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Abstract. This paper presents findings of a case-study demonstrating the effectiveness of using WiFi networks
to detect occupancy as opposed to CO2 sensors, commonly used for demand-controlled heating, ventilation and
air conditioning (HVAC) systems. The study took place in one building at the University of Manitoba Fort
Garry campus in Canada. In a classroom, the number of WiFi connections was collected on an hourly basis over
one-week, simultaneously with CO2 concentration levels at 10-min intervals. The number of occupants in this
classroom was also counted on an hourly basis over the same study period. Data analysis showed that WiFi
counts predicted actual occupancy levels more accurately than CO2 concentration levels, thus validating the use
of this technology to track occupancy. This study was the first to use both CO2 concentration and WiFi counts
simultaneously as indicators for occupancy. Results demonstrated the possibility of using WiFi counts in large
buildings for controlling HVAC systems at a higher accuracy and lower cost than other sensor technologies.
Implications and influences: Given the large contribution of HVAC systems to overall buildings’ energy
consumption, this study presents a newmethod for efficiently operating HVAC systems. Results highlighted the
accuracy of using WiFi connections as predictors for occupancy patterns to be used for controlling HVAC
systems instead of CO2 sensors. These findings provide a foundation for further research on usingWiFi networks
to manage and operate HVAC systems in new buildings. Efficient operation of these systems based on real-time
occupancy as opposed to static schedules provides facility managers with an opportunity for significant energy
savings at a relatively low cost.

Keywords: buildings energy management / occupancy and energy consumption / smart buildings systems /
green buildings / sensor-based HVAC systems

1 Introduction

Since buildings contribute 20–40% of energy use world-
wide [1], efforts to decrease their energy consumption are
essential. Advances in buildings’ sustainability can reduce
their energy consumption by improving building envelopes;
and HVAC systems. These systems consume up to 57% of
total buildings’ energy consumption [2], making them a
significant energy end-use consumer in buildings.

Sensor-based, demand-controlled HVAC systems pres-
ent in particular an excellent opportunity for optimizing
buildings’ energy consumption. These systems base their
ventilation rates on sensors that can be used to detect the
presence or absence of occupants and are thus able to
reduce peak energy demand by up to 23% [3]. Currently,
most demand-controlled HVAC systems are based on

monitoring and controlling carbon dioxide (CO2) levels.
This is because of the association between CO2 levels and
occupancy, making them an important indicator of
occupancy [4]. However, one of the major limitations of
CO2-based, demand-controlled HVAC systems is their
high installation, operation and maintenance cost, espe-
cially for retrofitting existing buildings [5].

In large non-residential buildings, WiFi technologies
present an alternative for demand-controlled HVAC
systems. The study by Vaccari and Samouhos [6] analyzed
WiFi activity at theMassachusetts Institute of Technology
campus and suggested it could be used as a proxy for
human occupancy. Vaccari and Samouhos [6] also proposed
using WiFi activity data for building energy management.
One of the main advantages of using WiFi data is its
availability at no additional cost to building managers and
operators. Reports can be generated using the WiFi
network administration system in a relatively short time,
thus eliminating the need to invest in personnel, equipment� e-mail: oufm@myumanitoba.ca
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and materials unlike other technologies such as CO2

sensors. Despite these potential benefits, the use of WiFi-
based, demand-controlled HVAC systems remains limited.

This research aims to investigate the use of WiFi
connections as an indicator of occupancy in order to
validate its use for building energy management. The
significance and originality of the research stem from being
the first study to the author’s knowledge that investigates
using WiFi data and CO2 concentration simultaneously to
detect real-time occupancy. This makes the research of
interest to building owners, managers and operators
looking to improve their buildings’ energy consumption.

2 Background

In large non-residential buildings, addressing the energy
efficiency of HVAC systems has become a priority.
Retrofits aiming to improve the efficiency of HVAC
systems, typically focus on upgrading boilers and chillers
or adding heat recovery systems. Rarely do these retrofits
focus on using demand-controlled, responsive HVAC
systems that adjust to real-time variations in building
occupancy [6]. Recent studies estimated these savings can
range between $80 000 and $100 000 annually in large
commercial buildings [7]. HVAC systems are typically
programmed to respond to external weather conditions
rather than changes in indoor occupancy levels, despite the
potential for saving an additional 10–40% in buildings’
energy consumption [6]. Similarly, it is important to
acknowledge the impact of real-time occupancy detection
on other applications, such as evacuation planning, and
improving space utilization within large buildings [8].

