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Abstract 

Sidereal filtering is a technique used to reduce errors caused by multipath in the 

positioning of static receivers via the Global Positioning System (GPS). It relies upon 

the receiver and its surrounding environment remaining static from one day to the 

next and takes advantage of the approximately sidereal repeat time of the GPS 

constellation geometry. The repeating multipath error can thus be identified, usually 

in the position domain, and largely removed from the following day. We describe an 

observation-domain sidereal filter algorithm that operates on undifferenced 

ionospheric-free GPS carrier phase measurements to reduce errors caused by 

multipath. It is applied in the context of high-rate (1 Hz) precise point positioning 

(PPP) of a static receiver. An observation-domain sidereal filter (ODSF) is able to 

account for the slightly different repeat times of each GPS satellite, unlike a position-

domain sidereal filter (PDSF), and can hence be more effective at reducing high-

frequency multipath error. Using eight-hour long datasets of GPS measurements 

from two different receivers with different antenna types and contrasting 

environments, the ODSF algorithm is shown overall to yield a position time series 5-

10% more stable, in terms of Allan deviation, than a PDSF over nearly all time 

intervals below about 200 s in length. This may be particularly useful for earthquake 

and tsunami early warning systems where the accurate measurement of small 

displacements of the ground over the period of just a few minutes is crucial. 

However, the sidereal filters are also applied to a third dataset during which two short 

episodes of particularly high-frequency multipath error were identified. These two 

periods are analyzed in detail and illustrate the limitations of using sidereal filters with 

important implications for other methods of correcting for multipath at the observation 

level.  
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Introduction 

Global Navigation Satellite Systems (GNSS) are used in earthquake monitoring and 

tsunami warning systems, e.g. the GPS Real Time Earthquake and Tsunami 

(GREAT) Alert System (www.gdgps.net/products/great-alert.html) and the Real-time 

Earthquake Analysis for Disaster Mitigation Network (READI) (www.sopac.ucsd.edu). 

For this application, GNSS carrier phase measurements are recorded at a static 

receiver antenna continuously at 1 Hz or above. However, the ability of GNSS to 

measure centimeter-level ground displacements is limited by several error sources, 

one of which is multipath interference. Multipath can introduce phase measurement 

errors at frequencies and amplitudes similar to seismic waves (Larson et al 2007). 

Such errors alias into position calculations and can be misinterpreted as seismic 

waves and vice versa. Also, a small centimeter-level permanent displacement of an 

antenna caused by the earthquake is more likely to be obscured by these errors. 

 

Sidereal filtering, introduced by Bock (1991) and Genrich and Bock (1992), is a 

method for mitigating the effect of multipath interference on GPS carrier phase 

measurements at stationary receiver antennas. It takes advantage of the fact that 

GPS satellites have an orbital period of about 11 hours 58 minutes, completing two 

orbits for every rotation of the earth about its axis. For a static receiver, this means 

the geometry relating the receiver antenna, surrounding reflectors and satellites will 

repeat approximately every sidereal day. Hence, as multipath error is highly 

dependent on this geometry, then these errors should repeat every sidereal day. 

Assuming the antenna, its surrounding environment and the reflective properties of 

that environment remain static, the repeating multipath error pattern can hence be 

empirically derived and then removed, often in the position domain. Sidereal filtering 

can theoretically reduce any error source that repeats every sidereal day. Hence, 

particularly in precise applications, imperfections in antenna phase center models 

can also be mitigated. 

 

Examples in the literature that apply sidereal filtering in the position (or coordinate) 

domain are Elósegui et al (2006) and Bilich et al (2008). These apply the technique 

in the positioning of a receiver antenna relative to at least one other static receiver, 

rather than precise point positioning (PPP), which is a technique to calculate the 

position of a receiver antenna to an accuracy of a few centimeters using a single 

receiver and precise satellite clock and orbit data (Zumberge et al 1997). Many apply 

the modified sidereal filtering (MSF) technique proposed by Choi et al (2004). Prior to 

this influential paper, the repeat period used for sidereal filtering was one sidereal 

day, 23 h 56 m 4 s (86,164 s). Choi et al (2004) pointed out that the repeat time 

varied for each GPS satellite and could be calculated using the GPS broadcast 

ephemeris and Kepler’s Third Law. The average repeat time for the whole 

constellation is actually around 23 h 55 m 55 s (86,155 s). The reason for this is that 

it is an operational constraint for GPS that the ground track of each satellite is fixed. 

For this to be achieved, the orbital period is set to be roughly four seconds faster 

than a half-sidereal period. This compensates the westward drift of the longitude of 



the ascending node caused by the earth’s oblateness (Choi et al 2004). Since this 

period is no longer strictly sidereal, the name modified sidereal filtering (MSF) is 

used. The difference between these two ‘sidereal’ periods is only about nine 

seconds. However, for high-accuracy positioning using carrier phase measurements 

at high rates, say 1 Hz, an accurate repeat time is important because multipath error 

can change significantly over just a few seconds. The figure of 86,155 seconds is 

only an overall mean value of GPS ground track repeat periods (with outliers 

excluded). Each satellite has its own repeat period, usually within five seconds of this 

value. Occasional exceptions occur when satellites are maneuvered, causing the 

orbital period to differ from this nominal value by up to tens of seconds. 

