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Abstract—With the wide diffusion of smartphones and
their usage in a plethora of processes and activities, these
devices have been handling an increasing variety of sensitive
resources. Attackers are hence producing a large number of
malware applications for Android (the most spread mobile
platform), often by slightly modifying existing applications,
which results in malware being organized in families.

Some works in the literature showed that opcodes are
informative for detecting malware, not only in the An-
droid platform. In this paper, we investigate if frequencies
of ngrams of opcodes are effective in detecting Android
malware and if there is some significant malware family
for which they are more or less effective. To this end,
we designed a method based on state-of-the-art classifiers
applied to frequencies of opcodes ngrams. Then, we experi-
mentally evaluated it on a recent dataset composed of 11120
applications, 5560 of which are malware belonging to several
different families.

Results show that an accuracy of 97% can be obtained on
the average, whereas perfect detection rate is achieved for
more than one malware family.

I. INTRODUCTION

In recent years, mobile phones have become the main

computing and communication devices. With the increas-

ing number of capabilities these devices have been ac-

quiring, they represent now the most used way to access

to the web and cloud resources. The growth rate in new

mobile malware is far greater than the growth rate of new

malware targeting PCs [8].

New kinds of malware continuously emerge at a very

fast pace, refining more and more the method of the attack

and the system for obtaining a tangible gain (money, most

of times) from the attack. A malware that is plaguing

devices in recent days is the ransomware [5], which

encrypts data stored on the device and holds it for ransom.

The information is then released only after the victim pays

the required amount, in bitcoin.

Protecting smartphones is getting more and more im-

portant, as these devices are used for accessing sensitive

resources: for instance, with the diffusion of the bring-

your-device policy [3], enterprise infrastructures will likely

become a sensible target for mobile malware. Moreover,

the smartphones will be the access point for controlling

intelligent houses and cars, making electronic payments,

and operating with the personal bank account.

In the mobile threat landscape, malware writers are

focusing on the Android platform. This is not surprising:

Android holds 84.4% of the total market share [4] in

smartphones and tablets, and Gartner [7] shows that the

worldwide sales of smartphones to end users totaled

301 million units in the third quarter of 2014. A recent

survey [2] reports that Android in 2014 was the favourite

target for mobile threats with 294 new families and

variants discovered (trojan represents the main malware

type).

The mechanisms employed by attackers to diffuse mal-

ware can be grouped basically in three categories [40, 41]:

repackaging, attack upgrade, and drive-by downloads.

With repackaging, malware authors locate and down-

load popular applications, disassemble them, enclose ma-

licious payloads, re-assemble and then submit the new

applications to official and/or alternative Android markets.

Users could be vulnerable by being enticed to download

and install these infected applications.

A second technique, the so-called update attack, was

introduced to make harder the detection of malicious

payload. Specifically, it may still repackage popular appli-

cations, but instead of enclosing the payload as a whole,

it only includes an update component which will fetch

or download the malicious payloads at runtime. As a

result, static scanning of host applications to capture the

malicious payloads may fail.

The third technique applies the traditional drive-by

download attacks to mobile. Though they are not directly

exploiting mobile browser vulnerabilities, they are essen-

tially enticing users to download “interesting” or “feature-

rich” applications.

Unfortunately, current solutions to protect users from

new threats are still inadequate [1]. Current antimalware

are mostly signature-based: this approach requires that the

vendor be aware of the malware, in order to identify the

signature and send out updates regularly. Signatures have

traditionally been in the form of fixed strings and regular

expressions.

Using signature-based detection, a threat must be

widespread for being successfully recognized. In addition

to this, there exist several techniques to allow the mobile

malware to evade signature detection [34, 33], for instance

trivial changes in the code are usually enough, e.g., the

variables renaming into the malware code, as a study

demonstrated [26].

In the meantime, simple forms of polymorphic attacks

(i.e., malware that mutates at each infection) targeting

Android platform have already been seen in the wild [13].

There is another problem affecting the ability to detect

malware on Android platform. Antimalware software on



desktop operating system has the possibility of monitoring

the file system operations. In this way, it is possible to

check whether some applications assume a suspicious

behavior: for example, if an application starts to down-

load malicious code, it will be detected immediately by

the antimalware responsible for scanning the disk drive.

Android does not allow an application to monitor the file

system: any application can only access its own disk space;

resource sharing is allowed only if expressly provided by

the developer of the application: this allows applications

to download updates and run the new code without any

control by the operating system and by antimalware.

