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Abstract: Cancer is the leading cause of death in the world. Curcumin is the main ingredient in
turmeric (Curcuma longa L.), and is widely used in the food industry. It shows anticancer properties
on different types of cancers, and the underlying mechanisms of action include inhibiting cell
proliferation, suppressing invasion and migration, promoting cell apoptosis, inducing autophagy,
decreasing cancer stemness, increasing reactive oxygen species production, reducing inflammation,
triggering ferroptosis, regulating gut microbiota, and adjuvant therapy. In addition, the anticancer
action of curcumin is demonstrated in clinical trials. Moreover, the poor water solubility and low
bioavailability of curcumin can be improved by a variety of nanotechnologies, which will promote
its clinical effects. Furthermore, although curcumin shows some adverse effects, such as diarrhea
and nausea, it is generally safe and tolerable. This paper is an updated review of the prevention and
management of cancers by curcumin with a special attention to its mechanisms of action.

Keywords: curcumin; anticancer; mechanism; bioavailability; safety

1. Introduction

Cancer is the leading cause of death worldwide, with nearly 10 million deaths, and
an estimated 19.3 million new cases in 2020, which is expected to reach 28.4 million
new cases in 2040, an increase of 47% [1]. The cancer mortality burden is high in low-
and middle-income countries [2]. At present, the most effective cancer therapies include
immunotherapy, chemotherapy, radiotherapy and surgery. However, these therapeutic
strategies have limited efficacies and potential side effects including fatigue, anorexia,
liver and kidney damage, anxiety and depression, etc. [3–6]. On the other hand, some
natural products, including fruits, vegetables, tea and spices have shown potential for
the prevention and management of cancers, which have attracted wide attention from
researchers [7–16].

Curcumin is extracted from the rhizome of turmeric (Curcuma longa L.), and is usually
used as an aromatizer or a natural pigment in foods [17]. Curcumin possesses various
biological activities, such as antibacterial, anti-inflammatory, antioxidant and anticancer
effects [18–23]. Curcumin has shown anticancer effects on various cancers, such as breast,
liver, lung, gastric and prostate cancers. For example, curcumin inhibited breast cancer
MDA-MB-231 cells proliferation and induced apoptosis by increasing reactive oxygen
species (ROS) production [24]. Curcumin also inhibited liver cancer HepG2 cells‘ prolifera-
tion, invasion and metastasis through inhibiting heat shock protein 70 (HSP70)- toll-like

Antioxidants 2022, 11, 1481. https://doi.org/10.3390/antiox11081481 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11081481
https://doi.org/10.3390/antiox11081481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2978-0026
https://orcid.org/0000-0001-8457-8421
https://orcid.org/0000-0003-2332-8554
https://doi.org/10.3390/antiox11081481
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11081481?type=check_update&version=2


Antioxidants 2022, 11, 1481 2 of 24

receptor 4 (TLR4) signaling [25]. Curcumin has been selected as a third-generation cancer
chemopreventive agent by the National Cancer Institute [26]. This review paper summa-
rizes the effects and mechanisms of curcumin on different cancers based on the results
from cell and animal models as well as clinical trials published in the last five years, and
special attention is paid to its mechanisms of action. In addition, several nanotechnologies
are discussed to improve the bioavailability of curcumin. Finally, the adverse effects of
curcumin are also highlighted. This paper will be helpful for the application of curcumin
in the prevention and management of cancers.

2. Effects and Mechanisms of Curcumin on Cancers

The anticancer effects of curcumin have been extensively studied in different cancers,
such as breast, lung, colorectal, head and neck, gastric, bladder, prostate, thyroid, liver,
ovarian, oral, pancreatic, cervical, tongue and brain cancers (Table 1 and Figure 1). The
underlying mechanisms will be discussed in detail below.
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Figure 1. The main effects and mechanisms of curcumin on cancers. (1) Curcumin could suppress 
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through suppressing TGF-β/Smad2/3 pathway, ultimately inhibiting migration and invasion. (3) 

Curcumin could stimulate ROS production by activating p38 MAPK, JNK and ERK pathways. (4) 

Curcumin could trigger ferroptosis, and increase the levels of TFRC, FTL and FTH1. (5) Curcumin 

could promote apoptosis by enhancing the expression of apoptotic proteins (Bax, Cleaved-caspase-

3, Cleaved-caspase-9 and Cleaved-PARP), and inhibiting the expression of anti-apoptotic proteins 

(Bcl-2). (6) Curcumin could enhance the expressions of Beclin1, Atg5, Atg3 and LC3B-II/I to promote 

autophagy by PI3K/Akt/mTOR pathway. (7) Curcumin could reduce the levels of Oct4, Sox2 and 

Nanog to suppress stemness through inhibiting JAK/STAT3 pathways. (8) Curcumin could sup-

press TLR4/NF-κB signaling pathway to attenuate inflammation (TNF-α, IL-6 and IL-1β). (9) Cur-

cumin could attenuate angiogenesis by inhibiting the expressions of VEGF, CD31, αSMC, iNOS and 

COX-2. (10) Curcumin could regulate gut microbiota by reducing the ratio of Firmicutes/Bacteroidetes. 
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Figure 1. The main effects and mechanisms of curcumin on cancers. (1) Curcumin could suppress
proliferation by attenuating cell cycle via inhibiting Wnt/β-catenin pathway, increasing the levels
of p53, p21 and p27, and then inhibiting the levels of CDK4 and Cyclin D1. (2) Curcumin could
enhance the levels of E-cadherin and decrease the levels of N-cadherin, vimentin, fibronectin, slug and
snail through suppressing TGF-β/Smad2/3 pathway, ultimately inhibiting migration and invasion.
(3) Curcumin could stimulate ROS production by activating p38 MAPK, JNK and ERK pathways.
(4) Curcumin could trigger ferroptosis, and increase the levels of TFRC, FTL and FTH1. (5) Curcumin
could promote apoptosis by enhancing the expression of apoptotic proteins (Bax, Cleaved-caspase-3,
Cleaved-caspase-9 and Cleaved-PARP), and inhibiting the expression of anti-apoptotic proteins
(Bcl-2). (6) Curcumin could enhance the expressions of Beclin1, Atg5, Atg3 and LC3B-II/I to promote
autophagy by PI3K/Akt/mTOR pathway. (7) Curcumin could reduce the levels of Oct4, Sox2 and
Nanog to suppress stemness through inhibiting JAK/STAT3 pathways. (8) Curcumin could suppress
TLR4/NF-κB signaling pathway to attenuate inflammation (TNF-α, IL-6 and IL-1β). (9) Curcumin
could attenuate angiogenesis by inhibiting the expressions of VEGF, CD31, αSMC, iNOS and COX-2.
(10) Curcumin could regulate gut microbiota by reducing the ratio of Firmicutes/Bacteroidetes.
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Table 1. The mechanisms of curcumin on cancers.

Study Type Models Dose & Duration Effects Mechanisms Ref.