 

Another method of calculating a repeat period appears in Axelrad et al (2005): 

Considering one GPS satellite at a particular epoch, an epoch on the preceding day 

is found that most closely corresponds to the satellite occupying the same position in 

the sky in terms of azimuth and elevation in the receiver's local topocentric (east-

north-up) coordinate system. Such a search is executed by maximizing the dot-

product of the two receiver-satellite unit vectors. This repeat time may differ from the 

previous method, which used Kepler’s Third Law, because of parallax (Agnew and 

Larson 2007), i.e. it should be more relevant for an observer on the earth’s surface 

rather than a hypothetical observer at the center of the earth. This repeat time is 

named aspect repeat time (ART) by Agnew and Larson (2007). The ‘constellation 
repeat time’ is then calculated as the mean of all satellite repeat times. However, as 

the paper points out, it seems a shame to lose the advantages of accurately 

calculating the repeat time of each satellite only to combine them together to find a 

‘constellation repeat time’ and apply multipath corrections in the position domain. 

One solution to this would be to apply the sidereal filter in the observation domain, 

i.e. measurement residuals from, say, the previous day are used to derive 

corrections to the measurements on the ‘current’ day. Lau (2012) and Ragheb et al 

(2007) found no significant difference between applying corrections for multipath 

error in the position domain and the observation domain, although these studies 

used double-differenced measurements (Leick et al 2015). Complications can arise. 

For example, all double-differenced measurements, and hence double-differenced 

measurement residuals, would each be associated with two satellites (and two 

receivers) and therefore two different ground-track repeat periods. Hence, to apply a 

rigorous sidereal filter to a series of double-differenced measurements, should the 

average of the two repeat times be used? Should the repeat time of the satellite at 

the lower elevation be used since that satellite is more likely to be affected by 

multipath? The answers to these questions are not obvious. Ragheb et al (2007), for 

example, determines the shift period required to produce the maximum correlation of 

the double-differenced measurement residuals from both days. 

 

In PPP, this complication can be avoided because all measurements are usually 

undifferenced, although some studies, such as Geng et al (2013), employ PPP with 

single-differencing across satellites to remove receiver hardware delays and clock 

errors. Sidereal filtering has been applied in PPP scenarios, but these have largely 

taken place in the position domain, e.g. Takasu (2006), Shi (2012) and Hung and 

Rau (2013). Very few studies consider observation-domain sidereal filtering in PPP. 

One such example appears in Reuveni et al (2012), but is applied to GPS data 



recorded at a rate of only once every thirty seconds in order to measure sub-daily 

seismic strain. 

 

Sidereal filtering in the observation domain also offers advantages during satellite 

outages. For example, if an outage occurs on one satellite, corrections for multipath 

error should still be valid for all other visible satellites, whereas corrections applied in 

the position domain would not be valid. However, we do not assess this advantage 

here. Larson et al (2007) addressed this difficulty by pre-editing the input 

measurement files to ensure that the same satellites were visible each day. 

 

One alternative to sidereal filtering would be to map PPP phase residuals onto a 

‘skyplot’ consisting of ‘cells’ of a few degrees in elevation and azimuth as 

demonstrated in Granström (2006) and Fuhrmann et al (2014). The mean value of 

each cell could then used as a correction to satellite measurements within that cell. 

However, as will be seen in the analysis below, these cells are too large to capture 

the effects of high-frequency phase multipath errors. In this study, ‘high-frequency 

multipath’ refers to oscillatory multipath errors with periods under about 1,000 s.  

 

We use a ‘dot-product’ algorithm (described below) derived from the ‘aspect repeat 
time’ method (Axelrad et al 2005; Agnew and Larson 2007) to calculate individual 

GPS satellite repeat times and apply it to observation-domain sidereal filtering of 

undifferenced ionospheric-free phase measurements in high-rate 1 Hz precise point 

positioning. The filter performance is compared with other observation-domain 

sidereal filter variants and a position-domain sidereal filter over two 8-hour datasets 

sourced from different receivers. The ability of the sidereal filters to remove high-

frequency multipath error is then assessed by applying them to two example 

datasets spanning fifteen minutes each and using Allan deviation to measure stability 

of the resulting position time series. 

Observation-domain sidereal filter (ODSF) algorithm 

To best describe the observation-domain sidereal filter (ODSF) algorithm, a simple 

arbitrary example is used. Assume that two sets of GPS data, collected on adjacent 

days, are available: Day 1 and Day 2. The ‘true’ earth-centered earth-fixed (ECEF) 

position of the receiver on Day 1 is already known, either by processing Day 1 to 

yield an average position, or by some other method. The objective is to remove the 

effect of multipath interference from Day 2 by applying a sidereal filter. This filter will 

use information from Day 1 to compute the necessary multipath corrections. 

