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Abstract

The effectiveness of z-pins in co-cured joints is illustrated on the model of a composite double cantilever beam (DCB) subject to a standard

fracture toughness test. A comprehensive solution is presented in the paper accounting for a broad spectrum of issues that affect the problem.

They include the accurate evaluation of the rotational constraint provided by the intact section of DCB, possible transverse shear deformation

in the delaminated section, and effects of uniform and nonuniform temperature on the response. A simple criterion for the effectiveness of

z-pins in co-cured joint is introduced and its application is illustrated on numerous examples. As follows from the analysis, z-pinning is an

effective method of enhancing delamination resistance of composite joints. Even a very small volume fraction of z-pins (less than 1.5%) may

arrest delamination in co-cured composite joints.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Delamination cracks originating from the edge are

recognized as the principal cause of damage and failure in

bonded adhesive and co-cured joints. Z-Pins, i.e. small-

diameter cylindrical rods embedded in the composite

material and oriented perpendicular to the layer interface,

represent a possible method of arresting these cracks.

Extensive studies that illustrated beneficial effects of z-pins

on various aspects of the behavior of composite structures

have been published [1–6]. In particular, this method may

be effective in enhancing fracture and fatigue resistance of

co-cured joints between composite skin and stiffeners

similar to the joint depicted in Fig. 1.

The advantages associated with using z-pins to reduce or

prevent delamination tendencies in polymeric matrix

composites have been documented in numerous studies.

For example, Freitas et al. [1,7] illustrated that a 1.9%

volume fraction of carbon z-pins can increase Mode I

fracture toughness of laminates by a factor of 18 with only
1359-8368/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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modest reduction in in-plane tensile strength. Inclined at

458, z-pins have also been shown beneficial for lap shear

specimens [8]. In the present study, the effectiveness of

z-pins is estimated on the example of a standard DCB test

prescribed for composite adhesive joints (though an

adhesive layer is not used in co-cured joints). A typical

setup of the test is presented in Fig. 2.

One of the previous solutions considered by the authors

employed the analysis of a co-cured z-pinned DCB based on

modeling the effect of a limited rotational constraint of the

intact part of the beam (see Fig. 3, xO0) through the

introduction of an elastic foundation [9]. Such approach to

modeling the constraint that affects deformations of the

delaminated ‘legs’ of DCB was originally proposed by

Kanninen [10,11] and Gehlen et al. [12] for studies of Mode

I fracture in the joints without z-pins. It was further

extended to transversely isotropic materials by Williams

[13] and to angle-ply laminates by Ozdil and Carlsson [14].

Penado [15] used the same approach to incorporate the

effect of an adhesive layer between the two halves of the

beam. The authors presented a new method of the solution

where the elastic rotational constraint at the tip of the crack

was analytically evaluated from the elasticity analysis of the

intact section of DCB [16]. Subsequently, the analysis of
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Fig. 1. Co-cured z-pinned joint between the skin and stiffener.
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the delaminated section (section 1 in Fig. 3) was carried out

without difficulties.

In both previous papers [9,16], the effect of z-pins was

introduced through an equivalent elastic foundation (Fig. 3).

This approach was first suggested by Mabson and Deobald

[6], who based it on the analysis of Li [17]. The application

of this approach as well as the effect of z-pins on the

properties of the material are further discussed in the present

paper.

Elevated temperature may have a noticeable effect on

fracture of z-pinned co-cured joints. The present paper

provides a methodology of the analysis of the effect of

z-pins on the integrity of z-pinned co-cured joints for the

case of a nonuniform temperature introducing a concept of

‘insulated crack’ in the DCB test setting. Furthermore, a

numerical analysis of the effect of the z-pin-composite

interfacial shear strength varying as a result of a uniform

temperature on Mode I fracture is presented. A large effect

of the interfacial shear strength on the integrity of joints

undergoing Mode I loading observed in numerical examples
Fig. 2. Schematic illustration of the DCB test, according to ASTM 5528 and

ASTM, D 5528-01.
led to the recommendation to employ artificially uneven

surfaces of z-pins to maximize their resistance to pullout.

The analysis of the integrity of z-pinned joints may not

be successfully carried out using a fracture toughness

approach since fracture toughness is affected by the bridging

effect of z-pins [8]. A criterion of failure of z-pinned co-

cured joints based on the analysis of deflections of the

delaminated section of a representative DCB is introduced

in the present study. This convenient criterion enables us to

estimate the effectiveness of z-pins in the joints, including

the case where temperature is present.

It is useful to recall here the solution for the critical strain

energy release rate for Mode I fracture of DCB specimens

with or without z-pins that remain within the elastic range:

GIC Z
P2
c

2b

dC

da
(1)

where Pc is the fracture load, is the width of the specimen,

and dC/da is the rate of change of the compliance per unit

crack growth. Difficulties in evaluating dC/da prevent us

from formulating an analytical closed-form solution for the

strain energy release rate or fracture toughness.
2. Analysis of the effect of z-pins

The presence of z-pins affects a DCB through two

mechanisms. First of all, z-pins affect stiffness in both axial

(x) and transverse (z) directions (see Fig. 3 for the

coordinate axes). The stiffness of z-pins in the transverse

(z) direction is much higher than the stiffness of the joined

composite material, affecting the transverse stiffness of the

specimen. The effect of z-pins on the stiffness in the axial (x)

direction is smaller since the pins work similar to fibers in

transversely loaded laminae.

The properties of z-pinned materials in both axial and

transverse directions can be evaluated by one of micro-

mechanical theories. The presence of z-pins is treated as if

these pins were ‘fibers’ embedded within an orthotropic

‘matrix’ represented by the composite material of the layers.