Breast cancer
In vitro
In vivo

MDA-MB-231 and MDA-MB-468
cells; female BALB/c-nu/nu mice with
MDA-MB-231 adherent cells

10, 15, 20, 25, 30 and 35 µM, 24, 48 and
72 h

Inhibiting proliferation, invasion and
migration, EMT and stemness

↓PTCH1, SMO, Gli1, Gli2, N-cadherin,
vimentin, Oct4, Sox2

[27]

In vitro MCF-7 and MDA-MB-231 cells 6.25, 25 and 100 µM, 24 h Cytotoxicity and photosensitizing effect ↓PTP1B;
↑ROS

[28]

In vitro MCF-7/TAMR cells 5, 10, 20, 30 and 40 µM, 48 h Preventing cell migration and invasion,
and EMT

↓N-cadherin, H19;
↑E-cadherin

[29]

In vitro MCF-7 and MDA-MB-231 cells 5, 10, 20, 40, 60, 80, 100, 120 and140µM,
24 and 48 h

Inhibiting cell viability;
Promoting oxidative stress, ER stress,
and ferroptosis

↑HO-1, Nrf2, ROS, HSPA5, ATF4,
DDIT3, MDA, FTL, TFRC, FTH1,
BACH1, RELA, USF1, NFE2L2;
↓GPX4, GSH

[30]

In vitro
In vivo

MDA-MB-231 cell; BALB/
c nude mice with MDA-MB-231 cells

5, 10, 20 and 50 µM, 24 h; 25 g/kg,
4 weeks

Inhibiting cell proliferation and
cancer growth

↑GFPu, miR-142-3p;
↓PSMB5, PSMB1, P300, CT-1

[31]

In vitro,
In vivo

MCF-7, MDA-MB-231 and
MDA-MB-468 cells; female BALB/c
nude mice with MDA-MB-231 cells

20 and 40 µM, 48 h; 100 mg/kg/2 days,
21 days

Inhibiting proliferation, migration
and invasion;
Promoting apoptosis;
Blocking the cell cycle

↓cyclin A1, CDK1, Bcl-2, EZH2;
↑Caspase-9, DLC1

[32]

In vitro MCF-7 and MDA-MB-231 cells 10, 15, 20, 25, 30, 35 and 40 µM, 24 and
48 h

Inhibiting cell viability, invasion and
migration, mammosphere formation and
differentiation abilities, stem
cell properties

↓CD44+CD24− subpopulation, vimentin,
fibronectin, β-catenin, Oct4, Nanog,
Sox2;
↑E-cadherin

[33]

In vitro HCC-38, UACC-3199, and T47D cells 5 and 10 µM, 3 days Suppressing proliferation
and methylation

↓DNMT1, miR-29b, SNCG;
↑BRCA1, TET1, DNMT3

[34]

In vitro MCF-7 and MDA-MB-231 cells 5, 10 and 25 µM, 48 h Inhibiting cell vitality;
Inducing apoptosis

↓TLR4, TRIF, IRF3, IFN-α/β [35]

In vitro MCF-7, MDA-MB-453 and
MDA-MB-231 cells

5, 10, 15, 20, 25 and 30 µM, 24, 48 and
72 h

Inhibiting proliferation, invasion
and metastasis;
Inducing apoptotic cell death and cell
cycle arrest

↓Src, pSTAT-1, p-Akt, p-p44/42, Ras,
c-raf, vimentin, β-catenin, p53, Rb, p-Rb,
Bax, Bcl-2, Bcl-xL, Mcl-1;
↑PIAS-3, SOCS-1, SOCS-3, ROS, NF-κB,
PAO, SSAT, p21, Bak

[36]

In vitro T47D, MCF7, MDA-MB-415,
SK-BR-3, MDA-MB-231,
MDA-MB-468 and BT-20 cells

10 and 30 µM, 24 and 48 h Inhibiting proliferation;
Inducing G2/M arrest and apoptosis

↓CDC25, CDC2, p-Akt, p-mTOR, p-S6,
Bcl-2;
↑p21, Bax, Cleaved-caspase-3

[37]

In vitro MDA-MB-231 and CAL-51 cells 5 µM, 48 h Inhibiting proliferation;
Inducing apoptosis

↓Bcl-2, RAD51;
↑ROS, Bax, γH2AX

[24]
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Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

Lung cancer
In vitro
In vivo

H1650, H1299, H460 and A549 cells;
BALB/c nude mice with A549 cells

10, 20 and 40 µM, 24 h; 50 mg/kg,
22 days

Accelerating apoptosis;
Inhibiting migration, invasion and
xenograft tumor growth

↓circ-PRKCA, ITGB1;
↑miR-384

[38]

In vitro
In vivo

H460, H1299, H1975, A549, SCC-827,
PC-9 and CMT-64 cells; female
C57bl/6j mice with CMT-64 cells

4, 8, 12, 16, 20, 24 and 28 µg/mL, 24 h;
5 mg/kg, 24 h

Inhibiting of tumor growth and volume;
Ameliorating the immunosuppressive
micro-environment

↓MDSCs cells, Treg cells, IL-10;
↑NK cells

[39]

In vitro H1299 and A549 cells 2.5, 5 and 7.5 µM, 48 h Decreasing migration, invasion and
EMT Process

↑TAp63α, E-cadherin, ZO-1;
↓Vimentin, N-cadherin, miR-19a,
miR-19b

[40]

In vitro
In vivo

A549 and H1299 cells; female
C57BL/6 mice with Lewis lung
carcinomas cells

5, 10, 20, 30 and 40 µM, 24 h;
100 mg/kg/day, 15 days

Inhibiting tumor growth;
Inducing ferroptosis and autophagy

↓SOD, GSH, SLC7A11, GPX4, p62;
↑MDA, iron, ACSL4, Beclin1, LC3-II,
autolysosome, mitochondrial damage

[41]

In vitro
In vivo

A549/GR and H520/GR cells;
BALB/c nude mice with
A549/GR cells

50, 100 and 150 µM, 48 h; 100 mg/kg,
3 weeks

Suppressing proliferation;
Promoting apoptosis

↑lncRNA-MEG3, PTEN [42]

In vitro A549, NCI-H1299 5, 25, 125 and 250 nM, 24, 48 and 72 h Suppressing sphere size and number,
and stemness

↓ALDH, CD133, Epcam, Oct4, TAZ;
↑Hippo pathway, p-TAZ

[43]

In vitro H446 cells 5, 10, 15 and 20 µM, 24 and 48 h Inducing cell apoptosis;
Regulating cell cycle

↓Bcl-2, CCNF, LOX1, MRGPRF, and
VEGFB;
↑Bax, cytochrome-C, miR-548ah-5p

[44]

In vitro A549 cells 1, 2, 5, 10 and 20 µM, 24 and 48 h Inhibiting migration and invasion ↓E-cadherin, sE-cad, vimentin, slug;
↑N-cadherin, snail, MMP-9

[45]

In vitro A549 cells 25, 50 and 100 µM, 48 h Inhibiting proliferation;
Inducing apoptosis

↓14-3-3 proteins, p-Bad, p-AKT/AKT,
Caspase-9, PARP;
↑Cleaved-caspase-9, Cleaved-PARP

[46]

In vitro A549 cells 5, 10, 20 and 40 µM, 24, 48, 72 and 96 h Inhibiting proliferation;
Inducing apoptosis and autophagy

↓p-Akt, p-mTOR, p62, LC3-I;
↑Beclin1, LC3-II

[47]

In vitro A549 cells 10, 20 and 40 µM, 12, 24 and 48 h Inhibiting migration and invasion ↓miR-25-5p;
↑miR-330-5p

[48]

In vitro A549 and H1299 cells 0.5, 1, 5, 10 and 20 µM, 24, 48 and 72 h Inhibiting colony formation;
Promoting apoptosis and autophagy

↓p-mTOR, p-S6, p-PI3K, p-Akt
↑LC3-II/ LC3-I, Beclin-1

Colorectal cancer
In vitro
In vivo

TCO1 and TCO2 cells; SCID mice
with organoid cells

0.6, 2, 6 and 20 µg/mL, 72 h; 20 mg/day,
21 days

Inducing necrotic lesions and apoptosis;
Inhibiting stemness and proliferation

↓cyclin D1, c-MYC, p-ERK, CD44,
CD133, LGR5

[49]
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Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

In vitro
In vivo

CC531 cells; tumor-bearing rats with
CC531 cells

15, 20, 25 and 30 µM, 24, 48 and 72 h;
200 mg/kg/day, 28 days

Reducing proliferation and migration;
Diminishing global tumor progression

↑AST, ALP, albumin;
↓cholinesterase, cholesterol, and total
protein

[50]