 

For this study, only GPS ionospheric-free phase measurements, denoted ΦIF (in 

units of meters), are used. These are formed by using a linear combination of GPS 

L1 and L2 phase measurements. However, measurement noise is increased 

threefold and phase multipath errors can become larger: if phase multipath 

theoretically cannot exceed a quarter of a wavelength (Misra and Enge 2001), i.e. 

4.8 cm and 6.1 cm for the L1 and L2 carriers respectively, then multipath error for 

ionospheric-free phase observations can reach a theoretical maximum of 21.5 cm. In 

practice, phase multipath errors of this magnitude are unlikely, but phase multipath 

does indeed become more significant. Code measurements are not used in the 



experiments below other than to calculate an approximate position to initiate the 

Kalman filter algorithm. 

 

The measurement model used for an ionospheric-free phase measurement of a 

signal from a satellite 𝑠 at receiver 𝑟, hΦIF,𝑠, is defined as follows: 

hΦIF, s = 𝜌𝑠 + 𝑐𝛿𝑡𝑟 + 𝐴𝑠 + m𝐺(𝜃𝑠)𝑇𝑧𝑤𝑑 + m𝐺(𝜃𝑠)cot⁡𝜃𝑠[𝐺𝑁 cos 𝜓𝑠 + 𝐺𝐸 sin 𝜓𝑠] (1) 

where 𝜌𝑠 is the modeled geometric range between the receiver antenna reference 

point and the center of mass of satellite s in meters, c is the speed of light 

(299,792,458 m/s), 𝛿𝑡𝑟 is the receiver clock offset in seconds, 𝐴𝑠 is the non-integer 

phase ambiguity of satellite s in meters, 𝑇𝑧𝑤𝑑 is the zenith wet tropospheric delay in 

meters, m𝐺 is the Global Mapping Function (GMF) (Boehm et al 2006) used to 

account for the increase in tropospheric delay when the satellite is not at the zenith, 𝜃𝑠, 𝜓𝑠 are receiver-satellite elevation and azimuth angles, respectively, 𝐺𝑁, 𝐺𝐸 are 

the north and east troposphere gradients, respectively, and 𝐱 is a vector of Kalman 

filter states that are to be estimated, i.e. 𝐱 = (𝑥𝑟 𝑦𝑟 𝑧𝑟 ⁡⁡⁡⁡𝑐𝛿𝑡𝑟 𝑇𝑧𝑤𝑑 𝐺𝑁 ⁡⁡⁡⁡𝐺𝐸 𝐴1 ⁡⁡…⁡⁡𝐴𝑚)T
  (2) 

 

where 𝑥𝑟, 𝑦𝑟, 𝑧𝑟 are the coordinates of the reference point of the receiver antenna 

and 𝐴1 ⁡… ⁡𝐴𝑚 are the non-integer phase ambiguities, in meters, of 𝑚 visible satellites. 

The hydrostatic (or ‘dry’) tropospheric delay has been removed using model UNB3 

(Collins 1999). Other models applied include satellite and receiver antenna phase 

center offsets from the International GNSS Service (IGS), phase wind-up (Wu et al 

1993), solid earth tides (IERS Conventions 2010), ocean tide loading (Lyard et al 

2006) calculated by the Onsala Space Observatory (using Finite Element Solution 

FES2004 and the solid earth center as the reference frame origin) and polar tides 

(Kouba 2009) using data from the Center for Orbit Determination in Europe (CODE). 

Satellite coordinates and clock offsets from GPS system time are assumed to be 

known quantities because they are interpolated from precise ‘final’ satellite orbit and 

high-rate 5-second epoch rate clock files from the CODE. Of course, for a warning 

system, real-time clocks and orbits would have to be used. However, ‘final’ products 

are used here in order to show as fully as possible the effectiveness of the sidereal 

filter algorithms in removing high-frequency phase multipath errors. 

 

The PPP algorithm used to estimate the coordinates of a receiver antenna is based 

upon a Kalman filter (Groves 2013) of which the system update equations are 

defined as: 𝐱̂𝑘− = 𝚽𝐱̂𝑘−1+      (3)   𝐏𝑘− = 𝚽𝐏𝑘−1+ 𝚽T + 𝐐    (4)   

where 𝐱̂𝑘− is the time-propagated estimate of state vector at epoch 𝑘, 𝐱̂𝑘−1+  is the 

estimate of the state vector at epoch 𝑘 − 1 following a measurement update, 𝐏𝑘− is 

the time-propagated estimate of the error co-variance matrix at epoch 𝑘, 𝐏𝑘−1+  is the 

estimate of the error co-variance matrix at epoch 𝑘 − 1 following a measurement 

update and 𝐐 is the system noise co-variance matrix which is the same for every 

epoch. 

 

This algorithm is designed to estimate the position of a static or near-static receiver, 

so the predicted state vector is always assumed to be identical to the estimated state 



vector at the previous epoch, i.e. 𝐱̂𝑘− = 𝐱̂𝑘−1+ . Hence, considering (3), the state 

transition matrix is simply the identity matrix: 𝚽 = 𝐈. Equation (4) also simplifies to 𝐏𝑘− = 𝐏𝑘−1+ + 𝐐. 

