance (Fst). Here, no

matter how many clusters or breeding populations were used to

group lines, the variance among groups explained about 10% of the

molecular variance.

DISCUSSION

Genomic prediction of performance within a diversity
panel and testcross progenies of F2-derived lines

Within the diversity panel of Experiment 1, the performance of

untested genotypes could be predicted, explaining up to 25% of the

n Table 1 Mean and standard error of grain yield anthesis date, and anthesis-silking interval, their variance components and broad-sense
heritability estimated for 255 hybrids evaluated in six environments (Experiment1) and for 150 testcross progenies of 30 F2-derived lines
from each population evaluated in 4 environments (Experiment 2)

Experiment 1 Experiment 2

Statistic
Grain yield

(t/ha)
Anthesis date

(days after sowing)
Anthesis-silking
interval (days)

Grain yield
(t/ha)

Anthesis date
(days after sowing)

Anthesis-silking
interval (days)

Mean 6.88 6 0.03 71.35 6 0.07 2.03 6 0.03 7.02 6 0.02 62.28 6 0.06 0.46 6 0.11
s
2
g 0.42 6 0.05 1.66 6 0.18 0.46 6 0.06 0.53 6 0.11 4.87 6 0.77 0.31 6 0.06

s
2
ge 0.44 6 0.03 1.11 6 0.08 0.22 6 0.07 0.64 6 0.10 4.63 6 0.43 0.22 6 0.07

s
2
e

0.49 6 0.02 1.39 6 0.06 2.04 6 0.08 1.29 6 0.09 2.47 6 0.16 1.18 6 0.08
H 0.79 0.85 0.69 0.62 0.77 0.61

s
2
g, genetic variance; s2

ge, genotype-by-environment variance; s2
e
, residual variance; H, broad-sense heritability.
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genetic variance by randomly assigning genotypes to the training

and validation set. Much greater prediction accuracies have been

reported in previous studies in diversity panels (Crossa et al. 2010;

Riedelsheimer et al. 2012) and segregating populations (Albrecht

et al. 2011; Zhao et al. 2012a,b). Regarding the fact that resources

need to be allocated to phenotyping and/or genotyping, we examined

the effect of the sample size and the number of test environments on

prediction accuracy under validation scheme V1 (Table 2). Contrary

to theoretical expectations (Schön et al. 2004; Daetwyler et al. 2007;

Goddard and Hayes 2009), prediction accuracy remained almost

constant when reducing the sample size from 204 to 108 and the

number of test environments from six to two, which suggests that

Figure 1 Heat map of the kinship matrix of 255 lines assigned to 8 breeding populations (Experiment 1).
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besides LD and relatedness, other factors, i.e., population structure,

contributed to the high prediction accuracy values under validation

scheme V1.

By using the diversity panel in Experiment 1 as training set and the

F2-derived lines of five crosses in Experiment 2 as a validation set, we

examined a situation commonly encountered in breeding, where the

environments and the tester used in the training set differ from those

in the validation set, and where the lines to be predicted have limited

relationship with the training set. The predictive abilities observed in

validation scheme V3 were disappointing because they varied around

zero even for crosses of lines included in the training set (Table 3).

According to theoretical results (A. E. Melchinger, unpublished data),

the prediction accuracy expected when changing from tester T1 in

the training set to tester T2 in the validation set is obtained as the

product of the prediction accuracy with the same tester in the train-

ing and validation set and the genetic correlation between the test-

cross performance of the lines with the two testers. Using the same

tester in Experiment 1, predictive ability estimates obtained under

validation schemes V1 and V2 were similar using four environments

for the training set and two common or different environments for

the validation set. Thus, the different environments could not explain

the drop in predictive ability observed under V3. Estimates of ge-

netic correlation among two testers were reported to range between

0.6 and 0.9 for grain yield (Bernardo 1991; Melchinger et al. 1998).

The genetic correlation among the two testers used in the current

study is probably of the same order of magnitude but could not be

estimated because no testcross data were available with common

genotypes. The extent to which line-by-tester interactions contribute

to low predictive ability warrants further research.

Implications of hidden or apparent population structure
on genomic prediction

In segregating maize populations (Albrecht et al. 2011; Zhao et al.

