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Abstract—Modern hi-tech systems rely heavily on communi-
cation networks while operating in increasingly harsher electro-
magnetic conditions. To protect transmitted data from corruption,
Error Correcting Codes are widely used. In this paper, the
effectiveness of the Hamming code is evaluated under harsh
electromagnetic disturbances. Our simulations show that, under
certain conditions, the impact of the introduced overhead cannot
be compensated by the single error correcting capabilities of
the Hamming codes. Moreover, for specific bit and disturbance
frequencies and for larger data sets, the use of a Hamming code
provides limited to no advantage.

Index Terms—Hamming Code, Electromagnetic Interference,
Error Correction Code, Embedded Systems, Fault Tolerance,
Resilience

I. INTRODUCTION

More and more electric, electronic and programmable elec-
tronic (E/E/PE) devices are being used in our everyday lives,
ranging from smartphones and laptops to systems fulfilling
mission- or safety-critical tasks. Applications such as au-
tonomous systems are being developed and, very often, robust
communication channels are crucial. Communication channels
in general are increasingly affected by Electromagnetic Inter-
ference (EMI), most notably due to three trends:

1) Internal voltages of the E/E/PE systems are constantly
lowered to reduce power consumption and heat dissipa-
tion;

2) The decrease of the minimum feature sizes in order to in-
crease the transistor density, resulting in more processing
power per area and reduced heat generation;

3) Harsher ElectroMagnetic (EM) environments due to ev-
ermore powerful and/or transmitting devices.

The combination of these trends leads to a lowered intrinsic
immunity to EMI, which is often perceived as voltages induced
on the channel, possibly leading to bit errors. To revert these
corruptions, Error Detection Codes (EDCs) and Error Correc-
tion Codes (ECCs) have been used since the fifties [5]. By
adding redundant information, error detection and/or recovery
is performed at receiver’s side. This methodology is known as
Forward Error Correction (FEC). A FEC code example is the
Hamming Code [5].

In previous work [10], the effectiveness of Cyclic Redun-
dancy Checks (CRCs) was investigated. Residing as a detection
mechanism, it would generate up to 50% false positives under
the right conditions. False positives occur when the error
detection scheme assumes the data to be error free, while the
data differs from the originally sent data. This work considers
equally harsh environments, but studies error correction instead
of detection. Furthermore, a transition is made from plane-wave
to reverberation room conditions.

Harsh and continuous electromagnetic disturbances can cause
multiple upsets in the data. These disturbances are replicated
in an in-house built framework for simulating reverberation
room conditions. Different Hamming codes are considered,
depending on the amount of data bits: 4, 11 or 26 bits. By
comparison to an unprotected baseline, whereby the data bits
are sent over the channel without any ECC, the effectiveness of
the different Hamming codes is investigated. The reverberation
chamber simulation framework is based on the Plane Wave
Integral Representation for Reverberation Chambers [6].

The organization of this paper is as follows. The Hamming
code is presented in Section II. The reverberation simulation
framework is described in Section III with the results given in
Section IV. Section V covers the conclusions of this work and
the options for future work are presented in Section VI.

II. HAMMING CODE

The Hamming code is a linear, Single Error Correcting (SEC)
Code named after its inventor R.W. Hamming [5]. In mathemat-
ical terms, the code parameters are described by Equation (1),
where r is the number of redundancy (also called parity) bits,
k the message (data bits) length and n the block (code word)
length. For further notation, these codes are abbreviated as
H[n, k, r]. 

r > 2

k = 2r − r − 1

n = 2r − 1 = k + r

(1)

In this work, three message length cases are considered:
4, 11 and 26 bits of data, resulting in H[7,4,3], H[15,11,4]
and H[31,26,5], respectively. These are the smallest Hamming



codes for r ≥ 3. For r = 2 and k = 1, simple triplication is
obtained. As running example for the code generation, H[7,4,3]
is used, but each code is constructed in the same way. The codes
have the layout as displayed in Equation (2). Dx are the data
bits and Px are the parity bits.

[D3, D2, D1, P2, D0, P1, P0] (2)

The Hamming code is constructed using the following three
steps.

1) Each position in the code which is a power of two, is the
position of a parity bit. Therefore, the parity bits are only
dependent on the data bits. The data bits themselves fill
the other positions.

2) Initialize the parity bits to zero.
3) The parity bits themselves are calculated by a specific

algorithm which starts from the back (at P0). For the
Pi parity bit: skip 2i bits, check 2i bits, skip 2i bits,
check 2i and so on, until the end of the code word is
reached. With this algorithm, the generated parity will
automatically be even. Note: for the first skip operation,
count one position outside of the coding array. In other
words, for the three parity bits of H[7, 4, 3], Equation (3)
can be used. Px denotes a parity bit and Dx are data
bits. 