A review of the literature shows little focus on
occupancy-driven energy management, and the technolo-
gies that can be used to determine real-time occupancy
levels [6,9,10]. The strength of each technology lies in its
capability to accurately determine real-time occupancy
presence, count and activity [11]. These technologies can be
divided into four different categories as follows; (1) direct
presence data recognition solutions, (2) wired network-
based and energy-related solutions, (3) network-based
solutions with active or passive access badges, and (4)
wireless network-based solutions [9].

2.1 Direct presence data recognition solutions

Direct presence data recognition systems integrate differ-
ent sensors (e.g. infrared detection, CO2 sensors, floor
pressure sensors, camera- and audio-based sensors) to
detect occupancy within a space. Oftentimes, these
systems require additional infrastructure, thus increasing
associated costs [12]. One of these technologies is passive
infrared (PIR) occupancy sensors which measure the
difference in heat energy along the line of sight of the
sensor [13]. Alternatively, ultrasonic sensors, composed of
an ultrasonic wave emitter and receiver, detect occupant
movement via sensing sound energy [13] without requiring
a direct line of sight. Both methods only detect occupant
presence, but cannot extract higher data granularity about
occupants’ count nor their activity level [13]. PIR could be

an effective demand driven lighting control especially for
private offices with occupancy rates of about 27% [14].
However, the need for a direct line of sight between the
sensor and occupants and the reliance on only occupants’
motion makes PIR less practical for large spaces such as
university classrooms [12,15].

Using CO2 sensors to measure occupancy and manage
HVAC systems appears to be an accepted industry
practice [5,16–18]. Energy savings due to CO2-based
demand controlled ventilation can reach up to 34% [3].
ASHRAE 62.1:2013 [19] stipulates that the difference
between indoor and outdoor CO2 concentration levels
(typically at 300–400 ppm) should not exceed 700 ppm. It
also specifies that the fresh air supply for a typical lecture
classroom should not be lower than 3.8 l/s/person. Once
CO2 sensors detect an increase in CO2 levels beyond a
certain threshold, the ventilation controls of HVAC system
are automatically activated. A study by Cali et al. [20]
found that CO2 sensors accurately detected occupancy
counts up to 80.6% of the time in both mechanically and
naturally ventilated zones. The study concluded that the
location of sensors, and information about the supply air
rates were vital to the accuracy of using these solutions.

Although Fisk et al. [21] found a relationship between
CO2 concentration levels and the number of occupants, a
20-min lag was observed between them indicating that
occupants could already be in a state of discomfort.
Another limitation of CO2 sensors is the additional cost
associated with their operation and maintenance of CO2

sensors [5]. CO2 sensors are also susceptible to changes in
air speed and interference from other gases, which
influences their accuracy [22,23].

2.2 Wired network-based and energy-related solutions

These solutions rely on equipment sub-meters to detect
occupants’ presence. The type of equipment being metered
(e.g. laptops) can indicate occupants’ count and activity.
However, some studies e.g. [24–26] show that more than
50% of occupants leave their computers on when leaving a
space. In order to address this concern, Milenkovic and
Amft [27] proposed a dual technology occupancy detection
system that combined PIR sensors and plug monitors for
different equipment. The meters specifically measure the
change in energy consumption, while the PIR sensors
complement the system by detecting occupants’ presence.
Occupant count accuracies of 87% and 78% were found for
single-person versus shared offices, respectively [27]. How-
ever, these systems would be restricted to office environ-
ments and require significant costs for installation [28].

2.3 Network-based solutions with active or passive

access badges

These solutions include radio frequency identification
(RFID), key cards and mobile applications which can
detect both occupant presence and count, but not their
activity. RFID is an object detection technology based on
signal detection and data transmittance through a radio
frequency [29]. An RFID system consists of an antenna, a
reader, and tags; the tag contains information that can be
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detected when it is within the reader’s detection
range [29,30]. Unlike PIR, RFID does not require a direct
line of sight for occupant detection, thus it can detect
stationary and moving occupants [31]. Li et al. [30] investi-
gated the use of RFID for demand driven HVAC operation
in office buildings. The study found a 100% detection rate
for both stationary and mobile occupants and an accuracy
level of 88% and 62% respectively, suggesting RFID as a
suitable occupancy detection mechanism for demand-
driven control of HVAC systems in large academic
buildings. The downside of RFID is the need for occupants
to constantly wear the tag, which may be difficult in
buildings with a large transient occupancy such as
university buildings [28]. The accuracy of an RFID system
also depends on the density of installed readers and the
received signal strength (RSS), hence, the cost of deploying
the system in large academic buildings would be a
significant barrier [31,32].