2012b) and different full-sib families in mice (Legarra et al. 2008),

prediction accuracies were low when the training and validation set

comprised genotypes from different crosses or families. Similar to

those studies, we investigated whether part of the drop in predictive

ability observed under V3 relative to V1 is attributable to population

structure. Based on breeders’ information, the 255 lines included in

Experiment 1 originated from eight different breeding populations.

Mean kinship among breeding populations was low (Figure 1), es-

pecially for La Posta Sequía, where LD was higher than within the

Zimbabwe and Entomology breeding populations. Differences in

LD levels between breeding populations hamper the transferability

of marker effects from one breeding population to another, even

when the linkage phases are identical. The proportion of identical

linkage phases across breeding populations quickly declined with

increasing physical distance between markers to values close to 0.5

(Figure 2). Because of differences in LD and linkage phases, marker

Figure 2 (A) Second-order smoothing spline fits of LD (r2) vs. the
distance in mega base pairs (Mbp) between markers on the same
chromosome, within the La Posta Sequía (1), Zimbabwe (2), and
Entomology (3) breeding population. (B) Second-order smoothing
spline fits of proportion of marker pairs with equal linkage phase vs.
the distance in marker base pairs between markers on the same chro-
mosome. The horizontal line indicates a linkage phase of 0.5.

n Table 2 Mean and standard deviation of predictive ability [r(ŷ,g)] and prediction accuracy [r(ĝ,g)] of genomic prediction in Experiment 1
obtained with different number of genotypes (n) and environments (e) in which the training and/or validation set were evaluated

Training Set Validation Set Grain Yield Anthesis date Anthesis-silking interval

n e n e r(ŷ,g) r(ĝ,g) r(ŷ,g) r(ĝ,g) r(ŷ,g) r(ĝ,g)

Prediction of performance evaluating the training and validation set in the same set of environments
V1 204 6 51 6 0.44 6 0.09 0.50 6 0.10 0.45 6 0.09 0.49 6 0.10 0.36 6 0.13 0.43 6 0.16

4 4 0.41 6 0.11 0.49 6 0.13 0.42 6 0.10 0.46 6 0.11 0.38 6 0.10 0.50 6 0.14
4 2 0.36 6 0.12 0.49 6 0.17 0.41 6 0.12 0.49 6 0.16 0.31 6 0.16 0.47 6 0.30
2 2 0.39 6 0.11 0.52 6 0.16 0.41 6 0.12 0.49 6 0.17 0.30 6 0.15 0.46 6 0.29

156 6 100 6 0.44 6 0.10 0.49 6 0.11 0.45 6 0.12 0.49 6 0.13 0.38 6 0.12 0.45 6 0.14
4 4 0.39 6 0.13 0.47 6 0.16 0.43 6 0.12 0.47 6 0.13 0.39 6 0.12 0.51 6 0.16
2 2 0.38 6 0.16 0.50 6 0.21 0.40 6 0.14 0.47 6 0.18 0.31 6 0.18 0.47 6 0.32

108 6 147 6 0.44 6 0.15 0.50 6 0.17 0.46 6 0.11 0.50 6 0.12 0.37 6 0.14 0.44 6 0.17
4 4 0.39 6 0.18 0.46 6 0.21 0.45 6 0.16 0.49 6 0.18 0.40 6 0.17 0.52 6 0.23
2 2 0.40 6 0.14 0.54 6 0.20 0.45 6 0.13 0.54 6 0.17 0.38 6 0.18 0.57 6 0.32

Prediction of performance evaluating the training and validation set in the different environments
V2 204 4 51 2 0.33 6 0.14 0.39 6 0.17 0.40 6 0.16 0.43 6 0.17 0.32 6 0.14 0.43 6 0.19

Genotypes were randomly assigned to the training and validation set under validation schemes V1 and V2
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effects estimated in one breeding population cannot easily be trans-

ferred to another, and this at least partly explains the low accuracies

observed within breeding populations using marker effects estimated

in the other breeding populations (V4 and V5). Interestingly, be-

tween two distinct heterotic pools of maize (flint and dent) used for

hybrid breeding in Europe, linkage phases decreased less, to a min-

imum of about 0.6, even though a minimum of 0.5 could have been

expected given the long separation of the two pools (Technow et al.

2012). The steeper decrease of linkage phases with physical distance

between markers in the current study may relate to the smaller

sample sizes but also to the fact that the lines in Experiment 1 were

developed from rather broad based populations by pedigree breed-

ing accompanied by selection for per se and testcross performance

with emphasis on different adaptive traits (Wen et al. 2011).