For example, the mechanics of materials approach to the

evaluation of the properties of a composite material is

applicable. A ‘simplified’ micromechanical model can be

employed to evaluate the moduli [18]:

Exj Z
E1j

1K
ffiffiffiffiffi
Vp

p
1K

E1j

Exp

� � ;

Gxzj Z
G13j

1K
ffiffiffiffiffi
Vp

p
1K

G13j

Gp

� �
(2)

where E1j is the modulus of the pristine jth layer (without

the z-pins) in the axial (x) direction, Exp is the transverse

modulus of the pin material, G13j is the transverse shear

modulus of the pristine composite material, Gp is the shear



Fig. 3. DCB with z-pins loaded in mode I and the model used in the analysis based on modeling the rotational stiffness of Section 2 through the introduction of

an elastic foundation. The case of a nonuniform temperature TZTi is considered in the paper.
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modulus of the pin material, and Vp is the volume fraction of

z-pins.

The modulus of the jth layer in the z-direction can be

obtained by the rule of mixtures as

Ezj ZVpEzp C ð1KVpÞE3j (3)

where E3j is the modulus of the composite material in the

thickness direction and Ezp is the corresponding modulus of

the pin material.

The Poisson ratios can be evaluated from

n Z ð1KVpÞnczxj CVpnp; nxzj Z nzxj

Exj

Ezj

(4)

where nczxj is the Poisson ratio of the jth layer without z-pins

and np is the Poisson ratio of the pin material.

A more elaborate micromechanical formulation based on

the improved mechanics of materials approach, the semi-

empirical theory of Halpin–Tsai or advanced theories

(Mori–Tanaka, method of cell, etc.) is also possible.

However, they are not employed in this study since a

relatively simple micromechanics outlined above provides

qualitatively accurate results.

In addition to the effect of z-pins on the properties of the

material of DCB, it should be noted that as z-pins are pulled

out of the delaminated ‘leg’ of the specimen, as shown in

Fig. 3, the volume previously occupied by z-pins is empty.

Therefore, the stiffness of a leg of DCB pulled by the

applied force is a function of the x-coordinate. This

phenomenon could greatly complicate the analysis. How-

ever, it was found that even if the ratio of the modulus of the

pin to the corresponding modulus of the layer is infinite, the

moduli Exj and Gxzj cannot exceed the moduli of the pristine

layer by more than the factor of 1.11 (VpZ1%) or 1.25

(VpZ4%). The lower limit of variations of the moduli (pin

pullout) was defined as the corresponding modulus of
the pristine layer multiplied by the factor of 0.99 (VpZ1%)

or 0.96 (VpZ4%).

As follows from this discussion, the range of variations

of moduli Exj and Gxzj of a z-pinned specimen is narrow.

Following a similar approach, it can be shown that the

variations in the Poisson ratios also remain small (besides,

the effect of these ratios on the solution for a beam is

insignificant). As was shown in the papers on mixed-mode

fracture of z-pinned specimens [8] and in the recent work on

Mode I fracture [9,16], z-pins suppress the opening mode so

that the anticipated amount of pullout (and the related depth

of the affected zone) cannot be large, unless the specimen

begins to fail. In conclusion, it is possible to use the values

of moduli accounting for the presence of z-pins and

neglecting a small reduction in the stiffness due to their

partial pullout.

The reaction of z-pins in the delaminated section of DCB

can be evaluated following the approach used by Mabson

and Deobald [6] and Li [17]. The nonlinear pullout force-

displacement response of z-pins includes the initial linear

relationship corresponding to a limited motion of the pins

relative to the composite material adjacent to the crack

plane. After the entire interface between the pin and matrix

is affected, the force applied by the pin to the matrix

decreases, yielding the following pressure on the delami-

nated section [6]:

p ZK0KK1w; K0 Z 2Vptlp=r; K1 Z 4Vpt=r (5)

where lp and r are the pin embedded length (in this paper it is

assumed equal to the thickness of the delaminated section h)

and radius, respectively, and t is the interfacial shear

strength. The initial ascending linear force–displacement

response is often neglected since it corresponds to very

small deflections. In this case, Eq. (5) represents the reaction

of the pins in Section 1 in a DCB specimen shown in Fig. 3.
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Note that Eq. (5) could be derived by assuming a constant

frictional bond that is independent of the amount of

sliding [17].

If z-pins are pulled from one of the legs, the expressions

for the pressure applied by them to each leg remain the

same, i.e. (5). The deflections of both legs are still equal to

each other. This can be explained by observing that the

equilibrium of tensile forces in a z-pin cross-section pulled

out of the legs requires the same force to be applied by the

pin to both legs. Therefore, each leg experiences the same

deformation as long as it is subject to the same externally

applied load.

If the thickness of delaminated legs is different or if the

loads applied to the legs differ, as is the case where DCB is

subject to a nonuniform through the thickness temperature,

deflections of the legs are not the same, i.e. waswb in Fig. 3.

In this case, the second term in the expression for p in Eq.

(5) becomes K1wZ2VptðwaCwbÞ=r.
2.1. Analysis of rotational constraint of the intact section

of DCB with z-pins

Consider a unit-width DCB specimen subject to

‘opening’ forces at the delaminated end as shown in

Fig. 3. The previous research by Kanninen [10] and later

investigators was based on modeling the rotational

constraint of the intact section (section 2 in Fig. 3)

through the introduction of an elastic foundation.

Although rather arbitrary, such approach yielded good

agreement with experimental results. However, the

accuracy of the solution depended on the appropriate

choice of the coefficient of the elastic foundation. The

shortcomings of this approach were eliminated in the

recent paper by Birman and Byrd [16], where the

rotational stiffness of the intact part of DCB was derived

through the elasticity solution obtained by assumption that

the changes in the thickness of the intact part of the beam

are negligible. The validity of this assumption is

illustrated in the present analysis.