2.4 Wireless network-based solutions

WiFi networks exist in most large commercial and
educational buildings. They can form a more dynamic
real-time occupancy detection technology than wired
networks by tracking devices such as laptops and smart
phones connected to WiFi access points (APs) of a wireless
LAN 802.11 network (WiFi network). A Dynamic Host
Control Protocol (DHCP) is used to connect an Internet
Protocol (IP) address to each device [9]. While this
technology can detect both occupants’ presence and count,
it cannot identify the occupant’s activity and poses some
concerns for occupants’ privacy [28].

Three existing methods for WiFi-based occupants’
detection influence the accuracy of this method: (1) Closest
Access Point, (2) Triangulation, (3) Radio Frequency
Fingerprinting. For the Closest Access Point method, a
mobile/stationary device connects to the closest and
strongest AP, forming the strongest RSS. With a typical
radial coverage of 10.5–45m [33] any overlap of two APs
will result in the mobile device connecting to the closest
one. Triangulation, on the other hand, uses the existing
mesh of APs to inform about the specific user location with
a higher spatial granularity of 5-m radius [33]. The
distances from each AP are deduced from measuring both
RSS and time of flight [34]. When measuring the time of
flight for each of the APs with the mobile device, the
difference is indicative of the specific location of the
device [34]. However, this method raises privacy concerns
since it requires identifying each device and its associated
MAC address. The third method of WiFi-based occupancy
detection is Radio Frequency Fingerprinting, which refers
to a process of matching an existing database of radio
frequency signals to actual real-time signals to detect
device locations. The database is created by walking
through the building andmapping reflections, attenuations
and diversions of signals caused by the building’s interior
design and object configurations [35].

Using WiFi-based occupants’ detection can provide a
reliable solution for controlling building management
systems (BMSs) [9]. The study by Sevtsuk et al. [36]
showed that WiFi counts can be collected and mapped to

visually represent occupant spatial intensities which can be
used by universities to identify space utilization rates. El
Amine et al. [37] and Mardini et al. [38] proposed a more
sophisticated and advanced WiFi-based occupant detec-
tion solution. These studies estimated occupants’ location
using ZigBee, and XBee networks and developed algo-
rithms to estimate RSS Indication (RSSI) fingerprinting
which detected occupants’ locations within 0.8m. On the
other hand, the study byMartani et al. [7] showed that only
40% of building occupants were connected to the WiFi
network, raising concerns about this solution’s reliability.
Another study by Christensen et al. [39] also highlighted
some of the limitations of using existingWiFi networks due
to the unstable WiFi connectivity of smartphones which
lowered detection accuracy to 45–52%.

Because WiFi networks already exist in most commer-
cial and institutional buildings (e.g. university campuses or
office buildings), the cost of using this technology to track
occupancy is negligible [2,7]. However, the number of WiFi
counts may not accurately reflect the exact number of
building occupants since occupants may have more than
one device (e.g. a laptop and a smartphone) connected
simultaneously to the WiFi network [39]. Moreover, not all
occupants may be connected to the network especially in
buildings with a large population of visitors [6].

3 Method

This section describes the research methods. It includes a
description of the specific case study in addition to the data
collection and analysis methods used therein.