The Kalman gain matrix 𝐊𝑘 and the extended Kalman filter measurement 

update equations (Groves 2013) are defined as: 𝐊𝑘 = 𝐏𝑘−𝐇𝑘T(𝐇𝑘𝐏𝑘−𝐇𝑘T + 𝐑𝑘)−1
   (5)   𝐱̂𝑘+ = 𝐱̂𝑘− + 𝐊𝑘[𝐳𝑘 − h(𝐱̂𝑘−)]   (6)   𝐏𝑘+ = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘−    (7)   

where 𝐏𝑘+ is the estimate of the error covariance matrix at epoch 𝑘 following a 

measurement update, 𝐑𝑘 is the measurement noise covariance matrix at epoch 𝑘, 𝐱̂𝑘+ is the estimate of the state vector at epoch 𝑘 following a measurement update, 𝐳𝑘 

is a vector of measurements at epoch 𝑘 and h is the vector of measurement 

functions of the state vector – one for each visible satellite – as defined in (1). 𝐇𝑘 is 

the measurement matrix at epoch 𝑘 where 𝐇𝑘 = 𝜕h(𝐱)𝜕𝐱 |𝐱=𝐱̂𝑘− 

     (8)   

All ionospheric-free phase observations are assumed to have a standard deviation of 1 sin 𝜃⁄  × 0.015 m, but satellites below an elevation angle of 10° are excluded. 

 

The measurements from Day 1 are processed using this Kalman filter algorithm, but 

with the position states held fixed to the ‘true’ ECEF position of the receiver antenna 

and their respective standard deviations and noise power spectral densities (PSD) 

set to zero. For each epoch, the resulting ionospheric-free measurement residuals, 

defined as 𝛿𝐳𝑘+ = 𝐳𝑘 − h(𝐱̂𝑘+), are time-tagged and stored in a database. The time 

series of phase residuals for each satellite are smoothed by a low-pass Butterworth 

filter with a cut-off frequency of 0.2 Hz. The purpose of this is to avoid the 

amplification of measurement noise when they are later applied as measurement 

corrections and yet preserve any short-period (5-20 s) multipath effects in those 

corrections. The resulting time series are assumed to largely represent the receiver-

satellite range error caused by phase multipath interference although, of course, 

errors in the estimation of the state vector such as the receiver clock offset, 

troposphere delay and phase ambiguities will also alias into the residuals and hence 

the multipath corrections. They will also include those errors that have not been 

explicitly modeled such as higher-order ionospheric effects. 

 

The measurements from Day 2 are then processed but with the position states no 

longer fixed. For each measurement 𝑧𝜏 at time 𝜏, a correction for multipath error 𝛿𝑧𝜏−𝑇 from the database is applied that most closely corresponds with the epoch that 

preceded the measurement by approximately one sidereal period 𝑇. We use two 

methods to find a precise time shift: 

1. One method is to choose a time shift that maximizes the dot-product of two 

receiver-to-satellite unit vectors associated with the current measurement and the 

potential correction that was derived from data gathered on the previous day. This 

approach is described in (Axelrad et al 2005) and is similar to the ‘aspect repeat time’ 



method described in (Agnew and Larson 2007). This type of ODSF will hereafter be 

referred to as the ‘dot-product’ (DP) ODSF. 

2. Another method is to calculate a repeat period using two values found in 

the GPS broadcast ephemeris for each satellite, specifically the square-root of the 

semi-major axis 𝑎𝑠 and the correction to mean motion 𝑛𝑐, and Kepler's Third Law 

(Choi et al 2004). According to Agnew and Larson (2007), this repeat period 𝑇 can 

be calculated as follows: 𝑇 = 4𝜋 𝑛⁄ ⁡⁡⁡⁡where⁡⁡⁡⁡𝑛 = √𝐺𝑀𝑎𝑠−3 + 𝑛𝑐  (9)   

where 𝐺𝑀 is the standard gravitational parameter for earth, 3.986004 × 1014 m3s-2. 

This type of ODSF will hereafter be referred to as the ‘broadcast ephemeris’ (BE) 
ODSF. 

A position-domain sidereal filter (PDSF) is also used. Measurements from Day 1 

and Day 2 are processed separately by the PPP Kalman filter. The position error 

time series from Day 1 is smoothed using a low-pass Butterworth filter (0.2 Hz cut-

off) to form time-tagged corrections. Each of these corrections is paired with a 

position solution from Day 2 using a time shift corresponding to the mean repeat 

period of all the satellites in view at that epoch. This period was relatively easy to 

calculate and could potentially be applied to real-time processing. Another method to 

determine the repeat time would be to choose one that produces the best correlation 

between the PPP position time series from the adjacent days over periods of a few 

hundred seconds (for example). Such a method would allow for the fact that not all 

signals at any one time are equally affected by multipath interference. However, this 

method is not applied here. 