The upper section (half-thickness) of the intact part and

the coordinate system employed in the analysis are shown in

Fig. 4. The section is subject to a moment M (stress couple,

for a unit-width beam) that is replaced with a couple of

forces (stress resultants) NZM/h that cause shear defor-

mations of the section.
Fig. 4. Computational model of the intact section (section 2 in Fig. 3, i.e.

half-thickness of the intact part of DCB). The applied moment and the

undeformed section are shown on the left. A couple of forces equivalent to

the applied moment and the deformed section are shown on the right.
The analysis is based on the following assumptions:

1. All layers of the section are perfectly bonded to each

other.

2. Vertical displacements at the interface of the section zZ
0 are absent as a result of symmetry of the problem.

3. The length of the section is sufficiently large compared

to the depth to assume that the section is semi-infinite.

This is based on the previous research that showed that

the length of delamination cracks corresponding to

either their arrest due to the action of z-pins or failure of

DCB is small, i.e. the intact section is quite long

compared to the delaminated section [9,16].

4. Z-Pins do not experience pullout in the intact part of

DCB. Accordingly, shearing stresses along the pin–

composite interface that are associated with pin pullout

are not activated in the intact section.

The analysis is conducted by the Rayleigh–Ritz method.

The horizontal and vertical displacements of the section are

assumed in the form

u ZU eKux cos
pz

h
; w ZW eKux sin

pz

2h
(6)

where u is a decay parameter that has to be determined.

The displacements in the form (6) satisfy the boundary

conditions of the problem:

z Z 0 : w Z 0

x/N : u/0;w/0
(7)

The total energy of the section of width b subject to a

couple of forces N is

PZ
b

2

ðxZN

xZ0

ðzZh

zZ0

ðQ113
2
x CQ333

2
z C2Q133x3z

CQ55g
2
xzÞdzdxK2NU (8)

where Qij are transformed reduced stiffnesses that are

obtained from the reduced stiffnesses in the material

principal axes through standard transformation equations

[19].

The last term in Eq. (8) represents the energy of applied

forces, U being the horizontal displacement of the points of

force application.

The strains in Eq. (8) are the following functions of

displacements:

3x Z u;x; 3z Zw;z; gxz Z u;z Cw;x (9)

The integral in Eq. (8) can be evaluated numerically, on

the layer to layer basis. In the case of an orthotropic or

quasi-isotropic laminate, a closed form solution is available

that is illustrated below.

For an orthotropic or quasi-isotropic composite material

of DCB where the stiffnesses are independent of the
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z-coordinate, the substitution of Eq. (9) into Eq. (8) and

integration yields

PZ
b

8
cQ11 C

p2

c
Q55

� �
U2

C
b

8
cQ55 C

p2

4c
Q33

� �
W2 C

b

6
ð4Q55

KQ13ÞUWK2NU (10)

where cZuh. Note that this result remains valid in the

presence of z-pins as long as their contribution to the

stiffness is accounted for.

Minimization of the total energy given by Eq. (10) with

respect to independent variables c, U, W yields the

following system of three nonlinear algebraic equations:

Q11K
p2

c2
Q55

� �
U2 C Q55K

p2

4c2
Q33

� �
W2 Z 0;

b

4
cQ11 C

p2

c
Q55

� �
U C

b

6
ð4Q55KQ13ÞW Z 2N;

1

3
ð4Q55KQ13ÞU C

1

2
cQ55 C

p2

4c
Q33

� �
W Z 0

(11)

In addition to a numerical solution of Eq. (11), a rather

accurate result can be obtained using the value of c obtained

in [16] by assumption that displacements in the z-direction

are negligible, i.e. neglecting w. As was shown in [16], in

this case,

c1 Zp

ffiffiffiffiffiffiffiffi
Q55

Q11

s
(12)

where the subscript in the left side implies that this value can

be used as the first iteration.

Using cZc1 in the last two Eq. (11) that were obtained by

minimization of the total energy with respect to U, W results

in the solution for these variables. Subsequently, the

updated value of can be determined from the first Eq. (11):

c2 Zp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q55U2 C 1

4
Q33W2

Q11U2 CQ55W2

s
(13)

As follows from numerical examples, a difference

between c1 and c2 is small since W2/U2. Accordingly, a

sufficiently accurate solution is available using the first

iteration for c, i.e. Eq. (12).

The rotational stiffness provided by the intact section at

the end xZ0 is now available from

K Z
Nh

2U=h
Z

Nh2

2U
(14)

Note that the rotation defined in Eq. (14) as 2U/h differs

from the average shear strain in the cross-section xZ0. This
strain is obtained from

gav Z
1

h

ðh
0

gxzðx Z 0Þdz

������
������Z

2U

h
C

2uW

p
(15)

The substitution of cZc1 yields

gav Z
2U

h
1C

W

U

ffiffiffiffiffiffiffiffi
Q55

Q11

s !
(16)

As follows from numerical examples, the second term in

the brackets is small compared to unity, so that the average

shear strain is close to the rotation of the cross-section.

It is convenient to represent a closed form expression for

the rotational stiffness based on the first iteration described

above. Using the solution of the last two Eq. (11) with cZ
c1, one obtains from Eq. (14)

K Z
ph2b

8

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11Q55

p
1K

2

9p2Q55

ð4Q55KQ13Þ
2

Q55 C
p
4

ffiffiffiffiffiffi
Q11

Q55

q
Q33

2
64

3
75 (17)

It is interesting to compare this expression with the result

obtained without accounting for the displacements in the

z-direction [16]:

Kðw Z 0ÞZ
ph2b

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q11Q55

p
(18)

If the second term in the square brackets in Eq. (17) is

negligible compared to unity, this equation converges to Eq.