In vitro SW620 cells 1, 5 and 25 µM, 48 h Inhibiting tumor sphere formation;
Inducing apoptosis and autophagy

↓GP1BB, COL9A3, COMP, AGRN,
ITGB4, LAMA5, COL2A1, ITGB6, LGR5,
TFAP2A, ECM;
↑Autolysosomes, autophagosomes

[51]

In vitro
In vivo

SW480 and HT-29 cells; BALB/c
nude mice with SW480 cells

10, 20, 30, 40, 50 and 60 µM, 24 h;
100 mg/kg/day, 3 weeks

Inhibiting proliferation and tumor
volume and weight;
Inducing apoptosis

↓NNMT, p-STAT3, G2/M phase cell
cycle arrest;
↑ROS

[52]

In vitro HCT-116/L-OHP cells 10, 20, 30 and 40µM, 48 h Inhibiting proliferation, migration and
invasion;
Arresting cell cycle distribution

↓ERCC1, Bcl-2, GST-π, MRP, P-gp;
↑miR-409-3p

[53]

In vitro 5-FU resistant HCT-116 cells 5, 10, 20 and 40 µM, 48 h Inhibiting proliferation;
Inducing apoptosis;
Blocking G0/G1 phase

↓E-cadherin, β-catenin, TCF4, Axin;
↑TET1, NKD2, vimentin

[54]

In vitro SW480 cells 0.1, 0.2 and 0.4 µM, 24 h Inhibiting EMT and the expression of
DNMTs

↑E-cadherin;
↓N-cadherin, twist, snail, vimentin,
CDX2, DNMT1, DNMT3a, Wnt3a,
β-catenin

[55]

In vitro
In vivo

HCT8 and HCT8/DDP cells; Nude
mice with HCT8/DDP cells

10 µM, 48 h; 1 g/kg/week, 42 days Reducing tumor volume and weight;
Promoting apoptosis

↓Bcl-2, KCNQ1OT1;
↑cytochrome C, Bax, Cleaved-caspase-3,
Cleaved-PARP1, miR-497

[56]

In vitro HCT116, HCT8, SW480 and SW620
cells

10 µM, 24 h Reducing clone formation ↑NBR2, p-AMPK, p-ACC;
↓p-S6K/p-S6, Mtor, S-phase

[57]

In vitro SW480 and 5FU-SW480 cells 5, 10, 15, 20, 25, 30, and 50 µM, 48 and
72 h

Inducing apoptosis;
Decreasing colony formation and
migration

↓insulin, IGF-1 receptors [58]

In vitro,
In vivo

HCT116/OXA and HCT116 cells;
BALB/c nude mice with
HCT116/OXA cells

1, 2, 4, 8, 16, 32 and 64 µM, 48 h;
60 mg/kg, 3 weeks

Inhibiting tumor volumes and weights;
Decreasing the migratory ability

↓p-p65, Bcl-2, p-Smad2, p-Smad3,
N-cadherin, TGF-β;
↑Cleaved-caspase3, E-cadherin

[59]

In vitro HT-29 and DLD-1 cells 15, 20 and 25 µM, 48 h Inducing apoptosis and G2/M cell cycle
arrest

↓p-Akt, p-Bad, Bcl-2, GPX1, GPX4;
↑ROS, HSP27, Bad, cPARP, Beclin 1, p62

[60]

In vitro
In vivo

SW480 cells; female nude mice with
SW480 cells

40 µM, 24 h; 200 mg/kg, 5 days Suppressing proliferation ↓β-catenin, TCF4, miR-21, miR-130a;
↑Nkd2

[61]

In vitro HCT-116 and HCT-8 cells 2.5, 5, 10, 20 and 40 µM, 24 h Inhibiting proliferation, migration and
stem-cell like characteristics

↑CD44 [62]



Antioxidants 2022, 11, 1481 6 of 24

Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

Head and Neck Cancer
In vitro
In vivo

HNSCC cell lines SNU1076,
SNU1041, FaDu and SCC15;
C57BL/6 mice with SCC15 cells

1, 2, 5, 10, 20, 40 and 80 µM, 1, 3, 6, 12
and 24 h; 50 mg/kg, 6 weeks

Inhibiting cell viability, invasion, EMT,
and tumor formation and growth;
Enhancing ability of effector T cells to
kill cancer cells and immune response to
tumors

↓p-STAT3, TIM-3+CD4+ T cells,
PD-1+CD8+ T cells, TIM-3+CD8+ T cells,
CD4+CD25+FoxP3+ Treg cells, PD-1,
TIM-3;
↑E-cadherin, CD8+ T cells, IFN-γ

[63]

In vitro SCC-9, FaDu and HaCaT cells 50, 25, 10, 5, 2.5, 1.25 and 0.75µM, 24 and
48 h

Reducing cell viability;
Inducing cell cycle arrest;
Modifying cytoskeleton organization

↓procaspase-3, EGFR, PLD1, RPS6KA1,
p-mTOR, p-AKT, PI3K;
↑Caspase-3, PRKCG, EGF

[64]

Gastric cancer
In vitro AGS cells 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100

µM, 24, 48 and 72 h; 50 mg/kg, 6weeks
Inducing apoptosis;
Suppressing proliferation

↓Bcl-2, survivin;
↑Bax, the proportion of Sub-G1 cells

[65]

In vitro MGC-803 cells 5, 10, 15, 20, 40 and 60µM, 24, 48 and
72 h

Inhibiting proliferation and migration;
Promoting mitochondrial and DNA
damage, and apoptosis

↓∆ ψm, cyclin E1, DNMT1, p-Rb,
methylated CpG sites;
↑ROS, ATM, ATR, GADD45A, p21,
p-p53, p-γH2AX

[66]

In vitro SGC-7901 cells 10, 20, 40 and 80 µM, 48 h Suppressing proliferation, invasion, and
cytoskeletal remodeling ability;
Inducing apoptosis

↓Gli1, Foxm1, β-catenin, pseudopods,
skeleton fibers, vimentin;
↑S stage, E-cadherin

[67]

In vitro
In vivo

SGC-7901 cells; BALB/c male nude
mice with SGC-7901 cells

50 µM, 24, 48 and 96 h Decreasing migration, invasion and
growth of transplanted tumors;
Promoting cell apoptosis

↓Bcl-2, cyclin D1, CDK4;
↑miR-34a

[68]

In vitro SGC-7901 and BGC-823 cells 10, 20 and 40 µM, 24 h Inhibiting proliferation;
Promoting apoptosis and autophagy

↓Bcl-2, Bcl-xL, LC3I, PI3K, p-Akt,
p-mTOR;
↑Bax, Beclin1, ATG3, Cleaved-caspase-3,
Cleaved-PARP, ATG5, LC3II, p53, p21

[69]

In vitro
In vivo

SGC-7901 cells; Balc/c nude mice
with SGC7901 cells

25 µM, 3, 5 and 7 days; 100 mg/kg,
2 weeks

Inhibiting proliferation, gastrin and
gastric acid secretion;
Promoting apoptosis

↑Caspase-3 [70]

Bladder cancer
In vitro T24 and RT4 cells 10, 15, 20 and 25 µM, 48 and 72 h Inhibiting cell growth, migration and

invasion;
Inducing cell cycle arrest

↓Trop2, cyclin E1;
↑G2/M cell populations, p27

[71]

In vitro J82, TCCSUP and T24 cells 1, 5, 10 and 20 µM, 24, 48 and 72 h Decreasing invasion and tumorigenicity;
Increasing apoptosis

↓miR-7641;
↑p16

[72]
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Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