Overall performance 

In order to assess the overall performance of each type of sidereal filter, each was 

applied to the data processing from two different continuously operating GPS 

receivers over an extended period of time during which conditions may be 

considered ‘normal’, i.e. a period of time was deliberately chosen where GPS 

measurements were free from satellite outages and no visible satellites had highly 

anomalous repeat periods. An analysis is made using data from the continuously 

operating GPS receivers named ‘UEL’ and ‘UCL’ operating at the University of East 

London and the University College London respectively. They form part of the Leica 

Geosystems ‘SmartNet’ real-time kinematic GPS network in the United Kingdom. 

These receivers have different antenna types and have contrasting surrounding 

environments. The overall performance of the sidereal filters is assessed by 

analyzing the resulting position time-series using Allan deviation as a performance 

measure. 

 

For this trial, RINEX files from September 2 and 3, 2013 were used, each containing 

24 hours of 1 Hz GPS code and phase measurements, with each dataset starting at 

midnight. Receiver UEL is equipped with a Leica AX1202GG ground plane antenna 

and, as can be seen in Figure 1, is sited close to a roof. In contrast, station UCL is 

equipped with a Leica AT504GG choke-ring antenna and sited in a more exposed 

rooftop location in an urban area and is not close to such a large single planar 

reflector. Reflected signals are more likely than at UEL to reach the antenna via 

horizontal ‘far-field’ reflectors such as surrounding buildings, causing shorter-period 

multipath errors (Larson et al 2007). For both receivers, all 24 hours of GPS phase 



measurements from September 3 were processed using the PPP algorithm, as 

described in section 2, without applying any type of sidereal filter. Satellite 

pseudorandom noise code (PRN) 4 was excluded from all processing to ensure that 

satellite availability was the same on both days. The measurements were processed 

three more times: once with each type of ODSF and once with a PDSF applied as 

described above. An eight-hour period, 14:00 to 22:00, was chosen for analysis. This 

was the longest continuous period of time available for analysis for which the position 

time series was free of spurious signals originating from the precise clock data. For 

the sake of brevity, only the results from one position dimension, easting in the 

following case, are shown. The other components, northing and height, yield similar 

results and lead to the same conclusions. 

 

Figure 2 shows the easting positioning errors over this time period. Notice firstly that 

station UEL exhibits more in the way of higher-frequency errors than station UCL. 

This is most likely to be because of where the UEL antenna is sited, as mentioned 

above, but may also be due in part to the design of the antenna at UEL being not as 

resistant to multipath interference as the choke-ring antenna at UCL. Hence, while 

the sidereal filters have generally been successful in removing the higher-frequency 

errors (i.e. with periods under about 1,000 s) at both stations, the effect is much more 

obvious at station UEL, where each of the time series associated with the sidereal 

filters appear much ‘smoother’ than those associated with standard PPP processing. 

This is understandable: a sidereal filter is likely to be more effective when acting on a 

dataset sourced from a receiver placed in a relatively high-multipath environment. 

Conversely, if GPS measurements have not been affected by strong multipath 

signals, then a sidereal filter will not yield a dramatic improvement. 

 

Notice also that the PDSF has struggled to fully remove the higher-frequency 

positioning errors at station UEL between 18:00 and 19:30 whereas both of the 

ODSFs have had more success. This is because one of the satellites whose 

measurements are affected by strong phase multipath interference has a repeat time 

of 86,148 s. This differs significantly with the mean repeat time used by the PDSF of 

around 86,154 s. The ability of the sidereal filters in removing another example of 

high-frequency multipath error is examined later in this article. 

 

Considering the eight-hour time period as a whole, the ODSFs have had a minimal 

impact on accuracy whereas the PDSF has at least improved the root-mean-square 

error (RMSE) of the UEL easting time series by 56%. Notice also that the 

performance of the ODSFs are nearly identical to each other. The poorer 

performance of the ODSFs in terms of accuracy is likely to be because the 

assumption that the Kalman filter residuals produced by standard PPP processing 

resembling multipath errors becomes less valid for lower-frequency multipath errors. 

These errors are more likely to be absorbed by slowly-varying Kalman filter states 

such as the wet troposphere zenith delay and the phase ambiguities and so are less 

likely to appear in the residuals, and it is these residuals that are used to form the 

multipath corrections for the ODSFs. Also, as the multipath corrections are being 

applied to the measurements, any low-frequency component of those corrections 

may also be absorbed by these slowly-varying Kalman filter states, which might 

explain why the ODSFs are not very effective at increasing stability in the position 



time series over long time intervals. A PDSF on the other hand applies multipath 

corrections outside of the Kalman filter algorithm and so any low-frequency multipath 

corrections cannot alias into the Kalman filter states. However, all of the sidereal 

filters are noticeably more successful at increasing stability over much shorter time 

intervals, up to the order of a few minutes. 

 

To quantify this increase in stability, Allan deviation is used (Allan 1966). Allan 

deviation has been used to analyze position time series in Dach et al (2009) and 

Friederichs (2010). It is a measure of signal stability across a time interval and can 

be used to identify different types of noise process (such as white or flicker noise and 

random walk) present in a signal. In this article, ‘overlapping’ Allan deviation is used 

rather than Allan deviation due to its superior performance over long averaging 

intervals. For a more comprehensive introduction to stability analysis using Allan 

deviation, the reader is recommended to refer to Riley (2008), Ferre-Pikal and Walls 

(2005) or Friederichs (2010). 