(18). A comparison between two values of rotational

stiffness obtained from Eqs. (17) and (18) is presented in

the paragraph on the numerical analysis considering the

ratio

r Z
K

Kðw Z 0Þ
Z 1K

2

9p2Q55

ð4Q55KQ13Þ
2

Q55 C
p
4

ffiffiffiffiffiffi
Q11

Q55

q
Q33

(19)
2.2. Analysis of deformations and failure of delaminated

section of DCB by the first-order shear deformation theory

(FSDT)

One of the delaminated sections and the associated

coordinate system are shown in Fig. 5. The section has been

turned by 1808 compared to Fig. 3, for the convenience of

the analysis.

The section is analyzed using the first-order shear

deformable theory. The strains in the shear-deformable

section are given by

3x Z zj;x; gxz ZjC �w;x (20)

where j is the rotation of the element that was perpendicular

to the undeformed middle axis prior to deformation and is



Fig. 5. Computational model of the delaminated section of DCB (section 1

in Fig. 3).
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the deflection (in the z-direction). It is emphasized that

contrary to the analysis of the intact section conducted

above, �w is a deflection of the neutral axis of the section,

rather than a displacement within the section. Axial

displacements are equal to zero if the section is symme-

trically laminated about its middle axis (the case considered

here).

If z-pins at the end of the delaminated section are

completely pulled out, the reaction of the elastic foundation

becomes equal to zero. This situation is not considered here

since as was shown in [9,16], the onset of z-pin pullout can

be identified with failure.

The boundary conditions that have to be satisfied are:

�wð0ÞZ 0; Mð0ÞZKK½jð0ÞC �w;xð0Þ�;

MðaÞZ 0; QðaÞZP
(21)

where P is the applied force, while the stress couple and the

transverse shear stress resultants are given by

M ZDj;x; Q Z kAð �w;x CjÞ (22)

In Eq. (22), D and A are the bending and extensional

stiffness of the leg, respectively, and k is the shear correction

factor.

A convenient feature of the Rayleigh–Ritz method

employed in this analysis is that it requires only the

satisfaction of kinematic boundary conditions, i.e. the first

Eq. (21). This condition is satisfied by the following choice

of displacements:

�w Z
X

n

Wn sin
npx

2a
; jZF0 C

X
n

Fn cos
npx

2a
(23)

where Wn, F0, Fn are coefficients that have to be determined.

Note that a different choice of the expressions for deflection

and rotation using the power series was considered in [16].

In either case, the solution of the problem is straightforward.

In particular, if the analysis is limited to nZ1, the problem

is reduced to finding three coefficients from the set of three

algebraic nonlinear equations available using the Rayleigh–
Ritz method:

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75

F0

F1

W

8><
>:

9>=
>;K

0

0

b3

8><
>:

9>=
>;W2 Z

0

0

P=b

8><
>:

9>=
>; (24)

The coefficients in (24) are easily available and omitted

here for brevity. However, a simple illustration is sufficient

to conclude than the slender-beam approximations are

adequate in most applications, as long as we are concerned

with deformations, rather than the stress analysis.

To illustrate the limits of applicability of a slender beam

theory, consider an isotropic cantilever of length L without

an elastic foundation subject to the load P applied at the free

end. The deflections of the free end with and without shear

deformation effects are given by

w0 Z
PbL3

3EI
C

Pba

kGbh
; w00 Z

PbL3

3EI
(25)

respectively. In Eq. (25), all notations are self-evident, and

the shear correction factor used to obtain the second term in

the first Eq. (25) is kZ5/6.

The ratio of displacements given by Eq. (25) is

R Z
w0

w00
Z 1C

3

10

E

G

h

a

� �2

(26)

For example, if the allowable inaccuracy using the

slender beam theory is 10%, i.e. R%1.1, it is evident that for

the ratio E/GZ3, aR3 h, while if E/GZ10, aR1.85 h.

The papers [9,16] illustrated that the lengths of cracks

corresponding to either the arrest or the failure are typically

larger than the limits evaluated in the previous paragraph.

Therefore, the slender beam theory provides an adequate

prediction regarding the failure or arrest of delamination

cracks in the presence of z-pins in most situations. This

conclusion also follows from the comparison of the results

obtained for representative z-pinned DCB analyzed by

FSDT and the slender beam theory. Accordingly, the latter

theory is employed below for the case where the specimen is

subject to a combined action of the forces P and a uniform

temperature.
2.3. Analysis of the effect of a nonuniform temperature

Co-cured z-pinned joints of aerospace structures will

likely be used in a high-temperature environment charac-

terized by the range of temperature from 650–12008C

(z1200–22008F). An elevated temperature will often be

applied on one of the surfaces, while the opposite surface of

the joined component will be at a lower temperature.

Accordingly, the problem of a nonuniform temperature

distribution through the thickness of the joint represents a

major interest. Note that the issue of residual thermal

stresses is also important but it is usually relevant in the

micromechanical analysis concerned with the integrity of
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the pin-composite interface (this problem is not considered

here).

An elevated temperature that is uniform over the

surface of the component but varies in the thickness

direction produces stress couples and stress resultants

associated with both the nonuniform temperature distri-

bution as well as the nonuniform distribution of the

properties of the constituent materials through the

thickness of the joint. In a partially delaminated joint

modeled by DCB the stress resultants are equal to zero

since there is no constraint against axial displacements.

However, stress couples are present and they cause

bending of the intact section of DCB as well as the

delaminated legs of the specimen. Even if the external

forces are not applied to the joint or DCB, thermally

induced deformations appear as a result of thermal stress

couples.