3.1 Case study

This esearchusesacase-studyapproach. It tests theabilityof
WiFi counts to predict occupancy patterns in the Engineer-
ingandInformationTechnologyComplex(EITC)attheUof
M Fort Garry campus in Winnipeg, Manitoba, Canada
(Fig. 1). The EITC comprises three adjacent buildings, the
first (E1) built in 1913,with anadditionbuilt in 1958 and the
second(E3)built in1967.Thethirdbuilding(E2)wasbuilt in
2005 as part of a major renovation to link all three buildings
around a central atrium. It has a combined total floor area of
449 432 ft2 and is home to all undergraduate and graduate
engineering programs. It also houses several engineering
laboratories as well as faculty, staff and graduate students’
offices.Activities takingplacewithin thebuilding range from
lectures, to research in laboratories, and administrative and
social functions, making it an ideal academic building for
testing the validity of the proposed method. The EITC also
represents a unique opportunity to design, develop, deploy,
and test a scalable system for identifying campus-wide
energy efficiency opportunities. The current building
infrastructure includes a large number of WiFi APs in each
roomand hallway and an advancedBMS.This allows for the
collection of energy consumption data, HVAC operational
schedules, set points, temperatures and flow rates using a
wide range of sensors across the system. It also allows for
collecting WiFi connections counts at the room-level.

M.M. Ouf et al.: Sust. Build. 2, 7 (2017) 3



One classroom in E2 with a maximum occupant
capacity of 80 students, was analyzed in particular to
validate the use WiFi connections as an indicator of
occupancy. The classroom has a floor area of 1550 ft2, and
no outside windows, with 2 APs serving the classroom
occupants as shown in Figure 2. The classroom is supplied
with air at 0.65–0.7m3/s during occupied hours from anAir
Handling Unit serving the east side of the building, thus
providing approximately 4 air changes per hour.

3.2 Data collection

The research involved investigating the relationship
between the number of WiFi connections, CO2 concentra-
tion levels and number of occupants in one classroom over
the period of one week between Friday, March 27th and
Thursday, April 2nd, 2016.

3.2.1 WiFi data collection

The number of WiFi connections was collected on an
hourly basis using a system-generated report from 2
CISCO

®

AIR-CAP2602I-A-K9 APs in this room. These
APs provided a DHCP lease for 8 h which means the
number of associated accounts connected to each AP
within an hour would be tied to an individual MAC address
(i.e. individual device). Specific MAC addresses were not
provided due to security and privacy concerns. The APs
cover a horizontal radius of approximately 50–75 ft and
30 ft at 2.4GHz, 5GHz, respectively. Vertically, the WiFi
signal would be significantly weakened due to the concrete
slabs, but the APs may cover a vertical radius of up to 20 ft
and 10 ft at 2.4GHz, 5GHz, respectively. The Information
Services and Technology office managing the WiFi system
estimated these coverage areas based on the APs
transmission power in dBm at each frequency, which
may vary based on the automatically set power levels.
Although this calculation indicates some overlap in the
coverage areas around each AP, devices would typically
connect to the strongest WiFi signal (i.e. the closest AP).
Therefore, given that adjacent areas, including the corridor
outside this classroom, are equipped with separate APs, the
majority of devices outside this classroom would not
connect to its WiFi APs.

3.2.2 CO2 emissions data collection

To collect CO2 concentration levels, a Q-trak
®

monitor
(model VelociCalc/Q-Trak 7565), supplied by the Envi-
ronmental Health and Safety Office at the U of M, was
installed for a one-week period to record CO2 concentration
levels at 10-min intervals. The CO2 monitor was placed
approximately in the middle of the classroom at the ceiling
level. It was placed on top of a ceiling tile with the probe
protruding into the empty space between the ceiling tiles as
shown in Figure 2b in order to capture the classroom’s
environmental conditions. The monitor has an accuracy
of±50 ppm at 25 °C andwas calibrated during the last week
of January 2016.

3.2.3 Occupancy data collection

Student volunteers were recruited to count the number of
occupants inside the classroom at the beginning of every
lecture during regular class hours (8:00AM–8:00PM) on
weekdays. Figure 3 shows the classroom schedule provided
by the university registrar.

Fig. 1. EITC complex.

a

b

Fig. 2. Case-study classroom dimensions (a) plan and (b)
section.
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3.3 Data analysis

The collectedWiFi counts for the entire EITCwere plotted
over the entire week to analyze trends and their
relationship with expected occupancy. The data analysis
also entailed producing scatter plots for each weekday
within the case-study classroom demonstrating the
relationship between the number of occupants, CO2

concentration levels, and the number of WiFi counts. To
correlate the three variables, the cases had to be paired (i.e.
taken at the same interval), which is one of the require-
ments for Pearson’s correlation. Therefore, the geometric
mean of CO2 concentration of all 10-min intervals within
an hour was used to correlate CO2 concentration withWiFi
and Occupancy counts. Figure 4 shows that the hourly
geometric means of CO2 concentration had a similar
pattern to 10-min interval data. Using a geometric mean
takes into account the steady increase in CO2 concentra-
tion during the 1-h periods, making it more applicable than
arithmetic means in this case.