 

Figure 3 shows the Allan deviation values across time intervals (𝜏-values) between 

1 s and nearly 6,000 s (almost 1 hour and 40 minutes) corresponding to the eight-

hour time series for UEL and UCL shown in Figure 2. When comparing these two 

figures, it is immediately clear that there is a difference between the impact that the 

sidereal filters have on the respective position error time series. It has already been 

noted that the standard PPP position solution from station UEL exhibits more in the 

way of higher-frequency positioning errors. Evidence for this can be seen in the black 

Allan deviation curve corresponding with standard PPP at UEL with the increase in 

gradient to positive values between time intervals of about 10 s and 40 s indicating 

that the dominant noise process over such time intervals cannot be considered 

stationary. In contrast, there is no such increase in Allan deviation for station UCL: 

the Allan deviation values for averaging intervals larger than about 10 s for standard 

PPP processing are all much lower than those at UEL, indicating that station UCL is 

less prone to multipath interference. However, all types of sidereal filter have 

successfully reduced Allan deviation values (i.e. increased the stability of the position 

time series) over intervals of between 10 s and about 900 s at UCL, albeit only 

slightly. 

 

Nevertheless, in both cases, both types of ODSF have marginally outperformed the 

PDSF between time intervals of about 10 s and 1,000 s (about 17 minutes) as 

indicated by the lower Allan deviation values. Notice also that the gradient of the 

Allan deviation curves corresponding with the ODSFs are consistently close to −1 

across all time intervals between about 10 s and 500 s, indicating that the dominant 

noise process in the position time series across time intervals of this size is close to 

white or flicker noise. 

 

Notice also that both plots in Figure 3 indicate that the time series yielded by the 

ODSFs are less stable over time periods longer than about 1,000 s than that 

provided by the PDSF. As mentioned above, if the multipath corrections are applied 

at the observation level, the low-frequency component of those corrections are more 

likely to alias into the slowly-varying Kalman filter states such as the wet troposphere 

zenith delay and phase ambiguity states. 



 

Figure 4 can be used to quantify the improvement in stability of the time series output 

by the ODSFs over those output by the PDSF. It shows the percentage improvement 

(i.e. percentage reduction) in Allan deviation given by the ODSFs relative to that 

resulting from the PDSF shown in Figure 3. Notice first of all that both of the ODSFs 

show an improvement in stability of over 5% for nearly all time intervals below about 

200 s in length. However, the greatest improvement in stability differs between the 

two receivers. At UEL (Figure 4, top panel), the greatest improvement in stability of 

up to 16% occurs over time intervals of around 100 s whereas at UCL, a similar 

improvement occurs over much smaller intervals of around 10 s. Notice also that 

there does not seem to be much difference in performance at all between the two 

types of ODSF at UEL, but there is a slight advantage – no more than a couple of 

percentage points – to using a DP ODSF over a BE ODSF at UCL. UCL is more 

susceptible to short-period ‘far-field’ multipath interference. Of course, the repeat 

times calculated by the two methods are very similar to each other for each satellite. 

Indeed Figure 5, which is similar to a figure that appears in Larson et al (2007), 

shows that they agree to within just three seconds of each other for all satellites – an 

observation also made by Agnew and Larson (2007). However, from Figure 4 

(bottom panel), it appears that these small differences have on average been 

influential in improving the performance of the DP ODSF, albeit only slightly. 

 

So far, the analysis has focused on the ‘average’ performance of the sidereal filters 

over a long period of time. This would suggest that if a user is interested in analyzing 

relatively short time intervals of just a few minutes for monitoring purposes, then the 

use of an ODSF would be of greater benefit than a PDSF, although of course real-

time satellite clock and orbits would have to be used. However, there are some 

important scenarios to consider if an ODSF is to be applied in this type of monitoring. 

One of these scenarios is the ability of the sidereal filters to remove the effect of 

strong high-frequency multipath where the choice of type of ODSF could be 

influential. 

High-frequency multipath 

The periodic positioning errors caused by multipath can be very similar to, for 

example, the movement caused by surface waves emanating from an earthquake 

epicenter (Larson et al 2007). A sidereal filter, unlike band-pass filtering for example, 

can in theory remove high-frequency positioning errors caused by multipath 

interference while leaving any true displacements intact. 