As follows from the numerical solution of the heat

transfer problem, variations of temperature in the planes

perpendicular to z-pins at the macromechanical level are

negligible compared to those in the thickness direction of

the laminate. Therefore, it is possible to limit the heat

transfer analysis to the one-dimensional problem using the

values of the conductivities accounting for the presence of

z-pins in composite layers (the rule of mixtures is

applicable in this case). If the effect of temperature on

the conductivity in the thickness direction is accounted

for, the problem becomes nonlinear. For example, as was

shown by Birman [20], if the conductivity is a linear

function of temperature, i.e.

k Z k0 Ck1T (27)

temperature is distributed through the material according

to

T ZK
k0
k1

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1zCC0

p
(28)

where Ci are constants available from the thermal

boundary conditions. In the case where a perfect thermal

boundary is maintained between the layers that have the

same conductivity in the thickness direction the previous

relationship would remain valid in a co-cured laminated

joint.

The analysis of a representative DCB can be conducted

using a concept of ‘insulated crack’, i.e. assuming that

there is no heat loss from the side surfaces of the beam

and temperature remains constant within the entire

volume occupied by the crack. This implies that there is

no heat transfer out of the crack to the left of the cross-

section xZKa of the specimen (Fig. 3). Although

‘insulated crack’ is physically meaningless for DCB, the

assumption of a constant temperature within a delamina-

tion crack reflected in this concept is accurate in

engineering applications. This enables us to make the

following observations.
The intact section (Section 2) will bend as a result of

a nonuniform temperature, resulting in a rotation of the

cross-section xZ0. This rotation will cause the same

rotation of both legs of Section 1, i.e. there are no

associated relative displacements of the legs at the cross-

section xZKa. However, even if T2Z(T1CT3)/2, the

property degradation in two legs of Section 1 is different,

as the magnitude of temperature in two legs differs.

Accordingly, thermally induced bending moments in

these sections and the corresponding deformations are

different as well. Moreover, a different degree of

degradation of material constants in two legs causes a

different correction to deformations produced by the

applied forces. Note that a degradation of the material in

Section 2 will affect the elastic clamping coefficient at

the cross-section xZ0.

The first step of the solution is determining elastic

clamping provided by Section 2 to delaminated Section 1.

As follows from the analysis at a room temperature, Eq. (18)

is adequate. However, the stiffness coefficients in this

formula are now affected by temperature. Therefore, the

solution has to be adjusted accordingly.

As follows from the solution at the room temperature, the

total energy of Section 2 subject to a bending couple at the

edge, as shown in Fig. 4, can be obtained neglecting

deformations in the thickness direction, so that

PZ
1

2

ðxZN

xZ0

ðzZh

zZ0

ðQ11ðzÞ3
2
x CQ55ðzÞg

2
xzÞdzdxK2NU (29)

where Qii(z) should be specified, accounting for a

distribution of temperature and the effect of temperature

on the material constants. Eq. (29) is written for the section

subject to mechanical loading that causes shear and rotation

of the cross-section xZ0, while thermally-induced defor-

mations are not considered (these deformations result in a

rotation of the cross-section xZ0, but they do not affect the

elastic restraint).

The strains in Eq. (29) are

3x Z u;x; gxz Z u;z (30)

Substituting Eqs. (30) and (6) into Eq. (29) and

integrating one obtains

PZ
1

4u
A11u

2 C
p

h

� �2
A55

� �
U2K2NU (31)

where

A11 Z

ðh
0

Q11ðzÞcos
2 pz

h
dz;

A55 Z

ðh
0

Q55ðzÞsin
2 pz

h
dz

(32)
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Minimization of the total energy with respect to the

decay parameter u yields

uZ
p

h

ffiffiffiffiffiffiffiffi
A55

A11

s
(33)

The substitution of Eq. (33) into Eq. (31) and

minimization with respect to U results in the solution

U Z
2N

p
h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A55

p (34)

Accordingly, Eq. (14) yields the following rotational

elastic constraint coefficient for a unit-width section,

accounting for a nonuniform temperature:

K Z
ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11A55

p

4
(35)

Note that the rotational restraint obtained from Eq. (35)

differs for two legs since the temperature distribution is also

different. Accordingly, it may be convenient to operate with

two different values for legs a and b (Fig. 3), i.e. Ka and Kb.

The analysis of deformations of the delaminated legs of

Section 1 can now be conducted. Even if a temperature

gradient through the thickness of each leg is the same,

thermally-induced moments will differ since different

absolute values of temperature result in different material

properties for each leg. The difference between two legs is

identified by subscripts a (upper leg) and b (lower leg).

First of all, it is necessary to modify the reaction of z-pins

to deformations of the legs. This reaction is given by an

expression similar to Eq. (5), i.e.

p ZK0KK1ðwa CwbÞ (36)

Let us assume that the effect of temperature on the

interfacial shear strength can be either disregarded or

averaged through the depth of DCB. In this case, the

expressions for K0 and K1 are evident from the previous

discussion.

It is necessary to consider deformation of both legs of

Section 1. Using the technical theory of beams, one can

write the following equations of equilibrium for DCB of

width b:

d2Mi

dx2
Z pb (37)

where iZa,b and

Mi ZKDiwi;xxKMT
i ; Di Z b

ðh
0

EiðzÞz
2 dz;

EiðzÞZ f ½TiðzÞ�

(38)

In Eq. (38), Di is the stiffness of the ith leg that is affected

by temperature and is a thermally-induced bending moment

acting on the corresponding leg. The latter moment is

independent of the axial coordinate. Accordingly, coupled
equations of equilibrium obtained by substituting Eqs. (38)

and (36) into Eq. (37) become

Da

d4wa

dx4
KK1ðwa CwbÞbCK0b Z 0;

Db

d4wb

dx4
KK1ðwa CwbÞbCK0b Z 0

(39)

The solution of these coupled differential equations

should satisfy the following boundary conditions (for

convenience, the coordinate system is chosen as in Fig. 5):

wað0ÞZwbð0ÞZ 0 Kibwi;xð0ÞZKDiwi;xxð0ÞKMT
i

Diwi;xxðaÞCMT
i Z 0 KDiwi;xxxðaÞZP

(40)

Obviously, there are eight constants of integration in the

solution of Eq. (39). These constants can be determined

from eight conditions (40).