P0 = P0⊕D0⊕D1⊕D3

P1 = P1⊕D0⊕D2⊕D3

P2 = P2⊕D1⊕D2⊕D3

(3)

Since Hamming codes are linear, matrices can be used to
encode and decode Hamming codes. The generator matrix
G(k×n) is used for encoding. The data vector is multiplied by
G to generate the code word. In the correction and decoding
process, three matrices are needed: the parity check matrix
H(r×n), the syndrome matrix S(r×1) and the decoding matrix
R(k×n). Multiplying H with the received code word yields S.
When a correct code word was received, the syndrome S is
an all-zero matrix. If an error is present in the code word,
the syndrome S indicates the bit position of the error. After
correction, the code word is decoded.

Note that if two or more errors reside in the code word, a non-
zero syndrome is obtained as in previous paragraph. However,
only one bit-error can be corrected. A successive multiplication
between the code word and the parity check matrix, will yield
an S = 0, indicating an error free code word. At this point,
the code word is regarded as error free, but there are still
uncorrected errors.

For all Hamming codes it is mandatory that H × GT yields
an all-zero matrix. The following matrices (Equations (4) to (6))
are used to yield the code presented in Equation (2).

G =


1 0 0 1 0 1 1
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1

 (4)
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H =

 1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

 (5)

R =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0

 (6)

III. REVERBERATION ROOM SIMULATION

This section covers the in-house built reverberation room
simulation framework used to test the effectiveness of Ham-
ming code protection. Its global outline is depicted in Fig. 1.

The core of the framework is described first: the channel.
Next, both sender and receiver sides are presented. These form
the additions to the core. Finally, the specific parameters of the
experiments are denoted.

A. Reverberation Core

The core reverberation simulation uses a numerical approach
to simulate the reverberation room conditions while avoiding
many full-wave simulations. The results within this simulation
framework are based on the superposition of a sufficiently large
set of randomly chosen plane waves to statistically represent
the behavior a reverberation chamber [7]. The generic process
of the reverberation chamber conditions is visualized in Fig. 2.



Three specific parameters should be known at the start:
the maximum strength of the electromagnetic disturbance
(EincMax), the amount of repetitions to be made (Loopmax)
and the considered code word (output of the encoder). The start
value for Einc was chosen as 0 V/m, simulating an EMI-free
environment. For each of the considered strengths, Loopmax

repetitions are performed. In each repetition, an undisturbed
code word is considered; there is no accumulation of EMI. After
the generation of the disturbance, it is added to the encoded
data. The disturbed data is then decoded and checked for errors.
If an error is present, the error counter (WERPerEinc) is
incremented. In the end, this counter is divided by Loopmax

to yield the Word Error Rate (WER) per strength of Einc as
denoted in Equation (7). When all repetitions are completed,
the next iteration is started with an increased Einc. When Einc

equals EincMax, the simulation is completed.

WERPerEinc =
TotalWrongDataWords

Loopmax
(7)

In order to calculate the induced voltages on the ports of a
Device Under Test, many full-wave simulations are required:
one simulation for each incident plane wave with a specific
angle of incidence and polarization. As this would require a sig-
nificant amount of simulating time, an improved algorithm was
developed [9]. The improved algorithm only requires one full-
wave simulation, and the induced voltages on the ports of the
DUT are calculated via a reciprocity-based methodology. Since
this paper considers reverberant conditions, a set of random
plane waves is required to create this in accordance to the Plane
Wave Integral Representation [6]. From that representation, we
know that the resulting induced voltages and currents follow a
Rayleigh distribution.. Since our DUT satisfies all requirements
from [6], the parameter σ can be calculated, characterizing the
Rayleigh distribution. From this distribution, the amplitude of
the induced voltages can be calculated.

The amplitude A itself is based on an EMI strength of 1 V/m,
so multiplication with the incoming strength Einc must be
performed. Furthermore, a random phase shift ϕ is added to
account for the arrival times of the incident waves. The phase
shift ϕ is uniformly distributed between −π and π. Equation (8)
represents the induced voltage U(i) at the ports of the DUT.

U(i) = Einc ×A× sin [2π × Femi × Ti + ϕ] ;

where Ti =
i

Fbit
+

1

2× Fbit

and i ∈ [0, k + r − 1] (8)

U(i) also depends on the considered disturbance frequency
Femi and bit frequency Fbit, in order to maintain the time
dependencies between both frequencies. At receiver side, each
bit is sampled according to Fbit in the middle of the bit, and
not in the beginning of the bit. Therefore, the sample time Ti
from Equation (8) considers half a bit period extra.

B. Coding Modules
In essence, the core in Section III-A only introduces noise

(EMI) to the considered transmission line. The core was sur-
rounded with data encoder and decoder modules. Two different
encoder modules are used; one simply converting logic ’0’ and
’1’ to voltages (thus without any data protection schemes) and
one with the Hamming code.