 

Figure 6 (top panel) shows errors in northing resulting from different processing 

modes over a 15-minute period on March 27, 2012 at station UCL. For this particular 

receiver, this is a rare example of very-short period errors caused by multipath 

interference. This small part of a 24-hour position time series was chosen as an 

example of exceptionally high-frequency multipath error – in this case approximately 

0.067 Hz (15-second period) most likely caused by a far-field reflector such as a tall 

building. It is conceivable, if this station alone was to be used for monitoring 

purposes, that the brief period of multipath error in the standard PPP time series 

could be misinterpreted as real movement. Both of the ODSFs are very successful at 

reducing the high-frequency multipath error and there seems to be little difference 



between the two. This is confirmed by Figure 7 (top panel): all types of sidereal filter 

have been successful at reducing Allan deviation, i.e. increasing stability, over nearly 

all averaging intervals. However, the oscillatory pattern visible in the PDSF Allan 

deviation curve indicates that 15-second periodic multipath error, indicated by the 

first ‘dip’ in the curve, still remains while the curves for the two ODSFs have 

gradients close to −1 over all averaging intervals between 4 s and 80 s indicating 

that the position time series is dominated by white or flicker noise over these time 

intervals. 

 

The above example showed the ODSF algorithms performing very well during a 

period of exceptionally high-frequency multipath. However, this is not always the 

case. Figure 6 (bottom panel) shows errors in easting resulting from different 

processing modes over another 15-minute period earlier on the same day. This time 

the sidereal filters do not seem to have made much of an improvement. In fact the 

PDSF has resulted in a worsening of stability. In contrast, the ODSFs have led to 

reduced Allan deviation values but clearly some of the periodic (approximately 22 s) 

multipath error remains. Note also that the BE ODSF outperforms the DP ODSF. 

 

So why do the ODSFs perform so well between 23:05 and 23:20 but not so well 

between 18:20 and 18:35? An explanation perhaps lies in Figure 8. Here we see the 

smoothed ionospheric-free residuals for satellites G31 and G12 output from the PPP 

processing runs from five consecutive days (March 26–30, 2012) where the position 

states in the Kalman filter state vector have been fixed to their true values. It is the 

multipath interference affecting the phase measurements of the signals from these 

two satellites that cause the high-frequency multipath errors seen in Figure 6. These 

smoothed phase residuals have been color-coded by value and mapped onto a 

skyplot by azimuth and elevation. Notice that only very small ‘patches’ of sky are 

shown. 

 

Notice the patterns formed by the color-coded residuals in Figure 8. Harris (2002) 

uses the term ‘banding’ to describe this pattern. In the case of satellite G31, it forms 

what appear to be parallel lines that are roughly orthogonal to the path or ‘skytrack’ 
taken by the satellite across the sky. Notice also that each skytrack is separated from 

the skytrack of an adjacent day by a very small angle of about 0.011°. Marked on this 

figure is the smoothed phase residual value for one particular epoch chosen as an 

example: 23:13:19 on March 27, 2012. Also marked is the location of the phase 

residual value found by both the DP ODSF and BE ODSF algorithms that is used as 

a correction. In this particular instance, both algorithms have chosen the same 

correction value, which means the aspect repeat time and the period calculated 

using elements from the broadcast ephemeris are identical. 

 

Another example epoch is shown in the bottom panel of Figure 8 together with the 

respective corrections found by the two ODSF algorithms. Notice here that neither of 

the two corrections are optimal, although the value of the correction provided by the 

BE ODSF algorithm is a little more appropriate which would account for its slightly 

better performance exhibited in Figures 6 and 7 (lower panels). The reason for this is 

because the ‘banding’ pattern is not orthogonal to the path taken by satellite G12 

across the sky. Therefore, the corrections found by the DP ODSF algorithm in 



particular are out of phase with the error pattern of the ‘current’ day, and this is 

accentuated by the slightly larger angular separation between adjacent skytracks of 

0.016°. 

 

The bottom panel of Figure 8 also has implications for methods that use multiple 

days to form the sidereal multipath corrections, such as Langbein (2004) and 

Ragheb et al (2007) which use five and three days respectively. These studies use 

multiple days to form a mean correction (sometimes weighted) for multipath error to 

increase their robustness. However, again, the effectiveness of this method to 

remove high-frequency multipath depends on the distribution of the error due to 

multipath by satellite elevation and azimuth such as the ‘banding’ patterns seen 

above. If the angle that the satellite skytrack makes with the lines formed by a 

banding pattern is clearly not orthogonal, then any method that uses multiple days 

must take this into account. Otherwise, the ability of such a sidereal filter to remove 

high-frequency multipath error will be reduced further. 

 

One solution to this problem posed by high-frequency multipath is to do away with 

the need to calculate a repeat time altogether and adopt a method that maps 

measurement residuals onto a hemisphere by azimuth and elevation to form a 

hemispherical template of multipath corrections. Studies such as Wanninger and 

May (2000) and Harris (2002) right through to Fuhrmann et al (2014) and Moore et al 

(2014) have all mapped residuals by azimuth and elevation. However, most of these 

have stacked the residuals into cells of varying sizes, for example 1° × 1° in azimuth 

and elevation (Bilich and Larson 2008). These usually aim to capture the slowly 

oscillating multipath effect that often affects measurements from satellites at low 

elevation angles. However, even a cell size of 0.5° × 0.5° clearly will not capture 

high-frequency multipath effects such as those illustrated in Figure 8. Importantly, 

even lower-frequency multipath effects with a period of a few hundred seconds will 

be lost if such cell sizes are used. If the motivation is to reduce high-frequency 

multipath error, then one potential solution would be to process historical 

measurement data to produce a hemispherical scatter plot of individual 

measurement residuals, as presented in Figure 8, and then interpolate or extrapolate 

a correction for a particular azimuth and elevation as necessary. The author has not 

yet explored this. Nevertheless, stacking measurement residuals into cells as 

described is not suited to reducing high-frequency multipath error. 