The solution of Eq. (39) can be obtained by reducing the

system to one eighth-order differential equation. For

example, eliminating wb one obtains

DaDb

K1b

d8wa

dx8
KðDa CDbÞ

d4wa

dx4
Z 0 (41)

The solution of the system of Eq. (39) becomes

wa ZA0 CA1xCA2x2 CA3x3 CA4 sin lx

CA5 cos lxCA6 sinh lxCA7 cosh lx;

wb Z
K0

K1

KA0KA1xKA2x
2KA3x

3 C f ðA4 sin lx

CA5 cos lxCA6 sinh lxCA7 cosh lxÞ

(42)

where

lZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDa CDbÞK1b

DaDb

4

s
; f Z

Dal
4

K1b
K1 (43)

This represents the exact solution of the problem. An

alternative solution could be obtained expanding the

Kanninen approach that models the rotational stiffness of

the beam through the introduction of an elastic foundation.

The equations of equilibrium for each leg and for the

affiliated half-depth of the intact section of DCB can easily

be written as an extension of the previous paper [9]. The

only explicit difference from the solution [9] is related to the

presence of thermal terms. Implicitly, these equations of

equilibrium are also different from [9] since temperature

affects the values of material constants and the stiffness

terms.
2.4. Analysis of the effect of a uniform temperature

If temperature is uniform, the properties of the material

are also degraded uniformly throughout DCB. The solution
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for the coefficient of rotational constraint of the intact

section of DCB given by Eq. (18) for quasi-isotropic

materials is valid, though the material constants in this

expression should be modified to reflect the effect of

temperature. Thermally-induced moments acting on the

delaminated section of DCB are equal to zero. Accordingly,

the only effect of temperature, besides the change in the

stiffness of the intact section, will be through the magnitude

of the stiffness of the legs in the delaminated section of DCB

and the change in the interfacial shear strength t.

The stiffness of polymer matrix and metal–matrix

composites (PMC and MMC) invariably decreases with

elevated temperature, implying larger deflections in DCB

tests and an increased vulnerability to fracture and fatigue

damage. The situation is different for CMC [21]. In

particular, Nicalon-fiber/SiC-matrix orthotropic composites

manufactured by DuPont illustrate a noticeable increase in

the tensile modulus until temperature reaches 1000 8C,

followed with an abrupt reduction of this modulus at higher

temperatures. On the other hand, similar materials manu-

factured by another company (SEP) have a monotonous

decrease of the tensile modulus in the entire range of

temperatures from 0 to 1400 8C. Carbon/SiC orthotropic and

quasi-isotropic CMC experience a moderate increase in the

tensile modulus to about 1100 8C followed with a reduction

of the modulus at higher temperatures (to 1600 8C). In

SiC/SiC 2D composites, the stiffness is little affected by

temperature, the tensile modulus increasing from 90 GPa at

23 8C to 100 GPa at 1000 8C.

The effect of an elevated temperature on the interfacial

strength between z-pins and the material of layers can be

rather significant, the strength often increasing with

temperature. Accordingly, the stiffness of the equivalent

elastic foundation provided by z-pins increases. This

implies that the effectiveness of z-pins often increases

with a uniform temperature.
2.5. Numerical examples

Eight composite DCB were considered in the examples

analyzing the effect of transverse deflections in the thickness

direction on the rotational restraint coefficient, i.e. the

applicability of equation Eq. (18). The properties of these

materials are presented in Table 1 that also shows the ratio r
Table 1

Properties of materials considered in examples and the ratio r (Eq. 19)

Material Ex (GPa) Ex (G

AS/3501 Cr/Ep 138.0 9.0

Scotchplyw 1002 glass/epoxy 38.6 8.27

E-glass/vinylester 24.4 6.87

E-glass/polyester 34.7 8.5

E-glass/vinylester plain-weave 24.8 8.5

E-glass/epoxy eight-harness satin weave 25.6 15.6

2/2 twill carbon woven fabric/epoxy 49.38 8.18

2/2 twill carbon/aramid woven fabric/epoxy 35.86 6.76
calculated according to Eq. (19). As follows from Table 1,

the ratio remains close to unity for all considered materials.

Moreover, in the presence of z-pins, the stiffness of the

material in the thickness (z) direction increases. Therefore,

the ratio r for z-pinned DCB is even closer to unity than that

for DCB without z-pins. Accordingly, it is possible to

evaluate the rotational stiffness of the intact section from

Eq. (18), neglecting the changes in the thickness of the

intact section.

The materials analyzed in the following examples

include carbon/epoxy AS/3501 (properties presented in

Table 1) and a unidirectional SiC/CAS ceramic matrix

composite material with ExZ140 GPa, EzZ130 GPa, GxzZ
60 GPa, nxzZ0.3. Two types of z-pins were considered.

Carbon z-pins of the radius equal to 0.6 mm and the

modulus of elasticity equal to 190 GPa were analyzed in

SiC/CAS CMC DCB. Carbon/epoxy DCB were considered

with titanium z-pins. These z-pins had the radius equal to

0.47 mm and the modulus of elasticity equal to 119 GPa. In

all examples, geometry of DCB was such that bZ20 mm,

hZ2.19 mm.