Prostate Cancer
In vitro PC-3 and DU145 cells 10, 20, 30, 40 and 50 µM, 12, 24 and 48 h Reducing cell viability, migration and

invasion;
Promoting apoptosis

↓PCLAF, Bcl-2, Caspase-3;
↑miR-30a-5p, Bax, Cleaved-caspase-3

[73]

In vitro Prostate-CAFs, PC-3 and NAFs cells 10, 20 and 30 µM, 8, 12 and 24 h Inducing apoptosis and ER stress;
Regulating cell cycle

↓Bcl-2, ∆Ψm;
↑Cleaved-caspase-3, Bax, Bims,
Cleaved-PARP, Puma, p-p53, ROS,
p-ERK, p-eIF2α, CHOP, ATF4

[74]

In vitro
In vivo

LNCaP and 22Rv1 cells; male
TRAMP mice

5, 25 and 50 µM, 24, 48 and 72 h;
200 mg/kg/day, 30days

Inhibiting growth;
Inducing apoptosis

↓CYP11A1, HSD3B2, StAR, testosterone,
dihydrotestosterone;
↑AKR1C2, SRD5A1, CYP17A1

[75]

In vitro 22RV1, PC-3 and DU145 cells 1, 5, 10 and 20µM, 4 days Suppressing proliferation ↓cyclin D1, PCNA, β-catenin, c-MYC;
↑p21, miR-34a

[76]

Thyroid cancer
In vitro K1, FTC-133, BCPAP and 8505C cells 10, 12.5, 20, 25, 30, 40 and 50 µM, 24 and

72 h
Inhibiting cell growth;
Inducing autophagy

↑LC3-II, Beclin-1, p-p38, p-JNK,
p-ERK1/2;
↓p62, p-PDK1, p-Akt, p-p70S6, p-p85S6,
p-S6, p-4E-BP1

[77]

In vitro TPC-1 and BCPAP-R cells 2.5, 5, 10, 20 and 40 µM, 24 h Inhibiting cell viability, invasion,
migration and EMT

↓MMP-9, MMP-2, N-cadherin, vimentin,
fibronectin, p-JAK, p-JAK2, p-JAK3,
p-STAT1, p-STAT2;
↑E-cadherin, miR-301a-3p

[78]

Liver cancer
In vitro
In vivo

HepG2, Huh-7 and MHCC-97H cells;
BALB/c-nu nude mice with HepG2
cells

1.2, 2.4, 4.8 and 9.6 µg/mL, 24 and 48 h;
120 and 240 mg/kg/day, 15 days

Reducing tumor volume and weight,
and angiogenesis

↓MDSCs, GM-CSF, G-CSF, TLR4,
MyD88, p-IKKα, p-IKKβ, NF-κB, TNF-α,
IL-6, IL-1β, PGE2, COX-2, VEGF, CD31,
α-smooth

[79]

In vitro HepG2 and HuT78 cells 5 and 10 µM, 24 h Inducing cell death ↓lactate, ldh-a, mct-1, mdr-1, stat-3,
HIF-1α, HCAR-1;
↑NO

[80]

In vitro HepG2 cells 20, 50, 80 and 100 µM, 24, 48 and 72 h Inhibiting proliferation, migration and
invasion;
Promoting apoptosis

↓HSP70, eHSP70, TLR4 [25]
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Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

In vitro
In vivo

Bel-7,402 and HepG2 cells; male
BALB/c mice with H22 cells

15 and 30 µM, 24, 48 and 72 h;
100 mg/kg/day, 14 days

Inducing apoptosis, G2/M cell cycle
arrest;
Modulating gut microbiota

↓p-PI3K, p-Akt, p-mTOR, tumors
weights and sizes;
↑Cleaved-caspase-3, Lactobacillus,
Epsilonbacteraeota, Helicobacterac-eae,
Campylobacterales, Helicobacter,
Escherichia-shigella, Bifidobacterium,
Campylobacteria

[81]

In vitro
In vivo

HepG2 and SK-HEP1 cells; male
BALB/c mice H22 and HepG2 cells

20, 40, 60, 80, 100, 120 and 140 nM, 24 h;
100 mg/kg curcumin or Zn
(II)-curcumin, 2 weeks

Inhibiting tumor growth;
Regulating gut microbiota;
Improving intestinal permeability

↓Firmicutes, unclassified Lachnospiraceae,
Clostridium cluster XIVa,
Pseudoflavonifractor, Oscillibacter;
↑Bacteroidetes, Barnesiella,
Unclassified_Porphyromonadaceae,
Paraprevotella, Prevotella, zonula
occludens-1, occludin

[82]

Ovarian cancer
In vitro SKOV3 cells 10, 20, 30, 40 and 50 µM, 6, 12 and 24 h Inhibiting migration and invasion ↓STAT3, fascin [83]
In vitro SKOV3 cells 20 µM, 96 h Inhibiting cell migration and EMT ↓DNMT3a, β-catenin, cyclin D1, c-Myc,

fibronectin, vimentin;
↑SFRP5, E-cadherin

[84]

In vitro SK-OV-3 and A2780 cells 5, 10, 20, 40 and 80 µM, 24, 48 and 72 h Inducing apoptosis and autophagy ↓p62, p-AKT, p-mTOR, p-p70S6K;
↑Caspase-9, PARP, Atg3, Beclin-1,
LC3B-I/II

[85]

In vitro
In vivo

SKOV3 and A2780 cells; BALB/c
athymic mice with A2780 cells

10, 20 and 40µM, 24, 48 and 72 h;
15 mg/kg/2days, 5 weeks

Inhibiting proliferation;
Promoting apoptosis

↓PCNA, miR-320a;
↑Bax, Cleaved-caspase-3,
circ-PLEKHM3, SMG1

[86]

Oral Cancer
In vitro HSC-4 and Ca9-22 cells 15 µM, 48 h Decreasing invasion, migration and EMT ↓vimentin, p-c-Met, p- ERK, pro-MMP9;

↑E-cadherin
[87]

Pancreatic Cancer
In vitro Panc-1 and MiaPaCa-2 cells 6, 10 and 12µM, 24 h Reducing cell survival;

Inducing apoptosis and DNA damage
↓G0/G1-fraction;
↑yH2AX-MFI, G2/M-fraction, S-phase
cells

[88]

In vitro PANC-1 cells 2.5, 5, 10 and 20µM, 72 h Inducing apoptosis ↑Cleaved-caspase-3, miR-340,
Cleaved-PARP;
↓PARP, XIAP

[89]

In vitro Patu8988 and Panc-1 cells 5, 10, 15 and 20 µM, 48 and 72 h Inhibiting migration and invasion;
Inducing apoptosis

↓NEDD4, p-Akt, p-mTOR;
↑PTEN, p73, β-TRCP

[90]
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Table 1. Cont.

Study Type Models Dose & Duration Effects Mechanisms Ref.