The number of occupants in the classroom was
calculated on an hourly basis based on occupancy counts,
with the number assumed to remain unchanged for lectures
longer than 1 h. For back to back lectures that were each
shorter than an hour, the number of occupants per hour
was calculated as the average of the number of occupants in
each lecture taking place within that hour.

A Pearson’s product-moment correlation assessed the
relationship between the hourly number of occupants and
hourly CO2 concentration levels, as well as the hourly
number of occupants and hourly number of WiFi counts

between 8:00AM and 8:00PM on weekdays. In order to
assess linearity, scatterplots of CO2 concentration levels
and WiFi counts against the number of occupants, with
superimposed regression lines, were plotted. Visual
inspection of these plots showed a linear relationship
between the variables. A preliminary analysis also showed
there was homoscedasticity and normality of the residuals
which are the assumptions that need to be met for a
Pearson’s correlation test.

The research finally involved running multiple regres-
sion to predict the number of occupants using CO2

concentration levels and WiFi counts combined. Partial
regression plots and a plot of studentized residuals against
the predicted values showed linearity and there was
independence of residuals, as assessed by a Durbin–Watson
statistic of 1.3. A preliminary analysis also indicated
homoscedasticity, as assessed by visual inspection of a plot
of studentized residuals versus unstandardized predicted

Monday Tuesday Wednesday Thursday Friday

8:00 AM

ECE 4830 ECE 48309:00 AM

ECE 3600 ECE 3600 ECE 3600
10:00 AM

REC 2400 REC 2400
ENG 1460 ENG 1460 ENG 1460

11:00 AM

CIVL 3770 CIVL 3770 CIVL 3770
12:00 PM

MECH 2222
1:00 PM

CIVL 4050 CIVL 4050

2:00 PM

NURS 2240 NURS 2240 CIVL 2790 NURS 2240

3:00 PM

HNS 72004:00 PM

5:00 PM

6:00 PM

MGMT 0110

7:00 PM

8:00 PM

9:00 PM

10:00 PM

11:00 PM

Fig. 3. Case-study classroom weekly schedule.

0

200

400

600

800

1000

1200

0:00:00 12:00:00 0:00:00

P
P
M

Wednesday

10-min CO2 readings 1-hour geometric mean

0

200

400

600

800

1000

1200

1400

0:00:00 12:00:00 0:00:00

P
P
M

Thursday

10-min CO2 readings 1-hour geometric mean

Fig. 4. Hourly and 10-min CO2 concentration in the classroom on 2 weekdays.
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values. There was no evidence of multicollinearity, as
assessed by tolerance values greater than 0.1 and there were
no studentized deleted residuals greater than ±3 standard
deviations. There were also no leverage values less than 0.2,
andnovalues forCook’s distance above1.Theassumptionof
normality was also met, as shown by a Q–Q plot.

4 Results

This section presents the results of data analysis at the
building and classroom levels. It shows the results of
evaluating variations in WiFi counts at the building level,
and evaluating changes in CO2 concentration levels,
number of WiFi counts and number of occupants at the
classroom level. It also presents the results of investigating
the relationship between these three different variables at
the classroom level.

4.1 Building-level variations in WiFi counts

Figure 5 shows the number of WiFi counts on an hourly
basis in the EITC over the one-week study period. The
graph shows that on weekdays, occupants’ WiFi activity
typically started to increase between 8 and 10AM as
students and faculty arrived and populated the building. It
reached its peak at an average of approximately 2200 WiFi
connections between 2 and 3PM, before decreasing
considerably past 5PM after most classes ended and
students and faculty vacated the building. Occupants’
WiFi activity started later during the weekend between
9AM and 12PM; reaching its peak at an average of

approximately 500 WiFi connections between 3 and 4PM,
before decreasing considerably past 7PM. The average
number of hourly WiFi connections on weekdays was 886
connections which dropped to 253 connections on the
weekend because of the significant decrease in occupancy.

4.2 Classroom-level variations in CO2 concentration

levels, WiFi counts and number of occupants

Table 1 shows the average hourly number of WiFi counts,
occupants and CO2 concentration levels (hourly geometric
means) in the analyzed classroom for each weekday
throughout the study period during regular work hours
(i.e. 8AM–8PM). The geometric mean of CO2 concentra-
tion levels was typically below the maximum allowed
classroom concentration level of 1000 ppm [40].