Partitioning of the genetic variance across the testcrosses into the

variance among and within breeding populations revealed that the

former explained 26% of the variance for grain yield (Table 5). This

was also reflected by the large difference in the population means

of 1.15 t/ha. Reduced genetic distance among lines originating from

the same breeding population as compared to those from different

breeding populations also was reflected by the heat map of kinship

values based on SNP data (Figure 1). Interestingly, in the analysis of

molecular variance, the proportion of variance among populations

in the total molecular variance was much smaller compared with the

subdivision based on the genetic variance of the agronomic traits.

Furthermore, the ratio between genetic variance among and within

populations was almost three times greater when estimated based

on phenotypic data (Qst) than based on marker data (Fst). This

finding suggests that SNPs do not fully capture the differences among

the lines from different breeding populations. Possibly, selection by

breeders results in greater differences at the phenotypic level than

reflected by genome-wide markers (Porcher et al. 2004; Pujol et al.

2008; Whitlock and Guillaume 2009), an observation that warrants

further research.

To further investigate the effects of population structure on

predictive ability under validation scheme V1, we grouped lines

into different numbers of clusters based on the relationship matrix.

Including information from relatives into the training set improved

within-group prediction substantially for simple traits like anthesis

date and anthesis-silking interval, but less so for grain yield. In all

instances, predictive ability values including genetic relationship

between training and validations sets (V5) were considerably lower

compared with V1. Interestingly, when predictions for the lines were

solely based on the means of the respective breeding population

(V6), we achieved similar or even higher prediction accuracies than

with the high-density, SNP-based genomic prediction in V1. Conse-

quently, prediction accuracy across breeding populations resulted

mostly from differences in mean performance and less from the

relationship between the training and validation set or linkage phases

between breeding populations, as also reported in cattle (Habier et al.

2010; Saatchi et al. 2011). The implications of this result depend on

whether previous knowledge of population structure is available

and whether one is interested in predicting performance within or

among breeding populations. This will be discussed in detail in the

next section, Potential uses for genomic prediction in maize hybrid

development.

n Table 3 Predictive ability for testcross progenies of 30 F2-derived lines from each population evaluated in
environments (Experiment 2) using marker effects estimated from the 255 inbred lines and phenotypic data of
their testcross progenies evaluated in environments (Experiment 1)

Parent 1/2 Breeding Population (Parent 1/2) GY AD ASI

CZL0009a/CML539a Zimbabwe/Zimbabwe 0.29 20.03 20.37
CZL0723/CZL0724 Zimbabwe/Zimbabwe 20.26 20.01 20.10
CZL0723/CZL0719 Zimbabwe/Zimbabwe 20.20 0.49 0.12
CZL0618/VL0655a Zimbabwe/La Posta Sequía 20.22 0.40 20.01
CZL074/VL0645a Zimbabwe/La Posta Sequía 0.06 0.24 0.08
a
These parental lines were included in Experiment 1.

n Table 4 Predictive ability for grain yield, anthesis date, and anthesis-silking interval under validation schemes V4-V6
in Experiment 1

Training Set Validation Set Grain yield Anthesis date Anthesis-silking interval

V4: Prediction for 50% of the genotypes in one group based on marker effects estimated in all other groups
5 cluster 177-232 11-39 0.21 6 0.25 0.23 6 0.28 0.01 6 0.20
10 cluster 177-233 11-39 0.23 6 0.24 0.17 6 0.36 0.02 6 0.26
15 cluster 209-230 12-23 0.16 6 0.23 20.01 6 0.23 0.01 6 0.23
8 populations 216-231 12-19 0.12 6 0.28 0.02 6 0.25 20.03 6 0.18

V5: Prediction for 50% of the genotypes in one group based on marker effects estimated in all other groups plus the other 50% from
the same group

5 cluster 216-244 11-39 0.31 6 0.28 0.46 6 0.21 0.07 6 0.23
10 cluster 216-244 11-39 0.21 6 0.24 0.52 6 0.22 0.16 6 0.27
15 cluster 232-243 12-23 0.23 6 0.26 0.39 6 0.26 0.28 6 0.28
8 populations 236-243 12-19 0.13 6 0.25 0.32 6 0.35 0.03 6 0.28