Cervical Cancer
In vitro Siha cells 5, 15, 30 and 50 µM, 6, 12, 24 and 48 h Inhibiting proliferation;

Inducing G2/M cell cycle arrest,
apoptosis, autophagy

↓cyclins B1, cdc25;
↑ROS, p62, LC3I/II, Cleaved-caspase-3,
Cleaved-PARP, p53, p21

[91]

In vitro Siha cells 20 µM, 72 h Decreasing EMT and migration ↓N-cadherin, vimentin, slug, Zeb1, PIR,
pirin;
↑E-cadherin

[92]

Tongue Cancer
In vitro CAL 27 cells 10, 25, 50 and 100 µM, 16 and 24 h Inhibiting proliferation and migration;

Promoting apoptosis and S-phase cell
cycle arrest

↓Bcl-2;
↑Bax, Cleaved-caspase-3, S-phase cells

[93]

Brain Cancer
In vitro SNB19 and A1207 cells 10, 15, 20 and 25 µM, 48 and 72 h Suppressing proliferation, migration and

invasion;
Inducing apoptosis and cell cycle arrest

↓NEDD4, Notch1, p-Akt;
↑G2/M phase

[94]

Abbreviations: ACSL4, acyl-CoA synthetase long-chain family member 4; Akt, protein kinase B; AKR1C2, Aldo-Keto reductase 1C2; ALP, alkaline phosphatase; AST, aspartate
transaminase; ATF4, activating transcription factor 4; Atg3, autophagy related 3; Atg5, autophagy related 5; Bax, Bcl-2 associated X protein; BACH, BTB domain and CNC homolog
1; Bcl-2, B-cell lymphoma-2; Bim, Bcl-2 interacting mediator of cell death; Bcl-xL, B-cell lymphoma-extra-large; Caspase-3, cysteinyl aspartate specific proteinase 3; CDK1, cyclin
dependent kinase 1; CDK4, cyclin dependent kinase 4; CDX2, caudal type homeobox 2; CHOP, C/EBP homologous protein; COX-2, cyclooxygenase-2; CYP11A1, Cytochrome P450scc;
HSD3B2, type 2 3β-hydroxysteroid dehydrogenase; CYP17A1, Cytochrome P450(17α); DDIT3, DNA damage inducible transcript 3; DLC1, deleted in liver cancer 1; DNMT1, DNA
methyltransferase 1; DNMT3a, DNA Methyltransferase 3 Alpha; ECM, extracellular matrix; ERCC1, excision repair cross-complementing gene; EGFR, phospho-epidermal growth factor
receptor; eHSP70, extracellular HSP70; eIF2α, eukaryotic translation initiation factor-2α; EMT, Epithelial-mesenchymal transition; Epcam, epithelial cell adhesion molecule; ER stress,
endoplasmic reticulum stress; ERK, extracellular regulated protein kinases; FTH1, ferritin heavy chain 1; G-CSF, granulocyte-colony stimulating factor; GFPu, a short degron CL1 fused
to the COOH-terminus of green fluorescent protein; GM-CSF colony-stimulating factor; Gli1, Glioma-associated oncogene family zinc finger 1; Gli2, Glioma-associated oncogene family
zinc finger 2; GPX4, glutathione peroxidase 4; GSH, glutathione; HO-1, hemeoxygenase-1; HSP70, heat shock protein 70; GST-π, glutathione thio-transferase π; HSPA5, heat shock
70 kDa protein 5; IL-1β, interleukin-1β; IL-6, interleukin-6; IKK, inhibitor of nuclear factor kappa-B kinase; JAK, Janus kinase; ITGB1, integrin beta 1; JNK, c-Jun N-terminal kinase; LC3,
microtubule-associated protein light chain 3; MDA, malondialdehyde; MDSCs, myeloid-derived suppressor cells; MMP-2, matrix metalloprotein-2; MMP-9, matrix metalloprotein-9;
MRP, multidrug resistance-related protein; mTOR, mammalian target of rapamycin; MyD88, myeloid differentiation primary response 88; Nanog, Nanog Homeobox; NEDD4, neural
precursor cell expressed developmentally down-regulated protein 4; NFE2L2, NFE2-related factor 2; NNMT, Nicotinamide N-Methyltransferase; NF-κB, nuclear factor kappa-B;
Nrf2, nuclear factor-erythroid 2-related factor-2; Oct4, Octamer-binding transcription factor 4; PARK7, Parkinson’s disease protein 7; P300, histone acetyltransferase p300; p38 MAPK,
p38 mitogen-activated protein kinase; PARP, poly (ADP-ribose) polymerase; PCLAF, PCNA clamp associated factor; PD-1, Programmed cell death protein 1; PD-L1, Programmed
death-ligand 1; PGE2, prostaglandin E2; PI3K, Phosphatidylinositol-3-kinase; P-gp, P-glycoprotein; PSMB, proteasome 20S subunit beta; PTEN, phosphatase and tensin homolog; PTP1B,
Protein tyrosine phosphatase 1B; PTEN, Phosphatase and tensin homolog deleted on chromosome 10; PTCH1, Patched; PUMA, p53 upregulated modulator of apoptosis; RELA, v-rel
reticulo-endotheliosis viral oncogene homolog A; ROS, Reactive oxygen species; sE-cad, soluble E-cadherin; SFRP5, secreted frizzled-related protein 5 gene; Smad2/3, SMAD family
member 2/3; SMG1, suppressor of morphogenesis in genitalia 1; SMO, Smoothened; SOD, superoxide dismutase; Sox2, Sex determining region Y-box 2; SRD5A1, steroid 5α-reductase
type 1; STAT, signal transducer and activator of transcription; StAR, steroidogenic acute regulatory protein; STAT3, signal transducer and activator of transcription 3; TCF4, transcription
factor 4; TET1, tet methyl-cytosine dioxygenase 1; TGF-β, transforming growth factor beta; TIM-3, T-cell immunoglobulin and mucin-domain 3; TLR4, toll-like receptor 4; TNF-α,
tumor necrosis factor α; Tregs, Regulatory T cells; TRAMP, the transgenic adenocarcinoma of the mouse prostate; USF1, upstream transcription factor 1;VEGF, vascular endothelial
growth factor; Wnt3a, Wnt family member 3a; XIAP, X-linked inhibitor of apoptosis; Zeb1, Zinc finger E-box binding homeobox 1; ZO-1, zonula occludens-1; ∆Ψm, mitochondrial
membrane potential.
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Abbreviations: Akt, protein kinase B; Atg3, autophagy related 3; Atg5, autophagy
related 5; Bax, Bcl-2 associated X protein; Bcl-2, B-cell lymphoma-2; Caspase-3, cysteinyl
aspartate specific proteinase 3; Caspase-9, cysteinyl aspartate specific proteinase 9; CDK4,
cyclin dependent kinase 4; EGFR, phospho-epidermal growth factor receptor; ERK, extra-
cellular regulated protein kinases; FTH1, ferritin heavy chain 1; FTL, ferritin light chain;
G1, where cells decide to grow and divide or enter the G0 phase (enter quiescence); G2,
preparation for mitosis; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; IKK, inhibitor of
nuclear factor kappa-B kinase; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-1β, interleukin-
1β; LC3, microtubule-associated protein light chain 3; M, mitosis; mTOR, mammalian target
of rapamycin; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor
kappa-B; Oct4, Octamer-binding transcription factor 4; p38 MAPK, p38 mitogen-activated
protein kinase; PARP, poly (ADP-ribose) polymerase; PI3K, phosphatidylinositol-3-kinase;
ROS, reactive oxygen species; S, DNA synthesis; Smad2/3, SMAD family member 2/3;
Sox2, Sex determining region Y-box 2; TFRC, transferrin receptor; STAT, signal transducer
and activator of transcription; TGF-β, transforming growth factor beta; TLR4, toll-like
receptor 4; TNF-α, tumor necrosis factor α; VEGF, vascular endothelial growth factor.