The voltages themselves (and thresholds) depend on the
initial configuration of the framework. The encoding voltage Vs
(at the source) is 1 V, i.e. Non-Return to Zero Level (NRZ-L)
coding. Due to the assumption of matched transmission lines
(the characteristic impedance of the transmission line equals
both the source and load impedance), the voltage incurred at
the end of the transmission line is half the original voltage. The
voltage seen by the receiver is therefore Vrec = Vs/2. The core
adds the reverberation EMI disturbance before the code word
is decoded (see Fig 1).

Similarly, the thresholds for decoding are a function of Vs as
well. Since a NRZ-L is used, the receiver assumes that anything
above half the maximum theoretical receivable voltage is a ’1’,
below it is considered ’0’. The threshold lies thus at Vth =
Vs/4.

All other parameters needed in this framework, are specific
to the conducted experiments. These parameters are described
in the following Section.

C. Experiment Specific Parameters
Six experiment specific parameters are needed: the data, the

bit frequency Fbit, the disturbance frequency Femi, the maxi-
mum number of repetitions Loopmax, the maximum considered
EMI strength EincMax and the difference between considered
strengths ∆Einc.

For the initial experiments presented here, a random 4-bit
data sequence was generated. For the larger size experiments,
the bit stream was expanded to the desired length (11 or 26
bits). Equation (9) provides the actual data used in the experi-
ments. For further experiments, all data sets of the prescribed
lengths are to be simulated.

D(4) = {1, 1, 0, 0}
D(11) = {1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1}
D(26) = {1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1, 0, 1, 0,

1, 0, 0, 1, 0, 0}

(9)

The values chosen in these experiments for Fbit, Femi and
EincMax are based on previous work, published in [2] and [3].
The values used are depicted in Equation (10).

Femi ∈ [200MHz; 5GHz] | ∆Femi = 200MHz

Fbit = {197; 200; 211; 1000}MHz

Einc ∈ [0; 10.000] V/m | ∆Einc = 5 V/m

Loopmax = 100.000

(10)

The values for ∆Einc and Loopmax were chosen at the
beginning of the experiments.



IV. RESULTS

In total, 300 figures were generated (4Fbit × 25Femi ×
3DataSets), therefore not all figures for the WER are pre-
sented in this paper; a selection was made. The results in the
subsections are grouped according to the data-set length.

A. 4-bit data

The first result is shown in Fig. 3a. This is the expected
outcome, where Hamming code is able to correct single bit
errors and the actual WER is slightly lower. For the parameters
specified in the caption of the Figure, the introduced overhead
of Hamming results in a better WER. The difference in WER
is the percentage of corrected single bit errors in the data. The
addition of the Hamming parity bits, result in an increased
ability to recover errors.

In contradiction, Fig. 3c show Hamming performing worse
than sending the data without protection. This means that in a
number of repetitions, the unprotected data is intact, but there
are errors in the Hamming parity bits such that the correction
mechanism is unable to correct. When the code word with
multiple bit errors is processed by the decoder, the parity check
matrix will identify one bit as false. That bit will be flipped,
resulting in a correction, but an incorrect one. No double error
detection is in place, thus this exposes the disadvantage of
Hamming.

It should be noted that Fig. 3b includes both situations
described in the previous paragraphs. For simulations with
Einc < 2000V/m, Hamming provides an advantage in terms
of WER. This advantage however, is lost upon consideration
of larger incident reverberation waves.

For the specific situation depicted in Fig. 3d, where Femi is
an integer multiple of Fbit, there is no difference in the word
error rates at all. Depending on the generated wave amplitude
of the Rayleigh distribution, the disruption is large enough to
generate all-zero or all-one code words (which will result in
wrong data) or a disruption not large enough to corrupt the
data, therefore yielding correct data). Both code words are valid
according to the Hamming decoding logic, but are different
from the data originally sent. In essence, the same problem of
false positives (as in [10] with CRC) arises here: data is seen
as correct while it is not.

Figures for an Fbit of 1000 MHz are not provided. The results
are similar to the ones provided in Fig. 3. Also note here that
Femi is an integer multiple of Fbit for specific frequencies,
which yields the same graph as in Fig. 3d.

B. 11-bit data

This set of experiments shows a much more stable situation
than in Section IV-A: none of the graphs shown in Fig. 4 depicts
a Hamming code yielding worse WER than the unprotected
data. The relative overhead of parity bits is lower than for 4 bits
data. It is unlikely that the unprotected data is unaffected, while
only the parity bits are corrupted. Furthermore, the presence
of double (or more) bit errors (non-correctable by Hamming)
are likely to have affected the original data bits as well. At
this point, the disadvantage of the added parity bits being

susceptible to corruption outweighs the possibility to correct
a single bit error. The difference between the baseline and
Hamming curves on Fig. 4a are regarded as the percentage of
single bit errors in the data. The percentage below the Hamming
curve, are multi-bit errors.