Figure 6 depicts variations in WiFi counts, the number
of occupants and CO2 concentration levels between 8AM
and 8PM over every weekday. The graph shows peak
classroom occupancy, WiFi connectivity and CO2 concen-
tration levels between 10AM and 12PM and between 3
and 5PM for every weekday. In general, the number of
WiFi counts was only slightly higher than the number of
occupants. The only exceptions to this were on Monday
between 3 and 5PM, and Tuesday between 2 and 5PM
when the number of WiFi counts was approximately 70%
and 50% higher respectively than that of occupants. This
much higher number of WiFi counts suggests that more
electronic devices than normal were connected to the WiFi
network due to the required use of laptops in class at that
time. There was only one instance on Monday between 3
and 5PMwhere the number ofWiFi counts was lower than
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Fig. 5. Building-level variations in WiFi counts over study period.

Table 1. Classroom-level hourly average of CO2 concentrations,WiFi counts and number of occupants over weekdays of
study period.

Day CO2 (PPM/h) WiFi counts/h Occupants/h Percentage difference
between WiFi counts
and occupants (%)

Friday 880.99 32.17 31.25 2.9%
Monday 720.51 29.62 23.85 24.2%
Tuesday 697.57 36.67 26.13 40.4%
Wednesday 719.32 36.89 34.44 7.1%
Thursday 693.35 38.55 28.77 34.0%
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the number of occupants. CO2 concentration remained
within acceptable levels except on Monday and Friday
where it reached over 2000 ppm at some instances.

4.3 Relationship between CO2 concentration levels,

WiFi counts and number of occupants

Figure 7 shows the relationship between hourly CO2

concentration levels and the hourly number of occupants,
as well as between the hourly WiFi counts and the hourly
number of occupants between 8:00AM and 8:00 PM on

weekdays. The Pearson’s product-moment correlation
indicated a statistically significant strong positive corre-
lation between the hourly number of occupants and WiFi
counts (r=0.839, P< 0.005), and a significant, albeit
relatively weaker, positive correlation between the
number of occupants and CO2 concentration levels
(r=0.728, P< 0.005). The linear regression model showed
that average CO2 concentration levels accounted for
52.9% of the variation in the number of occupants
(P< 0.005) whereas hourly WiFi counts accounted for
70.4% of this variation (P< 0.005).
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The multiple regression model (R=0.89), the results of
which are shown in Table 2, was found to predict the
number of occupants using both variables. However, WiFi
counts were the more significant independent variable
affecting the number of occupants.

5 Discussion

The variations of total WiFi connections across the EITC
showed a consistent pattern across weekdays. As the
number of WiFi connections started to increase every
morning reaching peak levels around mid-day, Figure 5
showed correlation between WiFi concentrations and
occupancy patterns. Figure 5 also showed consistent
patterns over the weekend where WiFi activity appeared
to be very limited because of the lower building occupancy
in comparison with weekdays. The decrease in average
WiFi counts in the building by approximately 71% on
weekends in comparison with weekdays highlights the
close relationship between WiFi activity and occupancy.

A comparison between average WiFi counts and
average number of occupants per day as shown in Table 1
reveals a strong relationship between both variables, with
the numbers being somewhat close for every weekday. This

shows that unlike CO2 levels, the number of WiFi counts
can closely predict the approximate number of occupants
in the classroom. There was in fact a difference of
approximately 3–40% between the number of WiFi counts
and occupants in the classroom on every weekday. The
increased discrepancy between WiFi counts and the
number of occupants on some days could be attributed
to students or instructors having more than one electronic
device connected to the WiFi network. Therefore, using
WiFi counts needs closer investigation to account for all
possible scenarios where WiFi counts may not closely
match the number of occupants. These scenarios may also
include exam times where students are required to leave
their electronic devices, thus necessitating further analysis
of the relationship between WiFi and actual occupancy
counts. Once the relationship is further investigated,
several solutions could overcome this issue such as
accounting for scheduled events such as exams which are
known in advance. Another solution could be establishing
threshold levels before which WiFi counts may not be used
as proxy for actual occupancy.