The comparison between the solution that accounts for

the rotational stiffness of the intact section of DCB obtained

from the theory of elasticity (presented in this paper) and the

solution that employs an elastic foundation to model this

stiffness [9] is presented in Fig. 6. As follows from this

figure, two solutions yield the results for the deflection of

the loaded (delaminated) end and the compliance of DCB

that are in close agreement. The advantage of the present

solution is in its relative simplicity and a more logical

approach to the formulation of the problem. Predictably, a

higher volume fraction of z-pins results in a decrease in

deflections and compliance. This illustrates the effective-

ness of z-pins for the enhancement of fracture resistance of

joints working in Mode I conditions.

The deflections of the free end become equal to zero at a

certain volume fraction of z-pins and the subsequent

increase in the z-pin volume fraction actually produces

negative deflections. This is due to exceedingly high total

stiffness of the foundation. Naturally, negative deflections

are physically impossible. Instead, zero deflections should

be identified with a complete arrest of the crack. Such

phenomenon was reported for z-pinned laminates by Rugg

et al. [8] who noticed a change from delamination mode of
Pa) Exz (GPa) nxz r

6.9 0.30 0.948

4.14 0.26 0.954

2.89 0.32 0.965

4.34 0.27 0.951

4.2 0.28 0.948

5.4 0.283 0.964

3.09 0.44 0.982

2.70 0.446 0.979
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Fig. 6. Effect of z-pin volume fraction on the deflection of the loaded (delaminated) end and compliance of a SiC/CAS CMC DCB. The length of the crack is

aZ20 mm, the applied force is PZ400 N. Rotational constraint provided by the intact section of DCB is found from the elasticity solution (Present) and from

the elastic foundation method [9] (Foundation).
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Fig. 7. Effect of the length of the crack on deflections of the delaminated

end of a SiC/CAS DCB. The applied force is PZ400 N.
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failure to microbuckling as a result of the introduction of

z-pins. Notably, even a very small volume fraction of z-pins

is sufficient to either drastically reduce deflections or

completely arrest the crack. This volume fraction becomes

particularly small, if the difference between the modulus of

elasticity of the composite material and that of the pins

increases (of course, the latter modulus is always larger).

The effect of the length of the crack on the response of

SiC/CAS DCB calculated using the elasticity solution for

the rotational constraint coefficient is shown in Fig. 7 for

various z-pin volume fractions. The deflections of DCBwith

z-pin volume fractions equal to 0.8 and 1.0% abruptly

increased at the crack lengths exceeding 30 mm. This occurs

because z-pins are pulled out of the delaminated end of the

DCB and it fails. On the other hand, DCB with z-pin volume

fractions equal to 1.2% exhibited a reduction of deflections

at aO25 mm. Therefore, the crack propagation was arrested

in the specimen with this z-pin volume fraction at the crack

length equal to 25 mm. Similar conclusions were obtained

for carbon/epoxy AS4/3501-6 DCB, as shown in Fig. 8.

It is necessary to emphasize that the applicability of the

present solutions should be analyzed keeping in mind a

possible loss of strength and matrix cracking in the

cantilever section of DCB. A quick estimate of the strength

conducted by analyzing this section as a cantilever subject

to the end lateral force illustrated that this mode of failure

does not occur in carbon/epoxy DCB under consideration.

The situation is different in the case of a SiC/CAS

specimen. This is related to the emergence of bridging

matrix cracks perpendicular to the fibers. In case of bending

of a delaminated cantilevered leg of DCB, these cracks will

first form in the layers on the tensile surface of the leg

(Section 1), at xZ0. The matrix cracking stress for
the material considered in the examples is close to

285 MPa. It is easy to estimate that the onset of the cracks

in the fully clamped section will occur at the force PZ
356 N. However, in reality, the applied force corresponding

to matrix cracking should be higher since the ‘clamped end’

of Section 1 is actually elastically constrained against

rotations, i.e. the results shown in the paper are still reliable.

Besides, bridging cracks do not significantly degrade the

stiffness, so that the qualitative results shown in this paper

would not be affected by their presence.

In general, as the cracks become longer, one of two

tendencies dominates. The deflections may become so large

that z-pins will be pulled out of Section 1. In this case, the

rate of change in the compliance abruptly increases

implying immediate failure. On the other hand, if the

force is not sufficiently large, the crack can be arrested (in

the present analysis, this is associated with a reduction of the

deflections).
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The analytical evaluation of the rate of change of

compliance and subsequently, the strain energy release rate

are impractical, in the presence of z-pins. Therefore, in

agreement with the recommendation of Rugg et al. [8],

fracture toughness is not recommended for the character-

ization of z-pinned joints. Instead, the maximum deflection

of the delaminated section of the joint can be used to

characterize their efficiency, understanding that the joints

failure can be associated with complete pullout of z-pins

from the legs.

The effect of the applied force on the deflections and

compliance is illustrated in Fig. 9 for a SiC/CAS specimen.

The results were generated using the elastic foundation

approach to modeling the rotational restraint provided by
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the intact section of DCB [9]. Although the results may be

affected by matrix cracking on the tensile surface, but

the general tendencies are obvious. Deflections increase

almost proportionally to the magnitude of the applied force

(if the length of the crack is constant). The compliance also

increases with larger forces. Although the rate of this

increase in compliance is reduced at large values of the

applied force, matrix cracking may avert this tendency and

result in larger compliance values.

The effect of a uniform temperature discussed in the

corresponding section of this paper is reflected in both

the changes in the stiffness as well as the change in the

interfacial shear strength. The former effect is anticipated

to be relatively smaller, at least in CMC joints. Therefore,
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is PZ400 N.
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the following examples illustrate the influence of the

magnitude of the interfacial shear strength between z-pins

and composite material of DCB on the deflections of the

delaminated and of DCB and accordingly, on its fracture.