V6: Prediction based on group means
5 cluster 204 51 0.33 6 0.10 0.21 6 0.11 0.44 6 0.09
10 cluster 0.42 6 0.10 0.31 6 0.12 0.46 6 0.10
15 cluster 0.47 6 0.10 0.37 6 0.10 0.47 6 0.11
8 populations 0.50 6 0.09 0.44 6 0.09 0.46 6 0.10

The training and validation sets were evaluated in the same set of environments (e = 6). Genotypes were grouped into 5, 10 or 15 clusters and 8 breeding populations
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Potential uses for genomic prediction in maize
hybrid development

Before incorporating genomic prediction in a plant breeding pro-

gram, one has to clearly define the breeding scenario in which

genomic prediction will be applied. The following scenarios may

be differentiated:

Training and validation set comprise lines from a diversity panel:

One application of genomic prediction is the performance prediction

of new lines in a pedigree breeding program from a large, diverse

training set of lines with a low average coparentage with the lines

under selection. GEBV accuracy in such populations would result

from exploiting LD between high-density markers and QTL con-

trolling the trait. To be effective, this strategy will likely require

much larger training sets and denser marker maps than methods

depending on close relationships. Simulations for a full sib family

indicate that at least 1000 genotypes are required to achieve a

prediction accuracy of approximately 0.75 with H of the trait of 0.5

(Hayes et al. 2009b). Nevertheless, it has to be regarded that greater

prediction accuracies are likely to be achieved if the training set is

large and includes lines related to the validation set (Habier et al.

2010). In six-row barley, Lorenz et al. (2012) found little-to-no

increase in prediction accuracy when combining distantly related

breeding populations to increase the size of the training popula-

tion. The importance of genetic relationship between training and

validation set is discussed in further detail in breeding scenario C.

Prediction accuracy depends on the prediction problem that the

breeder is attempting to address. If the goal is to predict within a

population that comprises groups of related genotypes with differ-

ences in mean performance, results of this study indicate that this

can lead to false conclusions regarding the prospects of genomic

prediction within groups, which is likely to be the most common

application. Prediction accuracy determined with validation scheme V1

in the presence of different groups with different performance levels

would only be helpful to breeders if no information on those groups

is available, i.e., at the very beginning in breeding for a specific trait

like biogas production (Riedelsheimer et al. 2012). If no reduction

in accuracy is found by reducing the sample size in the training set,

this can be taken as an indication for the presence of hidden pop-

ulation structure. In this case, genotyping could be applied to identify

groups of related lines. Subsequently, phenotyping a representative

sample of lines from each group would be sufficient to determine

differences in the performance level of the different groups. If groups

are present, it is recommended to take this into account in the valida-

tion scheme. Further research is needed on the effect of the number of

distinct populations vs. the number of lines needed to achieve reliable

prediction, as our results show that predictions based on small, highly

structured training sets will not achieve useful accuracy. Burgueño

et al. (2012) showed that for correlated environments, some of the

benefits in predictive accuracy come from borrowing information

from correlated environments and from using information regarding

pedigree and genetic markers. These results indicate that the impact of

environmental structure in combination with population structure on

prediction accuracy should be considered.

Training and validation set are segregating progenies from the

same cross: One application of genomic prediction already used in

commercial maize breeding (A. Gordillo, personal communication)

is the prediction of performance of double haploid lines which have

not been phenotyped, on the basis of a training set derived from the

same cross. Similar within bi-parental family predictions were orig-

inally envisioned by Bernardo and Yu (2007). This approach would be

similar to training and validation within each of the five crosses of

Experiment 2, which could not be assessed in the current study due

to the low sample size for each population (n = 30). Because multi-

location phenotyping is more expensive than one-time genotyping,

this approach would allow breeders to generate large full-sib families

of doubled haploid lines (i.e., n = 200), phenotype only a small

fraction of lines, but large enough to provide reasonably accurate

GEBVs (e.g., n = 50), and advance both the best of the phenotyped

and unphenotyped full sibs to the next testing stage, based on phe-

notype and GEBV, respectively. GEBVs are likely to provide moderate

accuracy for this application because of the close relationship between

the training and validation set and high LD within full-sib families

n Table 5 Minimum and maximum of grain yield, anthesis date, anthesis-silking interval, and the genetic and
molecular variance among (s2