2.1. Inhibiting Cancer Cell Proliferation

Uncontrolled cell proliferation is a hallmark of cancer, and anti-proliferation is an
important therapeutic intervention [95–97]. Many studies have found that curcumin could
inhibit cancer cell proliferation. For example, a study showed that curcumin could reduce
the viability of triple-negative breast cancer MDA-MB-231 and MDA-MB-468 cells, and
it could also inhibit colony proliferation via inhibiting the Hedgehog pathway and the
downstream target gene expression of PTCH1, SMO, Gli1 and Gli2 [27]. Furthermore,
curcumin showed inhibition effects on the proliferation of prostate cancer PC-3 and DU145
cells through significantly increasing the expression of miR-34a [76]. Meanwhile, the cell
cycle, a highly regulated process, is involved in enabling cell growth, cell division and
duplication of genetic material [98]. Cyclin is often overactive in cancer cells, leading to
uncontrolled proliferation of cancer cells, and targeting the cell cycle is considered as one of
the targets of cancer therapy [99]. The cell cycle is composed of four phases: G1 (where cells
decide to grow and divide or enter the G0 phase (enter quiescence)), S (DNA synthesis),
G2 (preparation for mitosis), and M (mitosis) [100,101]. Cell cycle proteins are aberrantly
activated in human cancers, which plays a pathogenic role in the development of most
tumors [98]. A study found that curcumin could induce subG1 population accumulation
and trigger G2/M arrest in breast cancer MCF-7, MDA-MB-453 and MDA-MB-231 cells,
and upregulate the expression levels of p21 by targeting NF-κB signaling [36]. In addition,
similar effects of curcumin on inducing G2 phase cell accumulation was observed in
head and neck cancer SCC-9 cells, which indicated that curcumin could induce G2/M
cell cycle arrest through inhibiting phosphatidylinositol-3-kinase (PI3K)/protein kinase B
(Akt)/mammalian target of the rapamycin (mTOR) pathway [64].

Some in vivo studies have found that curcumin can inhibit tumor growth. For ex-
ample, curcumin could reduce lung tumor volume and weight in the BALB/c nude mice
xenograft model by inhibiting circ-PRKCA [38]. Moreover, curcumin suppressed ovarian
cancer growth in xenograft models by up-regulating circ-PLEKHM3 [86]. Curcumin could
also reduce a transformative phenotype and tumor formation in the 4-nitroquinoline-1-
oxide-induced head and neck cancer model, and tumor volume was significantly reduced
after curcumin treatment [63]. Another study found that curcumin significantly reduced
tumor weight and tumor size in BALB/c nude mice with SGC-7901 gastric cancer cells’
subcutaneous xenografts by promoting miR-34a expression [68]. In addition, the liver
tumor volume and weight were significantly decreased by curcumin in a HepG2 xenograft
mouse model [79].
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2.2. Inhibiting Invasion and Migration

Cancer cells have the ability to migrate and invade extensively, and cancer invasion
and metastasis are landmark events in the transformation of locally grown tumors into
systemic, metastatic, and life-threatening cancers [102,103]. Activation of the epithelial-
mesenchymal transition (EMT) program may be a potential mechanism of cancer migration
and invasion [104], conferring metastatic properties to cancer cells through raising invasive-
ness, mobility and resistance to apoptotic stimuli [105]. Inhibition of cancer cell migration
and invasion may be one of the most essential anticancer mechanisms of curcumin. A study
found that curcumin reduced breast cancer MCF-7 cell migration, as shown in the wound
healing assay. At the same time, the results of the Transwell invasion assay also showed
that curcumin significantly reduced MCF-7 cell invasion. The potential mechanisms might
be attenuating lncRNA H19 [29]. Another study suggested that the migration and inva-
sion of papillary thyroid cancer TPC-1 and BCPAP-R cells were suppressed by curcumin
through up-regulation of miR-301a-3p [78]. Furthermore, curcumin significantly inhibited
wound closure and invasion of pancreatic cancer Patu8988 and Panc-1 cells, which was
mediated by inhibiting neural precursor cell expressed developmentally down-regulated
protein 4 (NEDD4)/Akt/mTOR pathway [90]. Additionally, curcumin supplementation
significantly reduced N-cadherin, twist, snail and vimentin, and increased E-cadherin in
colorectal cancer SW480 cells, indicating that curcumin could suppress the EMT process by
suppressing caudal type homeobox 2 (CDX2)/Wnt family member 3a (Wnt3a)/β-catenin
pathway [55]. Moreover, curcumin decreased EMT of cervical cancer SiHa cells via pirin-
dependent mechanism, enhanced the expression of E-cadherin and reduced the expression
of N-cadherin, vimentin, slug and Zinc finger E-box binding homeobox 1 (Zeb1) through
decreasing the levels of Pirin, which was further verified after Pirin knockdown [92].

2.3. Inducing Cell Apoptosis

Apoptosis is a kind of programmed cell death that occurs in an ordered and coordi-
nated manner under pathological and physiological conditions and plays a crucial role in
organism development and tissue homeostasis [106]. Apoptosis is associated with TNF-α,
ROS and the activation of cysteine-protease and caspases [107]. During normal conditions,
apoptosis is necessary for homeostasis but, in cancer, cells lose the ability to undergo
apoptosis-induced death, leading to uncontrolled cell proliferation, which further leads to
tumor survival, therapeutic resistance and cancer recurrence [108,109]. It was found that se-
lectively inducing apoptosis in cancer cells has been considered as a promising treatment for
many cancers [110]. A study found that the apoptotic ratios of breast cancer MDA-MB-231
and MDA-MB-468 cells were increased after treatment of curcumin, which was mediated
by increasing the level of cysteinyl aspartate specific proteinase 9 (Caspase-9), and reducing
the level of B-cell lymphoma-2 (Bcl-2) [32]. Another study pointed out that curcumin
promoted prostate cancer PC-3 and DU145 cells apoptosis via enhancing the expression
of miR-30a-5p and downregulating PCNA clamp associated factor (PCLAF) expression
to increase the levels of Bcl-2 associated X protein (Bax) and Cleaved-cysteinyl aspartate
specific proteinase 3 (Caspase-3), and to decrease the expression of Bcl-2 and Caspase-3 [73].
Furthermore, curcumin exerted a pro-apoptotic effect in cervical cancer Siha cells through
increasing the expression levels of Cleaved-poly (ADP-ribose) polymerase (PARP) and
Cleaved-caspase-3 [91]. Curcumin could also effectively promote the numbers of apoptotic
tongue cancer CAL 27 cells, and decrease the expression of Bcl-2, increase the expressions
of Bax and Cleaved-caspase-3 by regulating oxygen-related signaling pathways [93].

2.4. Inducing Autophagy

Autophagy is another kind of programmed cell death, which is essential for main-
taining cellular homeostasis in stressful conditions [111]. Dysregulation of autophagy has
implications in disease [111,112]. Enhanced autophagy could enhance anticancer immune
responses, therefore targeting autophagy is a potential approach to improve the efficacy of
current cancer treatments [113]. Curcumin-induced autophagy in cancers is one of the main
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concerns of many research projects. A study pointed out that curcumin could induce the
formation of autophagic vesicle by suppressing AKT/mTOR/p70S6K pathway in ovarian
cancer A2780 cells, and enhancing the expression of microtubule-associated protein light
chain 3B I/II (LC3B-I/II), autophagy-related 3 (Atg3) and Beclin1 [85]. In another study,
curcumin inhibited LC3I expression, and enhanced LC3II, Beclin1, Atg3 and autophagy
related 5 (Atg5) expression in gastric cancer SGC-7901 and BGC-823 cells. The potential
mechanisms might be inhibiting PI3K/Akt/mTOR pathway and activating P53 signaling
pathway [69]. Meanwhile, curcumin was found to induce autophagy through suppressing
PI3K/Akt/mTOR pathway, decreasing p62 expression, and increasing the expression of
Beclin1 and LC3-II in lung cancer A549 cells [47]. Besides, curcumin could downregulate
the expression of p62, and increase autolysosome and the expression of Beclin1 and LC3-II,
thereby inducing autophagy [41].