Conclusions and discussion 

It can be seen from each of the examples above that the observation-domain 

sidereal filters (ODSFs) produce a more stable position time series than a position-

domain sidereal filter (PDSF) over time intervals of under about 1,000 s. Certainly, 

for nearly all time intervals under about 200 s, the time series output from the PPP 

algorithm after the application of a ODSF is 5-16% more stable, in terms of Allan 

deviation, than those output after applying a PDSF. For longer averaging intervals, 

the converse is true in these particular cases. This is likely to be due to the fact that if 

corrections are applied at the observation level, their low-frequency components are 

likely to be absorbed into the slowly-varying states such as the zenith wet 

tropospheric delay, thus illustrating a significant limitation of the ODSF algorithm. 

Despite this, it is likely to be of some benefit to earthquake and tsunami early 



warning systems since these require the accurate but prompt measurement of 

potentially small ground displacements. 

 

However, the ODSFs, although they have been shown to outperform a PDSF here, 

are not a panacea. During periods of high-frequency multipath, even the ODSFs may 

struggle to remove the effect of multipath. This is not because of an inability to 

calculate an accurate satellite repeat time, but because of the complicated nature of 

the multipath itself and the fact that the path that a satellite takes across the sky is 

not exactly the same from one day to the next. Indeed, the intricate patterns that 

multipath errors form when mapped by azimuth and elevation, such as those in 

Figure 8, can be highly influential in determining how effective the ODSFs are. So 

despite the application of such a filter, the risk would remain that errors due to 

multipath interference could still be misinterpreted as surface waves emanating from 

an earthquake epicenter and vice versa. Also, there is little difference between the 

two methods used here to calculate these repeat times: aspect repeat time and 

repeat times calculated using the broadcast ephemeris. If there is any difference in 

performance between the two types of ODSF, it is because of the complicated nature 

of the multipath error itself and not that one method is necessarily better than the 

other. 

 

These intricate patterns also have consequences for other methods of phase 

multipath mitigation not applied in this study. Methods that use multiple days to form 

the multipath corrections can potentially lose the ability to correct for high-frequency 

multipath, no matter how well the repeat times of satellites are calculated. Other 

methods stack phase multipath residuals into ‘cells’ of certain sizes in terms of 

azimuth and elevation and an average value is calculated for each. These cell sizes, 

even those of 0.5° × 0.5°, are too large to capture any patterns formed by high-

frequency multipath errors. 
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Figures 

 

 
Fig. 1 Antennas of continuously operating GPS receivers at UEL (top) and UCL 

(bottom) that were used in the experiment. These stations are part of the Leica 

Geosystems ‘SmartNet’ real-time kinematic GPS network in the United Kingdom. 

Photograph used with permission from Leica Geosystems. 

 

  



 

 
Fig. 2 Easting position errors between 14:00 and 22:00 on September 3, 2013 for 

stations UEL (top) and UCL (bottom) resulting from standard PPP processing and 

PPP processing with various types of sidereal filter applied. The root-mean-square 

error (RMSE) of each time series is shown. Each of the time series have been offset 

from each other by appropriate multiples of 100 mm for clarity. 

 

  



 

 
Fig. 3 Allan deviation plots of the easting position time-series at stations UEL (top) 

and UCL (bottom) between 14:00 and 22:00 on September 3, 2013 shown in 

Figure 2. 

 

  



 

 
Fig. 4 The percentage improvement (i.e. reduction) in Allan deviation values shown 

in Figure 3 as a result of applying an ODSF relative to applying a PDSF: Stations 

UEL (top) and UCL (bottom). 

 

  



 
Fig. 5 Orbit repeat times calculated using elements in the broadcast ephemeris (BE) 

and the ranges of repeat times calculated by the DP method for each GPS satellite 

PRN tracked at UCL on September 3, 2013. 

 

  



 

 
Fig. 6 Position errors on March 27, 2012, 23:05 – 23:20 (top), 18:20 – 18:35 (bottom) 

for station UCL resulting from standard PPP processing and PPP processing with 

various types of sidereal filter applied. (Each of the time series have been offset from 

each other by appropriate multiples of 50 mm or 30 mm for clarity). 

 

  



 

 
Fig. 7 Allan deviation plots of position time-series for station UCL on March 27, 2012 

shown in Figure 6: 23:05 – 23:20 (top), 18:20 – 18:35 (bottom) 

 

  



 

 
Fig. 8 Two skyplots of smoothed ionospheric-free phase measurement residuals 

associated with satellites G31 (top) and G12 (bottom) on March 26-30, 2012. (‘corrn.’ 
– ‘correction’) 
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