p ) and within (s2
gðpÞ) clusters or breeding populations in Experiment 1

5 Clusters 10 Clusters 15 Clusters 8 Populations

Qst: genetic variance
Grain yield (t/ha)
min-max 6.67-7.27 6.67-7.45 6.44-7.45 6.37-7.52

s
2
p 0.05 6 0.05 0.07 6 0.05 0.08 6 0.05 0.11 6 0.07

s
2
gðpÞ 0.47 6 0.04 0.42 6 0.04 0.41 6 0.04 0.31 6 0.04

s
2
p=ðs

2
gðpÞ þ s

2
pÞ 0.096 0.143 0.163 0.262

Anthesis date (days after owing)
min-max 71.04-72.09 70.39-72.09 70.49-73.09 70.22-72.12

s
2
p 0.13 6 0.15 0.31 6 0.24 0.44 6 0.29 0.28 6 0.19

s
2
gðpÞ 3.12 6 0.28 2.86 6 0.27 2.81 6 0.27 1.47 6 0.16

s
2
p=ðs

2
gðpÞ þ s

2
pÞ 0.040 0.098 0.135 0.160

Anthesis-silking interval (days)
min-max 1.45-2.17 1.44-2.34 1.41-2.37 1.36-2.31

s
2
p 0.12 6 0.09 0.12 6 0.08 0.11 6 0.07 0.13 6 0.08

s
2
gðpÞ 0.57 6 0.05 0.54 6 0.05 0.54 6 0.05 0.35 6 0.05

s
2
p=ðs

2
gðpÞ þ s

2
pÞ 0.174 0.182 0.169 0.271

Fst: molecular variance
s
2
p 0.01 0.02 0.02 0.02

s
2
gðpÞ 0.17 0.16 0.16 0.16

s
2
p=ðs

2
gðpÞ þ s

2
pÞ 0.077 0.099 0.117 0.094
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even at low marker density and small population sizes (Wong and

Bernardo 2008).

Training and validation set include related and unrelated genotypes:

As illustrated by the comparison of predictive ability under vali-

dation schemes V4 and V5 including genotypes from the same

group in the training set helps to improve predictive ability in the

validation set. In maize (Albrecht et al. 2011), cattle (de Roos et al.

2009) and sheep (Clark et al. 2012), it was reported that when the

cross-validation scheme allowed for a high degree of relatedness,

prediction accuracy increased by 0.26, 0.12, and 0.09, respectively,

relative to that achieved across distantly related families. This in-

crease depends on the degree of relatedness between the groups and

also whether the LD between markers and QTL is stable across differ-

ent groups. The latter will depend on the marker density and the

breeding history of the groups. If the groups trace back to different

races of maize and have been kept separate for a long time and

selected with emphasis on different traits, chances are high that LD

between adjacent markers is low even with a high marker density.

This is similar to the situation in animal breeding, where marker

effects estimated in Holstein dairy cattle did not predict accurately

GEBVs of Jersey dairy cattle, and vice versa (Hayes et al. 2009a).

An open question in this context is how many groups should be in-

cluded and how many individuals per group are required to obtain

high predictive ability in validation schemes V4 and V5.

Recurrent selection with closed synthetic populations of key inbreds:

Another potential application of genomic prediction is rapid-cycle,

marker-based recurrent selection in closed populations, like in La

Posta Sequía but with a sample size .100, that will serve as sources

of inbred lines. The objectives of such a recurrent selection program

are to generate an improved population by increasing the frequency

of favorable alleles while maintaining sufficient genetic variation for

subsequent cycles of selection. One cycle of phenotypic recurrent

selection consists of (1) the development of progenies from a pop-

ulation, (2) phenotypic evaluation of the progenies, and (3) selection

and recombination of the best selected individuals to form a new

population that will form the base material for the next cycle. Geno-

mic prediction would be implemented by genotyping and phenotyp-

ing individuals in step (2) and estimating marker effects to predict

hybrid performance in the subsequent recurrent cycles and recom-

bine the best lines based on GEBVs alone. Phenotyping would only

be used to re-estimate marker effects by evaluating the phenotype of

selected parental lines each third recurrent cycle, thus substantially

reducing both monetary and time costs associated with phenotyping

(Heffner et al., 2009). If these populations were derived from a lim-

ited number of parents, high LD between markers and QTL alleles

should persist for several cycles of selection, allowing increased genetic

gain through acceleration of the breeding cycle with selection based on

GEBV alone.
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