2.5. Suppressing Cancer Cell Stemness

Cancer stem cells have self-renewal ability, which may lead to therapeutic resistance,
tumor progression and relapse [114,115]. Cancer cell stemness refers to the stem cell-like
phenotype of cancer cells [116]. Therefore, targeting cancer cell stemness may provide more
specific treatments and exert better efficacy, and curcumin targeting cancer cell stemness
has been shown to be one of the mechanisms of cancer treatment. CD44 and CD133 are well-
known markers of cancer stem cells. In a study, curcumin supplementation significantly
reduced the expression of CD44 and the number and size of tumor sphere formation of
colon cancer HCT-116 and HCT-8 cells, which indicated that curcumin could inhibit the
stem-cell like characteristics in colon cancer cells [62]. Moreover, curcumin could activate
the Hippo pathway in lung cancer A549 and NCI-H1299 cells, and inhibit the expression
of CD133, epithelial cell adhesion molecule (Epcam) and Octamer-binding transcription
factor 4 (Oct4) [43]. Furthermore, curcumin significantly inhibited stem cell-like properties
by reducing CD44+CD24− cell subpopulation, the expression of Oct4, Nanog and Sex
determining region Y-box 2 (Sox2) in breast cancer MCF-7 and MDA-MB-231 cells [33].
Meanwhile, another study found that curcumin inhibited the expression of Oct4 and Sox2
by suppressing Hedgehog/Gli1 pathways in breast cancer MDA-MB-231 and MDA-MB-468
cells [27].

2.6. Increasing ROS Production

ROS is inextricably linked to cancer progression and therapy, which may be associated
with complex ROS homeostasis in cancer cells and the tumor microenvironment [117]. ROS
may exert cytotoxic effects on cancer cells, leading to malignant cell death, thereby limiting
cancer progression [118,119]. A high level of ROS may provide avenues for cancer therapy
by activating various cell death pathways, such as necrosis, apoptosis, autophagy and
ferroptosis; therefore, increasing ROS is one of the main anticancer strategies [120,121].
Some studies revealed that curcumin could induce excessive ROS generation, then induce
oxidative stress in cancer cells. A study showed that curcumin promoted ROS production
in cervical cancer Siha cells [91]. In another study, the ROS levels were elevated in gastric
cancer MGC-803 cells after treatment with curcumin, suggesting that curcumin had a
pro-oxidative effect [66]. Treatment with curcumin also increased ROS production in
colorectal cancer SW480 cells [52]. Additionally, curcumin treatment could enhance ROS
levels in breast cancer MDA-MB-231 cells [24]. Curcumin-induced ROS upregulation also
triggered endoplasmic reticulum stress in prostate cancer-associated fibroblasts via the
PERK-eIF2α-ATF4 axis, ultimately leading to apoptosis [74].

2.7. Effects on Gut Microbiota

Gut microbiota could play a vital role in health and diseases [122]. Gut dysbiosis may
lead to cancer development, such as colon, gastric and breast cancers [123,124]. There are
several strategies that can be used to target gut microbiota to prevent or treat cancer, such as
dietary interventions, fecal microbiome transplant and targeted antibiotic approaches [125].
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The studies also showed that some natural products could be anticancer, via targeting gut
microbiota [126]. Curcumin significantly altered the gut microbiota composition in the H22
mice xenograft liver tumor model, and the abundances of Bifidobacterium and Lactobacillus
were elevated. The oral bioavailability of curcumin was enhanced by increasing abundance
of Escherichia_shigella [81]. Zinc complexes of curcumin attenuated degradation of intestinal
mucus barrier and gut dysbiosis in a rat hepatocellular carcinoma model, and enhanced
chemosensitizer for doxorubicin via gut microbiota. The ratio of Firmicutes/Bacteroidetes
was reduced [82]. Moreover, curcumin could reduce the tumor burden in AOM-treated
Il10−/− mice through increasing the relative abundance of Lactobacillales and decreasing
the relative abundance of Coriobacterales [127]. In the future, more studies are necessary to
evaluate the effect of curcumin on various cancers via targeting gut microbiota.

2.8. Adjuvant Therapy for Cancers

The biggest obstacle in targeting cancer therapy is the inevitable emergence of drug
resistance in the early or late stages of drug treatment, which is a major clinical prob-
lem [128]. Clinical resistance can lead to treatment failure and eventual patient death [129].
Therefore, curcumin has been used as a promising adjuvant to improve the efficacy of
many chemotherapeutic drugs. For example, incubation of curcumin with anticancer
drugs such as cisplatin, doxorubicin or methotrexate, respectively, significantly reduced the
IC50 of anticancer drugs and sensitized liver cancer HepG2 cells to anticancer drugs [80].
In addition, the combination of curcumin and metformin may have a synergistic effect,
inhibiting the proliferation, migration and invasion of gastric cancer AGS cells [130]. It has
also been reported that the combination of curcumin and 3′,4′-didemethylnobiletin induced
cell apoptosis and cell cycle arrest of colon cancer HCT-116 cells more effectively than indi-
vidual compounds [131]. In another study, in vitro and in vivo experiments demonstrated
that curcumin reduced oxaliplatin resistance in colorectal cancer by inhibiting transform-
ing growth factor beta (TGF-β)/SMAD family member 2/3 (Smad2/3) signaling [59]. In
addition, curcumin combined with photodynamic therapy has better anticancer activity for
several cancers, such as oral, kidney, breast, prostate, bladder and cervical cancer, and the
possible mechanism is through increasing ROS generation and inducing apoptosis [132].

2.9. Other Mechanisms

In addition, curcumin has other anticancer mechanisms. It was demonstrated that
the total iron content of breast cancer MCF-7 and MDA-MB-231 cells was enhanced af-
ter treatment with curcumin, indicating that curcumin triggered ferroptosis [30]. An-
other study found that curcumin decreased mitochondrial transmembrane potential and
increased phosphor-γH2AX (Ser139) of gastric cancer MGC-803 cells, which indicated
that curcumin could trigger mitochondrial damage and DNA damage [66]. Addition-
ally, curcumin suppressed the inflammatory response by inhibiting the toll-like receptor 4
(TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway, decreasing the expression of
TLR4, myeloid differentiation primary response 88 (MyD88), NF-κB, TNF-α, interleukin-6
(IL-6), interleukin-1β (IL-1β), prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) in
liver cancer. Meanwhile, it also inhibited tumor angiogenesis via downregulating the
expression levels of vascular endothelial growth factor (VEGF), CD31 and αSMC [79].

3. Results from Clinical Trials

Several clinical trials have been conducted to assess the effects of curcumin on can-
cers (Table 2). For instance, a quasi-experimental design recruited 40 cervical carcinoma
stage IIB-IIIB patients to ingest curcumin (4 g/day, 20 persons) or placebo (20 persons)
for 7 days, who also received radiation therapy simultaneously. The results revealed that
intake of curcumin decreased the level of the anti-apoptotic protein survivin in 15 patients
(75%), and increased the level of survivin in five (25%). On the other hand, eight pa-
tients (40%) in the placebo group decreased the level of survivin, and 12 patients (60%)
increased the level of survivin. The result indicated that curcumin was an effective ra-
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diosensitizer in the treatment of cervical cancer patients [133]. Moreover, 150 women
participants with advanced and metastatic breast cancer received intravenous administra-
tion of curcumin (300 mg/week) + paclitaxel (80 mg/m2 body surface area) or placebo +
paclitaxel (80 mg/m2 body surface area) for 12 weeks. The result showed that curcumin
improved objective response rates and patient self-assessed performance status, and mean-
while reduced fatigue and did not decrease quality of life [134]. Besides, in 97 prostate
cancer patients daily ingested with 1.44 g curcumin for 6–36 months, the elevation of
prostate-specific antigen was suppressed during the curcumin administration period [135].
However, curcumin showed no significant effect in some cases. For example, a random-
ized controlled trial showed that no significant efficacy was observed with nanocurcumin
supplementation (120 mg/day) in prostate cancer patients treated with radiation [136].
Additionally, treatment with curcumin (6 g/d) for 6 weeks had no significant benefits in
metastatic castration-resistant prostate cancer [137]. The inconsistent results could be due
to the intricate factors involved in clinical trials, and further research is necessary.
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Table 2. The effects of curcumin on cancers from clinical trials.