Google, with the introduction of Bouncer [27], tried to

mitigate the problem but attackers write malware which

becomes increasingly aggressive and is able to evade

easily the mechanism. Bouncer executes the application

in a sandbox for a fixed-time window before publish it on

the official market [6]: it is clear that if the malware action

happens over this interval time Bouncer can not detect the

malicious event.

As empirical experience reveals, attackers use to modify

some existing malware, by adding new behaviors or merg-

ing together parts of different existing malware codes. This

explains also why Android malware is usually grouped in

families: in fact, given this way of generating Android

malware, the codes belonging to the same family share

common parts of code and behaviors.

Starting from these considerations, it urges to study new

techniques in order to mitigate the problem.

In this paper, we investigate whether short sequences

of opcodes (i.e., opcode ngrams) are informative for

detecting Android malware. In particular, we focus on

the current scenario in which partitions of the malware

exist within which the applications share common parts

of code. We focus on opcodes because they are closely

related to the application code. Indeed, several works in

literature showed that opcodes frequency can discriminate

a malware software from a trusted one. Bilar [14] obtained

evidence that malware opcodes frequency distribution de-

viates significantly from trusted applications. While Han

et al. [21] show that malware classification using instruc-

tions frequency can be a useful technique for speeding up

malware detection. Rad and Masrom [31] used opcodes for

detecting obfuscated versions of metamorphic viruses. The

sequences of opcodes could represent a sort of signature

of the malware, which is always available and easily

extractable from the application to be analyzed. Moreover,

as this is a static technique, the analysis has the advantage

to be fast and easy to implement.

We designed a method for classifying Android appli-

cations as malware or trusted. Our method is built using

state-of-the-art classifiers and operates on frequencies of

opcode ngrams extracted from the applications. We ex-

perimentally applied the method to a dataset composed

of 5560 real mobile malware grouped in 179 families

and 5560 mobile trusted applications. We varied method

parameters in order to investigate about the method effec-

tiveness with respect to:1) how many consecutive opcodes

should be a ngram consists, and 2) how many different

ngrams should be considered.

The technique proposed in this paper seems to be

much more effective than the existing techniques of static

analysis discussed in literature, as we obtained perfor-

mances that are significantly better than those obtained

by the other techniques, that is 96.88% in the recognition

of malware. The detection rate among the most spread

Android malware families range from 88.6% to 100%.

The paper proceeds as follows: Section II discusses

related work; Section III describes and motivates our

detection method; Section IV illustrates the results of ex-

periments; finally, conclusions are drawn in the Section V.

II. RELATED WORK

In this section we review related literature in two areas:

use of opcodes to detect malware; and approaches specific

to the Android platform.

Five recent papers investigate the effectiveness of op-

codes for detecting malware or characterizing malware.

Bilar [14] proposes a detection mechanism for malicious

code through statistical analysis of opcodes distributions.

This work compares the statistical opcodes frequency

between malware and trusted samples, concluding that

malware opcode frequency distribution seems to deviate

significantly from trusted applications. Han et al. [21]

show that malware classification using instructions fre-

quency can be a useful technique for speeding up malware

detection. The major weakness of their method is the

rate of false positives. In this paper we investigate the

effectiveness of sequences of opcodes, instead of opcodes

frequency, in detecting malware.

In references [31, 32] the histograms of opcodes are

used as a feature to find whether a file is a morphed ver-

sion of another. Using a threshold-based method, authors

of [31] correctly classify different obfuscated versions of

metamorphic viruses; in reference [32] the authors obtain

a 100% detection rate using a dataset of 40 malware in-

stances of NGCVK family, 40 benign files and 20 samples

classified by authors as other virus files. Compared with

our technique, this two works cope with metamorphic

malware, while our domain of investigation is Android

malware.

Jerome and colleagues [22] proposed a detection mecha-

nism relying on opcode sequences combined with machine

learning techniques. They obtain lower performances of

detection than our technique and with sequences longer

than bi-grams.

Santos et al. [35] propose opcode ngrams to detect

malware using a dataset composed by 1000 malware and

1000 trusted computer applications. They conclude that

using 2gram the detection ratio is quite low, achieving a

maximum value of 69.66%, thus 2-grams do not seem

to be appropriate for malware detection. They achieved

best results for detection ratio using 4grams, getting a

maximum detection ratio of 91.25%. For the following

n values, detection ratio is lower than for n = 4, however,

the second best results are achieved with n = 8.