Fig. 4b shows again that, when Femi is an integer multiple of
Fbit, Hamming produces the same WER as unprotected data.
As discussed in Section IV-A, this is due to the generation of
all-zero or all-one code words. The Hamming decoder considers
the code words as correct, but they differ from the sent data.

The mean (d) and maximum deviation (dmax) between the
two curves can be calculated and yield (Equation 11):

d̄ =

∑√
(WERNP (i)−WERH(i))2

2000

dmax = Max(
√

(WERNP (i)−WERH(i))2
(11)

where the i represents the value for each considered EMI
strength at a specific frequency of Fbit and Femi. There
is a mean deviation of 0.1083% between the curves and a
maximum of 0.554%. Given the nature of the simulation, this
is identified as being equal. Note that the Hamming code is
able to compensate the introduced overhead by correcting the
received data blocks; the raw correct data throughput is higher.

C. 26-bit data

Now that 26 data bits are encoded with a H[31,26,5], Ham-
ming is rapidly losing its advantages. Since a code word is 31
bits long, the probability of having only one bit-flip in the data
has been reduced to almost zero for great strengths of Einc. The
WER curves for unprotected and Hamming encoded data are
almost equal. Using the formula provided in Equation (11), the
mean deviation is 0.223% and the maximum deviation is 2.12%.
Note that the mean deviation is about double the percentage
that was considered equal in Section IV-B. The overhead for a
H[31,26,5] is about 19% (5 parity bits for each 26 bits of data)
and the maximum deviation is 2.12%. Therefore, the actual
correct data block rate of Hamming is lower. Performance-wise,
sending the unprotected data is the best option. However, since
only 18.88% of the received data blocks are correct, this is not
acceptable in real-life applications unless there are other error
detection schemes. The Hamming code considered here cannot
distinguish a recoverable single error and an unrecoverable
multi-bit error. To recover multi-bit errors, Hamming cannot be
used: other types of code are required, such as Reed-Solomon
Codes [4], Bose–Chaudhuri–Hocquenghem Codes [1], etc.

Extended Hamming codes are linear codes based on the orig-
inal Hamming code, but do not follow the specific requirements
set in Equation (1). An example is the code developed in [8],
which can correct a single error, while detecting double and
triple adjacent bit errors. To counter harsh EM environments,
these codes might prove better and are to be considered in future
experiments. It should be noted that these Extended Hamming
Codes can provide multi-bit error detection, but are always
Single Error Correction only.
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Figure 3: Results of the 4-bit experiments
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Figure 5: Results of the 26-bit experiments

Furthermore, for continuous EMI, other strategies such as in-
terleaving might prove useful. However, when the EMI persists
beyond the interleaving time interval, other measure must be
taken as well.

In essence, the used technique must be able to overcome the
induced overhead in terms of correction before usefulness can
be claimed. However, each code has its limits and needs careful
consideration.

V. CONCLUSIONS

This paper presented the effectiveness of Hamming codes
operating in harsh EM environments. Resulting from our in-
house built framework, multiple conclusions could be drawn.
In terms of WER, it is possible to achieve a slightly increased
performance. The results show a difference in WER of the
Hamming code compared to unprotected transmissions. The
results showed that special consideration is in order when
the disturbance frequency is an integer multiple of the bit
frequency. In practice this can arise as harmonics of the
sending frequency of another, similar device. At this point,
for large disturbances, the code words are easily transformed
into all-one or all-zero data words. Those code words are
then regarded as correct by the receiver. The effectiveness
of the implemented Hamming code significantly drops under
these conditions. Moreover, those harsh disturbances introduce
multiple bit errors, to which a Hamming code is not the best
solution. Harsh electromagnetic environments clearly show the
limits (and operational conditions) of the Hamming code. In
operational systems, increased efforts are needed to protect
the transmitted data from corruption. Examples thereof are
Double or Triple Error Correction (DEC/TEC) Codes, possibly
supplemented with interleaving of data.

VI. FUTURE WORK

This work only considered one specific data stream as noted
in Equation (9). In future work, the same comparisons will need
to be made to verify the claims are applicable to all data sets.

Secondly, more ranges for Femi and Fbit will be evaluated.
Building on the increased research of Femi and Fbit, WER-
curve characterization will be attempted.

As a third option, more ECCs can be simulated and verified.
Migrating beyond Hamming codes, multi-bit ECCs are to be
simulated. Line coding is another variable to consider. Besides
NRZ-L, a multitude of encoding schemes exist, for example
Manchester-encoding.
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