This effect is illustrated for three different z-pin volume

fractions for a SiC/CAS CMC DCB in Fig. 10. As is

shown in this figure, even a modest increase in the

interfacial shear strength results in an abrupt reduction in

the deflections of the delaminated end of DCB. This

conclusion is further reinforced by results shown for CMC

and carbon/epoxy DCB in Figs. 11 and 12 where the

changes in deflections are depicted as functions of the

crack propagation (crack length). The arrest and failure

cases are clearly observed in these figures and it is evident

that even a modest increase in the interfacial shear

strength can alter the response from delamination failure

to the arrest of the crack.

A large effect of the interfacial shear strength between

z-pins and the material of the joint discussed above implies

that the resistance to fracture and fatigue damage can be

enhanced by increasing the interfacial strength. Besides

increased temperature, this goal might be achieved by using
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Fig. 11. Effect of the interfacial shear strength between the z-pin and

composite material of the SiC/CAS DCB on the change in deflections of the

delaminated end as a function of the length of the crack. The volume

fraction of z-pins is equal to 1%. The applied force is PZ400 N.
a rougher surface of z-pins. In particular, if z-pins for CMC

joints are formed from ceramic fibers, these fibers may be

interwoven producing a rough surface (similar to steel

reinforcements presently analyzed in so-called steel-

reinforced polymers shown in Fig. 13). This approach

would increase the resistance to a relative slip between

the z-pin and the material of the joined layers providing a

higher degree of interconnection and therefore, a higher

resistance to pullout and fracture. A potential weakness of

the proposed approach may be related to local microstress

concentrations and microcracking. Obviously, experimental

work in this area is well warranted due to potential

advantages of the method.
2.6. Conclusions and recommendation

Although the analysis was conducted on the example of a

representative DCB, the following conclusions are appli-

cable to co-cured z-pinned joints of an arbitrary geometry.

1. Z-Pins represent an effective tool of suppression of

Mode I delamination fracture in co cured joints.

2. The arrest of cracks associated with using z-pins occurs

at a relatively short length of the crack. If z-pins are not

effective in preventing fracture, the failure can be
Fig. 13. Steel cord produced by twisting two-wire strands around three-wire

strands in steel–reinforced plastics. A similar geometry may be adopted for

z-pins formed of fibers to enhance the interfacial properties and reduce z-

pin pullout (from the paper ‘Properties and potential for application of steel

reinforced polymer (SRP) and steel reinforced grout (SRG) composites’ by

X. Huang, V. Birman, A. Nanni, G. Tunis. Composites Part B: Engineering,

Vol. 36, pp. 73–82, 2005).
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associated with the onset of the process of complete

pullout of z-pins from the material.

3. It is difficult to analytically evaluate the fracture

toughness in the presence of z-pins. Instead, it is easier

to assess the effectiveness of z-pins by monitoring a

characteristic displacement, such as the deflection of

the loaded end of the delaminated section of DCB. In

this case, the arrest of the crack can be associated with

dw/daZ0. If this condition is achieved, the deflection

obtained by the analytical solution decreases for a

longer crack due to the overwhelming reaction of

z-pins. Physically, such decrease is impossible, i.e. the

above condition implies the arrest of the crack.

4. A new method of the analysis of DCB based on the

estimate of the rotational stiffness of the intact section

through the solution of the elasticity problem provides

an accurate and logical estimate of the effect of this

section on deformations of delaminated legs of DCB

and their failure.

5. Transverse shear deformations of delaminated legs of

DCB may affect the solution only if the length of the

crack is very small. Although cracks in z-pinned DCB

either fail or are arrested when they are relatively short,

the slender (technical) beam theory provides an

accurate estimate of the effectiveness of DCB in most

cases.

6. As was found in representative examples, the arrest of

delamination cracks occurred even when the volume

fraction of z-pins was quite small (typically, in the

range between 1 and 1.5%).

7. Elevated temperature may result in an increase of the

interfacial strength between z-pins and composite

layers. This might make z-pinned joints even more

efficient in high-temperature applications than at room

temperature.

8. Besides the effect on the interfacial shear strength,

temperature affects the properties of the composite

material of the joint. These two effects are often

opposite: for example, a higher interfacial strength due

to an elevated temperature is beneficial, while a lower

stiffness and strength of the joined layers are

detrimental for the integrity of the joint.

9. It should be noted that even if elevated temperature

improves both the interfacial shear strength as well as

the stiffness of the joint material, it might still be

detrimental to a CMC joint. This is related to oxidation

of fiber–matrix interfaces that occurs at an elevated

temperature as a result of oxygen transmitted to the

interface through cracks in a ceramic matrix. Such

oxidation is accompanied by an abrupt embrittlement

of the material.

10. Even a relatively small increase of the interfacial shear

strength between the z-pin and composite, whether

caused by an elevated temperature or resulting from a

choice of materials or technological process, is

beneficial for the integrity of the joint. An interesting
practical recommendation from this conclusion is

related to a possible design of the surface of z-pins. If

a z-pin is manufactured from fibers, a woven

configuration resulting in a rough surface with a

potentially better ‘grasp’ between the z-pin and

composite material may be useful. A drawback of

such approach is related to unavoidable microscopic

stress concentrations and interfacial cracks. Never-

theless, experimental studies of ‘rough’ z-pin surfaces

should be conducted since a possible benefit for the

prevention and arrest delamination cracks is

significant.

In general, using z-pins in CMC joints subject to Mode I

fracture loading greatly improves the integrity of the joint.

A very small volume fraction of z-pins can result in the

arrest of delamination cracks.
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