Also Liangboonprakong and colleagues [24] perform a

study on the effectiveness of using ngram to discriminate

malicious computer applications. They extract four dif-

ferent sizes of ngrams (with n ∈ {1, 2, 3, 4}) and study

three classification models (decision tree, artificial neural

network, and support vector machine). Using a malware

dataset of 12 199 binary files, grouped into 10 families,

they obtain the best result in terms of accuracy with

4grams (96.64%).

In the realm of static analysis, further techniques have

been recently proposed for detecting Android malware.

Canfora et al. [15] propose a method for detecting

mobile malware based on three metrics, which evaluate:

the occurrences of a specific subset of system calls, a

weighted sum of a subset of permissions that the appli-

cation requires, and a set of combinations of permissions.

They obtain a precision of 74% using a balanced dataset

composed by 200 trusted and 200 real malware applica-

tions.

Droid Detective [23] discriminates an Android applica-

tion by using a technique based on permission combina-

tion. The evaluation with a dataset of 1260 malware and

741 benign produces a detection rate respectively of 96%
and 88% for malware and benign recognition.

Liu and Liu [25] propose another permission-based

approach: they extract requested and used permissions and

make combinations of them to build a J48 classifier to test

their dataset containing 28 548 benign and 1563 malicious

applications. Their evaluation obtains a precision equal to

89.8%. The latter technique shows a rate of false positive

too high, while the former produce performances that are

much poorer than ours.

Sarma et al. [36] investigate the possibility of using both

the permissions an application requests, the category of the

application, and which permissions are requested by other

applications in the same category in order to inform users

about the risks of installing a mobile application.

Arp et al. [11] propose a method to perform a static

analysis of Android applications based on features ex-

tracted from the manifest file and from the disassembled

code (suspicious API calls, network addresses and other).

Their approach uses support vector machines to produce a

detection model, and the dataset used is composed by 5560
malware applications and 123 453 trusted ones obtaining

a detection rate equal to 93.9%.

Yerima et al. [39] present Bayesian classification models

obtained from static analysis. They extract 20 features

from 2000 application (1000 malware and 1000 trusted)

to build the models, obtaining a precision rate equal to

94.4%.

AndroSimilar [17] aims to find regions of statistical

similarity starting from the .dex files. Authors obtain

an accuracy of 72.3% using a dataset of 101 malicious

applications.

DroidLegacy [16] classifies Android malware extracting

families signatures with a precision rate of 87% from their

dataset formed by 1052 malicious applications and 48
benign ones.

Apposcopy [19] identifies class of Android malware us-

ing a semantic-based approach, it uses static taint analysis

and a call graph inter components; authors evaluate their

solution with 1027 malware obtaining an accuracy of 90%.

DroidDolphin [38] performs a static and a dynamic

analysis in order to extract features from network access,

api calls, achieving a prediction accuracy of 86.1% with a

balances dataset composed by 32 000 trusted and 32 000
malicious applications using an SVM classifier. The api

calls trace requires the application instrumentation.

Fazeen and Dantu [18] propose a framework to identify

potential Android malware applications by extracting the

intention and the permission requests. They evaluate the

solution using a dataset consisting of 1730 benign appli-

cations and 273 malware samples, obtaining an accuracy

of 89% in detecting potential malware samples.

Peng et al. [29] introduce the notion of risk scoring

and risk ranking derived by the number of permissions

requested by an application. They use probabilistic gener-

ative models for risk scoring schemes.

Authors of reference [28] focus on permissions for a

given application and examine whether the application

description provides any indication for why the application

needs a permission. They implemented a framework using

Natural Language Processing (NLP) techniques to identify

sentences that describe the need for a given permission in

an application description, achieving a average precision

of 82.8%, and a recall of 81.5%.

AutoCog [30] assesses description-to-permission fi-

delity of applications using NLP techniques to implement

a learning-based algorithm to relate description with per-

missions. On an evaluation of eleven permissions, they

achieve an average precision of 92.6% and an average

recall of 92%.

III. DETECTION METHOD

We consider a binary classification problem in which

an input application a has to be classified as malware

or trusted. We propose a supervised classification method

for solving this problem in which the features are the

frequencies of opcode sequences in the application.