The variations in CO2 levels also showed a correlation
with occupancy counts. However, several instances
indicated a large discrepancy between both variables as
shown in Figure 6. For example, on Monday and Friday,
CO2 concentration reached around 2000 ppm which is very
high in comparison with the recommended 1000 ppm for
classrooms, but was observed in previous studies [41,42].
This unusually high concentration of CO2 may be
attributed to a few factors such as increased activity levels
or temporary malfunctions in the air supply system.
However, the decrease in CO2 concentrations to normal
levels on other days as well as evenings and weekends,
where it reached approximately 400 ppm, indicates the
problem may not be attributed to the test equipment. This
unexpected fluctuation in CO2 concentration levels high-
lights amajor disadvantage in using CO2 as an indicator for

a b

Fig. 7. Linear regression between (a) hourly CO2 concentration levels and the number of occupants and (b) WiFi counts and the
number of occupants over weekdays during the study period.

Table 2. Relationship between CO2 concentration levels,
WiFi counts and number of occupants over weekdays of
study period: multiple regression analysis results.

Variable B SEB b P

Intercept �8.083 3.1 0.012
WiFi counts� 0.588 0.071 0.626 0.000
CO2 concentration levels� 0.020 0.004 0.365 0.000
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occupancy, given its potential fluctuations. Additionally,
there was an occasional lag between the number of
occupants and CO2 concentration levels (e.g. on Tuesday
and Thursday around 3:00PM). Similar observations were
also made by Fisk and De Almeida [4] whereby a lag of
approximately 20min was found between occupancy levels
and CO2 concentration levels, with changes in occupancy
levels preceding changes in CO2 concentration levels by
that lag time. This highlights several considerations that
need to be considered when using CO2 concentration as an
indicator for occupancy, unlike WiFi counts.

The multiple regression model showed that CO2

concentration levels and WiFi counts combined could
explain 79.2% of the variability in the number of
occupants. This is only slightly higher than the 70.3% of
the variability explained by the number of WiFi counts
alone, suggesting the use of WiFi counts can adequately
account for occupancy.

Research studies [43–45] are showing how aspects of a
building’s performance such as energy and indoor air
quality (IAQ) are intricately linked to its occupancy. This
makes learning about a building’s occupancy patterns a
priority to explain the variations in its performance. There
is also a need to decrease a building’s energy consumption
by minimizing wasteful energy practices, thus the need to
link buildings’ lighting and HVAC systems to its
occupancy and usage. Advances in BMSs allow for this
linkage, providing several opportunities for reducing
buildings’ energy consumption. Real-time data about
occupancy patterns, therefore, allows building operators
to control IAQ parameters (e.g. temperature, air velocity)
at the room level and adjust them based on the occupancy
of each room. This ensures that occupants’ comfort is only
met on an as-needed basis and that HVAC systems are not
operating wastefully.

6 Conclusion

Although CO2 sensors can help building operators provide
demand-controlled HVAC, they are expensive to install
and maintain. Results of this research showed that WiFi
networks can be used instead to analyze occupancy at a
higher level of accuracy and minimal cost. Although this
research was the first to use both CO2 concentration and
WiFi counts simultaneously as indicators for occupancy,
their application to just one classroom and over just one
week made it difficult to generalize the research study’s
conclusions, thus the need to widen the application to
include more rooms over a longer period of time and to
more locations. Moreover, while using WiFi counts may
make sense in institutional and university buildings, it may
not be an accurate indicator of occupancy in other
buildings where a smaller percentage of occupants would
be typically connected to a WiFi network.

The use of WiFi counts as an indicator for occupancy
could also provide other benefits to facility managers in
institutional buildings. For example, data regarding
occupancy patterns, which is not always readily available,
may be obtained through WiFi counts which help with
calculating space utilization rates. This advantage becomes

very useful in campus buildings where university planners
are always required to meet the increasing space demands
within limited campus spaces. Future research should focus
on developing technologies to streamline communications
between the WiFi network and BMS. Future research
should also focus on investigating how that would impact
IAQ, in particular thermal comfort and occupants’
satisfaction. There is also a need to quantify the energy
savings realized by integrating demand controlled HVAC
systems which rely on WiFi counts data. The consistent
pattern of daily WiFi counts shown in this research
suggests it can detect occupancy more accurately at the
building-level and yield significant savings in terms of
energy efficiency and operational costs.
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