Our method consists of two phases: a learning phase, in

which the classifier is trained using a labelled dataset of

applications, and the actual classification phase, in which

an input application is classified as malware or trusted. In

both cases, each application is pre-processed in order to

obtain numeric values (frequences of opcode sequences)

suitable to be processed by the classifier.

A. Pre-processing

The pre-processing of an application consists of trans-

forming an application a packed as an .apk file in a set of

numeric values, as follows. We first use apktool to extract

from the .apk the .dex file, which is the compiled

application file of a (Dalvik Executable); then, with the

smali1 tool, we disassemble the application .dex file and

obtain several files (i.e., smali classes) which contains the

1https://code.google.com/p/smali/



machine level instructions, each consisting in an opcode

and its parameters. From these files, we obtain a set of

opcode sequences where each item is the sequence of

opcodes corresponding to the machine level instructions

of a method of a class in a.

We compute the frequency of opcodes ngrams as fol-

lows. Let O be the set of possible opcodes, and let

O =
⋃i=n

i=1
Oi the set of ngrams, i.e., sequences of

opcodes whose length is up to n—n being a parameter

of our method. We denote with f(a, o) the frequency

of the ngram o ∈ O in the application a: f(a, o) is

hence the number of occurrences of o divided by the

total length of the opcode sequences in a. Finally, we set

the feature vector f(a) ∈ [0, 1]|O| corresponding to a to

f(a) = (f(a, o1), f(a, o2), . . . ) with oi ∈ O.

In general, the size |O| of the feature vector f can be

large, being |O| =
∑i=n

i=1
|O|i; however, not all possible

ngrams could be actually observed. We remark that we

split the application code in chunks corresponding to class

methods, since we want to avoid inserting meaningless

ngrams obtained by considering together instructions cor-

responding to different methods: in that case, indeed, we

would wrongly consider as subsequent those instructions

which belong to different methods.

B. Learning phase

The learning phase consists of obtaining a trained binary

classifier C from two sets AM , AT of malware and trusted

applications (the learning sets), respectively. The learning

phase is divided into a feature selection phase and the

actual classifier training phase.

The aim of the feature selection phase is two-fold: on

the one hand, we want to reduce the dimension of the

input—with n = 5, the size |O| of each feature vector

f can be up to ≈ 1012. On the other hand, we want to

retain only the more informative ngrams, with respect to

the output label, while removing noisy features.

We proceed as follows. We first compute the average

frequencies f̄M (o) and f̄T (o) for each ngram o ∈ O
respectively on the malware and trusted applications:

f̄M (o) =
1

|AM |

∑

a∈AM

f(a, o)

f̄T (o) =
1

|AT |

∑

a∈AT

f(a, o)

We then compute the relative difference d(o) between the

two average values:

d(o) =
abs(f̄M (o)− f̄T (o))

max(f̄M (o), f̄T (o))

The relative difference d(o) is high if the ngram o is fre-

quent among malware applications and infrequent among

trusted applications (and vice versa).

Then, we build the set O′ ⊂ O of ngrams composed

of the h ngrams with the highest values of d(o), where

h is a parameter of our method. We do not include in

O′ the ngrams for which d(o) = 1, i.e., we purposely do

not consider those ngrams which occur only in the trusted

(malware) applications of the learning sets: this way, we

strive to avoid building a classifier which works well on

seen applications but fails to generalize.

We then discard from O′ each ngram ox for which

another ngram oy exists in O′ such that oy is a su-

persequence of ox: we perform this step in order to

avoid considering redundant information, i.e., frequency of

sequences of opcodes which largely overlap. For instance,

suppose that the ngram ox = (const,iput,move)
exhibits a high relative difference d(ox); then, we want

to avoid considering the information corresponding to the

frequency of oy = (const,iput) if it also exhibits a

high relative difference.

Finally, we retain in O′ only the remaining k < h

ngrams with the greatest value for d(o)—k being a param-

eter of the method. Accordingly, we set the reduced feature

vector f
′(a) corresponding to a using only the frequences

of the ngrams in O′, i.e., f ′(a) = (f(a, o1), f(a, o2), . . . )
with oi ∈ O′.

The second step of the learning phase consists of train-

ing the actual classifier C using the reduced feature vectors

obtained from the applications in the learning sets and the

corresponding labels. In this work, we experimented with

two classifiers: Support Vector Machines (SVM) and Ran-

dom Forest (RF). We chose these classifiers because they

have proven to be effective in a large set of application

scenarios [20]. For SVM we used a Gaussian kernel with

the cost c = 1, whereas for RF we set ntree = 500.

C. Classification phase

The classification phase consists of determining if an

application a is malware or trusted, according to a learnt

classifier C.

To this end, we repeat the pre-processing on a in order

to obtain the reduced feature vector f ′(a). Then, we input

f
′(a) to C and obtain a label in {malware, trusted}.

Note that, when pre-processing a, only the frequencies

of ngrams in O′ have to be actually computed: in other

words, some practical benefit can be obtained by building

an effective classifier which works on a low number of

features.

IV. EXPERIMENTAL EVALUATION

A. The Dataset

We built a dataset composed of 5560 trusted and 5560
malware Android applications: we denote with A′

T and

A′
M the two partitions of the dataset, respectively.

The trusted applications were automatically collected

from Google Play [6], by using a script which queries

an unofficial python API [9] to search and download

applications from Android official market. The applica-

tions retrieved were among the most downloaded from

different categories (call & contacts, education, entertain-

ment, GPS & travel, internet, lifestyle, news & weather,

productivity, utilities, business, communication, email &

SMS, fun & games, health & fitness, live wallpapers,

personalization) were downloaded from Google Play [6]

(and then controlled by Google Bouncer [27]) from July



Family Inst. Attack Activation Apps

FakeInstaller s t,b 925

DroidKungFu r t boot,batt,sys 667

Plankton s,u t,b 625

Opfake r t 613

GinMaster r t boot 339

BaseBridge r,u t boot,sms,net,batt 330

Kmin s t boot 147

Geinimi r t boot,sms 92

Adrd r t net,call 91

DroidDream r b main 81

Table I
NUMBER OF SAMPLES FOR THE TOP 10 FAMILIES WITH

INSTALLATION DETAILS (STANDALONE, REPACKAGING, UPDATE),
KIND OF ATTACK (TROJAN, BOTNET) AND EVENTS THAT TRIGGER

MALICIOUS PAYLOAD.

2014 to September 2014, while malware applications of

different nature and malicious intents (premium call &

SMS, selling user information, advertisement, SMS spam,

stealing user credentials, ransom) from Drebin Dataset

[11, 37].

We analysed the trusted dataset with the VirusTotal ser-

vice [10]. This service run 52 different antivirus software

(e.g., Symantec, Avast, Kasperky, McAfee, Panda, and

others) on each application: the output confirmed that the

trusted applications included in our dataset did not contain

malicious payload.

Malware dataset is also partitioned according to the

malware family: each family contains samples which have

in common several characteristics, like payload installa-

tion, the kind of attack and events that trigger malicious

payload [40]. Table I shows the 10 malware families with

the largest number of applications in our malware dataset

with installation type, kind of attack and event activating

malicious payload.

We briefly describe the malicious payload action for the

top 10 populous families in our dataset.

1) The samples of FakeInstaller family have the main

payload in common but have different code imple-

mentations, and some of them also have an extra

payload. FakeInstaller malware is server-side poly-

morphic, which means the server could provide dif-

ferent .apk files for the same URL request. There

are variants of FakeInstaller that not only send SMS

messages to premium rate numbers, but also include a

backdoor to receive commands from a remote server.

There is a large number of variants for this family,

and it has distributed in hundreds of websites and

alternative markets. The members of this family hide

their malicious code inside repackaged version of

popular applications. During the installation process

the malware sends expensive SMS messages to pre-

mium services owned by the malware authors.

2) DroidKungFu installs a backdoor that allows attack-

ers to access the smartphone when they want and

use it as they please. They could even turn it into a

bot. This malware encrypts two known root exploits,

exploit and rage against the cage, to break out of the

Android security container. When it runs, it decrypts

these exploits and then contacts a remote server

without the user knowing.

3) Plankton uses an available native functionality (i.e.,

class loading) to forward details like IMEI and

browser history to a remote server. It is present in

a wide number of versions as harmful adware that

download unwanted advertisements and it changes

the browser homepage or add unwanted bookmarks

to it.

4) The Opfake samples make use of an algorithm that

can change shape over time so to evade the antimal-

ware. The Opfake malware demands payment for the

application content through premium text messages.

This family represents an example of polymorphic

malware in Android environment: it is written with

an algorithm that can change shape over time so to

evade any detection by signature based antimalware.

5) GinMaster family contains a malicious service with

the ability to root devices to escalate privileges,

steal confidential information and send to a re-

mote website, as well as install applications without

user interaction. It is also a trojan application and

similarly to the DroidKungFu family the malware

starts its malicious services as soon as it receives

a BOOT COMPLETED or USER PRESENT intent.

The malware can successfully avoid detection by

mobile anti-virus software by using polymorphic

techniques to hide malicious code, obfuscating class

names for each infected object, and randomizing

package names and self-signed certificates for appli-

cations.

6) BaseBridge malware sends information to a remote

server running one ore more malicious services in

background, like IMEI, IMSI and other files to

premium-rate numbers. BaseBridge malware is able

to obtain the permissions to use Internet and to kill

the processes of antimalware application in back-

ground.

7) Kmin malware is similar to BaseBridge, but does not

kill antimalware processes.

8) Geinimi is the first Android malware in the wild that

displays botnet-like capabilities. Once the malware

is installed, it has the potential to receive commands

from a remote server that allows the owner of that

server to control the phone. Geinimi makes use of

a bytecode obfuscator. The malware belonging to

this family is able to read, collect, delete SMS, send

contact informations to a remote server, make phone

call silently and also launch a web browser to a

specific URL to start files download.

9) Adrd family is very close to Geinimi but with less

server side commands, it also compromises personal

data such as IMEI and IMSI of infected device.

In addiction to Geinimi, this one is able to modify

device settings.

10) DroidDream is another example of botnet, it gained

root access to device to access unique identification

information. This malware could also downloads ad-



ditional malicious programs without the user’s knowl-

edge as well as open the phone up to control by

hackers. The name derives from the fact that it was

set up to run between the hours of 11pm and 8am

when users were most likely to be sleeping and their

phones less likely to be in use.

B. Experimental procedure and results

We present here the results of a set of experiments

we performed in order to assess the effectiveness of our

proposal. The experimental procedure was as follows. We

built the learning sets AT and AM by randomly choosing

the 90% of the applications in A′
T and A′

M . The remaining

10% of the applications were used as testing set. We

performed the learning phase described in section III-B

using AT and AM to obtain a classifier C.

After the learning phase, we applied C to each appli-

cation in the testing set and we measured the accuracy

of the classifier, i.e., its detection rate of malware and

trusted applications. We repeated the above procedure 5
times, every time by changing the composition of AT and

AM .

We experimented with different values for k and n, with

n varying from 1 to 5 and k in 25–2000. Since the number

of different opcodes is 252, we limited the experiment

with n = 1 to a maximum k equal to 250. We used 2

different kind of classifier—i.e., SVM and Random Forest.

We always used h = 5000 for the features selection.

Table II reports the results obtained training both an

SVM based and a Random Forest based classifier. The

table shows the accuracy on training and testing with

all the combinations of n and k values. The results are

averaged over the 5 repetitions. It emerges that we obtain

the best results with n = 2 and k = 1000. Besides, the

Random Forest classifier is better than the SVM one and

it reached an accuracy of 96.88%.

Moreover, the table shows that, in order to achieve the

same accuracy value, greater values of n need greater

values of k. This aspect is consistent with the findings

of [22]. A possible interpretation of this finding is that

ngrams greater than 2 may be too specific and thus the

classifier tends to overfit. Using larger values of k can

reduce the overfit. It is important to note, however, that

using of greater values of k and n may make the approach

unfeasible in some scenarios.

In order perform the experiments, we used a machine

equipped with a 6 core Intel Xeon E5-2440 (2.40 GHz)

and 32 GB of RAM. The time spent to perform the features

selection with n = 2 is about 2063.4 s, where most of

the time is needed to compute the ngrams. This time

grows linearly with n. Moreover, the training of an SVM

classifier with n = 2 and k = 1000 took about 239.4 s
whereas a Random Forest classifier took about 1054.8 s.
These values are averaged over the 5 repetitions.

Table III shows the detection rate for the 10 families

which are most represented in our dataset: the figures

appear promising. In particular, we obtain a malware

detection rate close to or greater than 90% for most

SVM Random Forest
k n Training Testing Training Testing

25

1 85.36 81.77 99.51 93.51
2 84.78 85.52 87.79 86.64
3 81.46 85.52 84.75 84.27
4 81.39 82.77 83.26 83.15
5 79.25 80.15 80.04 80.27

50

1 86.35 84.39 99.93 93.51
2 86.90 88.51 91.23 90.14
3 83.61 84.27 87.29 86.77
4 82.48 83.15 85.25 84.77
5 79.55 80.65 81.53 82.02

100

1 89.47 87.14 99.97 93.63
2 89.26 90.64 94.53 93.38
3 86.37 86.27 88.79 87.52
4 83.37 82.90 85.93 85.02
5 84.55 84.52 85.58 85.02

250

1 93.30 90.89 99.99 95.13
2 92.99 91.89 97.49 95.13
3 88.65 86.77 91.15 89.39
4 85.00 84.89 87.32 86.77
5 85.25 84.27 87.75 86.02

500

1 - - - -
2 94.62 92.38 97.54 95.51
3 90.28 89.64 92.10 90.51
4 87.40 86.77 90.51 89.39
5 86.37 84.89 89.78 88.01

750

1 - - - -
2 95.14 93.01 97.44 96.38
3 90.78 89.89 93.15 91.14
4 87.91 87.14 91.39 90.39
5 86.29 86.14 89.87 88.39

1000

1 - - - -
2 96.35 94.26 97.35 96.88

3 91.18 90.01 93.49 90.51
4 88.32 87.64 91.82 90.39
5 86.79 86.52 89.97 88.51

2000

1 - - - -
2 95.83 94.13 97.42 94.63
3 92.60 91.01 95.62 93.01
4 92.57 89.89 95.89 93.51
5 91.42 95.67 90.26 94.13

Table II
RESULTS IN TERMS OF ACCURACY (%) ON TRAINING AND TESTING

Detection Rate

SVM Random Forest
Family µ σ µ σ

Malware-FakeInstaller 92.65 2.22 89.71 5.38
Malware-Plankton 88.57 7.80 91.43 2.01
Malware-DroidKungFu 93.23 2.83 88.37 4.79
Malware-GinMaster 91.18 4.91 91.18 3.48
Malware-BaseBridge 93.10 2.97 89.66 2.47
Malware-Adrd 100.00 0.00 100.00 0.00
Malware-Kmin 90.01 3.61 100.00 0.00
Malware-Geinimi 99.28 1.91 100.00 0.00
Malware-DroidDream 100.00 0.00 100.00 0.00
Malware-Opfake 91.67 3.81 94.45 1.53

Malware-Average 94.69 3.35 94.69 2.56

Trusted 93.83 2.53 99.07 0.96

Table III
MEAN AND STANDARD DEVIATION VALUES OF THE DETECTION RATE

(%) ON DIFFERENT FAMILIES, WITH n = 2 AND k = 1000



families. We also highlight that the ability to recognize

a malware is similar using SVM or Random Forest, but

the second clearly outperforms the first in recognizing

trusted applications. This high value is really interesting

in a scenario in which it is important to generate a low

number of false positives.

V. CONCLUDING REMARKS AND FUTURE WORK

Since previous works showed that opcodes are in-

formative for discriminating a malware from a trusted

application, we here investigate the effectiveness of a

method operating on opcodes sequences in recognizing the

malware targeting Android platform. The experimentation

revealed that the sequences of opcodes are a very effective

method for detecting Android malware, as this technique

produced an accuracy of 96.88%. Moreover, we found

that the best accuracy of classification can be obtained by

considering just bigrams (i.e., n = 2): in that condition,

our method needs to take into account 1000 opcodes

which, depending on the specific scenario considered, may

make feasible the implementation of our method.

Metamorphic malware could escape the proposed tech-

nique, but at the moment there are no samples of meta-

morphic malware in the wild for the Android platform.

However polymorphic malware, able to change shape over

time so to evade detection by antivirus, is represented in

our dataset by Opfake family (613 samples) with a high

detection rate: 94% using the Random Forest algorithm.

As future work we are going to compare the perfor-

mance of opcodes sequences with that of system calls

sequences in detecting malware. System calls sequences

represent another form of malware signature at a lower

level of abstraction, thus in many facets they could provide

an information to describe malware that is complementary

to that obtained by the sequences of opcodes. Additionally

we would apply the opcodes sequences to track the

philogenesys of malware in order to characterize which

are the known malware an unknown malware descends

from. Finally, despite the fact that our findings seem to

suggest that long sequence of opcodes are not so infor-

mative, it could be interesting to explore the possibility of

automatically building pattern-like signatures of opcodes

from examples and use corresponding frequencies for

detection of malware: indeed, the inference of patterns

from examples for security purposes has already been

explored (e.g., for intrusion detection [12]).
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