Therapy Study Type Subjects Administration Methods Dose & Duration Outcomes Ref.

Cervical Cancer
Curcumin +
radiation

Quasi-experiment 40 advanced cervical cancer
patients

Oral administration 4 g/day, 7 days Lowering survivin levels [133]

Breast Cancer
Curcumin +
paclitaxel

RCT 150 women with metastatic
and advanced breast cancer

Intravenous administration 300 mg/week (curcumin), 12 weeks;
80 mg/m2 body surface area/week
(paclitaxel), once a week for
12 consecutive weeks

Improving objective response
rate and patient self-assessed
overall performance status

[134]

Colorectal Cancer
Curcumin C3
complex +
standard-of-care
chemotherapy
(FOLFOX ±
bevacizumab)

Open-labelled RCT 27 patients with stage IV
disease metastatic colorectal
cancer, aged >18 y

Oral administration 2 g curcumin C3 complex/d (80%
curcumin and 20%
dimethoxy-curcumin and
bisdemethoxycurcumin),
≤ 12 cycles of chemotherapy

Curcumin was safe and
tolerable, increasing overall
survival and objective response
rate

[138]

Curcuminoids
capsules

RCT 72 patients with stage 3
colorectal cancer, aged >20 y

Oral administration 500 mg/day, 8 weeks Lowering serum C-reactive
protein levels, enhancing
functional scales and the global
quality of life

[139]

Prostate Cancer
Curcumin RCT 97 prostate cancer patients Oral administration 1440 mg/day, 6–36 months Reducing prostate specific

antigen
[135]

Nanocurcumin RCT 64 prostate cancer patients Oral administration 120 mg/day, 3 days before and
during radiotherapy

Not efficacious [136]

Curcumin +
chemo-therapy with
docetaxel

Phase II RCT 50 metastatic
castration-resistant prostate
cancer patients, aged >18 y

Oral administration 6 g/d (curcumin), 3 weeks;
75 mg/m2 body surface area
(docetaxel), first day of every
3 weeks for 6 cycles

Not efficacious [137]

Pancreatic Cancer
Gemcitabine +
Meriva® (curcumin
complexed with soy
lecithin, 1:2)

Single center, single
arm, prospective
phase II trial

52 pancreatic cancer patients,
aged >18 y

Oral administration 2000 mg (Meriva®), 28 day;
10 mg/m2/min (gemcitabine), on
days 1, 8, 15

Raising the efficiency of
gemcitabine translating in a
response rate

[140]
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Table 2. Cont.

Therapy Study Type Subjects Administration Methods Dose & Duration Outcomes Ref.

Endometrial Cancer
Curcumin
phytosome

Open-label,
non-randomized
phase II study

7 endometrial cancer
patients

Oral administration 2 g/day, 2 weeks Reducing major
histocompatibility complex
expression levels on leukocytes,
inducible T cell costimulatory
expression by CD8+ T cells and
the frequency of monocytes,
increasing CD69 levels on
CD16− NK cells

[141]

Oral Cancer
APG-157 (including
curcumin)

Phase II RCT 13 normal subjects and 12
patients with oral cancer

Oral administration 100 and 200 mg, each hour for 3
consecutive hours

Reducing inflammation,
Bacteroides and ratio of
Firmicutes/Bacteroidetes

[142]

Abbreviations: FOLFOX, folinic acid/5-fluorouracil/oxaliplatin chemotherapy; RCT, Randomized controlled trial.
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4. Enhancing Curcumin Bioavailability

Curcumin has shown anticancer activities. However, some limiting factors, such
as its poor water solubility and extremely low oral bioavailability, could reduce its ther-
apeutic effects [143]. Many techniques have been developed and applied to overcome
this limitation [144]. For instance, protein/polysaccharide-decorated folate as a targeted
nanocarrier of curcumin (fCs-Alg@CCasNPs) prolonged the sustained release of curcumin,
and improved the bioavailability of curcumin, and in vivo and in vitro experiments demon-
strated that fCs-Alg@CCasNPs had a higher therapeutic effect than treatment with free
curcumin on pancreatic cancer and Ehrlich carcinoma [145]. Besides, a novel nano-system
MSN_CurNQ was formed by loading curcumin and naphthoquinone (NQ) into the pores
of mesoporous silica nanoparticles (MSN), aiming to increase the drug delivery of CurNQ
via the enhanced permeation and retention effect and sustained release. The results of
cellular experiments showed that MSN_CurNQ had tumor-specific toxicity and reduced
the viability of cancer cells to a greater extent compared to healthy fibroblast cell lines [146].
Curcumin-loaded Gemini surfactant nanoparticles also significantly enhanced the solubility,
uptake and cytotoxicity of curcumin, and inhibited breast cancer MCF-7, SkBr-3 and MDA-
MB-231 cell proliferation by inducing apoptosis after effective delivery of curcumin [147].
Moreover, hydrophilic hyaluronic acid (HA) conjugated with hydrophobic curcumin form
amphiphilic HA-ADH-CUR conjugates, and then subsequently self-assembled in aqueous
solution to form nanoparticles HA@CUR NPs, effectively accumulated at the tumor site
through endocytosis and attained a superior therapeutic effect of tumor growth inhibi-
tion [148]. Furthermore, loading curcumin onto the non-spherical delivery system zinc
oxide-β cyclodextrin 3-mercaptopropionic acid (ZnO-βCD-MPA) conjugated folic acid to
generate a ZnO-βCD-MPA-FA-curcumin formulation for aqueous delivery of curcumin,
which allowed for sustained release of curcumin to enhance its targeting, bioavailability
and release profile. Compared to free CUR, this formulation had a stronger anticancer effect
on the breast cancer MDA-MB-231 cells via inducing apoptosis and had no cytotoxic effect
on HEK293 normal cells [149]. In addition, curcumin–cyclodextrin/cellulose nanocrystal
nano complexes were more soluble in water than free curcumin and had stronger cytotoxic
activity against prostate cancer PC-3 and DU145 cells and colon cancer HT29 cells [150].

5. Safety of Curcumin

Curcumin has been permitted by the U.S. Food and Drug Administration as “generally
regarded as safe”, and 180 mg/day of curcumin supplementation is reasonable [151,152].
Some studies revealed that curcumin showed no toxic effects in humans, and was safe
and tolerable [153]. However, some adverse effects of curcumin have been observed. For
example, a phase I clinical trial of oral curcumin found that curcumin was well tolerated,
but diarrhea was observed in some patients [154]. Another study showed that curcumin
was a safe and tolerable adjunct, but nausea was observed in some patients [138]. In
addition, curcumin patients group had urinary frequency [135].

6. Conclusions and Perspectives

Cancer is a serious public health problem. Many studies have reported the effective-
ness of curcumin in the prevention and management of various cancers, such as thyroid,
breast, gastric, colorectal, liver, pancreatic, prostate and lung cancers. The potential mech-
anisms include inhibiting cancer cell proliferation, suppressing invasion and migration,
promoting cell apoptosis, inducing autophagy, decreasing cancer stemness, increasing reac-
tive oxygen species production, reducing inflammation, triggering ferroptosis, regulating
gut microbiota, and adjuvant therapy. Meanwhile, several nanomaterials have been devel-
oped to prolong the release or targeted delivery of curcumin to cancer tissues, and further
enhance the bioavailability and anticancer activities of curcumin. Moreover, the studies
have shown that curcumin is generally safe and well tolerated, although some side effects
have been observed, such as diarrhea and nausea. In the future, the anticancer activities
of curcumin on more cancers should be evaluated, and the relative mechanisms should
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be explored. In addition, more methods should be studied to improve the bioavailability
of curcumin in order to increase its anticancer activities. Furthermore, more clinical trials
should be carried out to assess the anticancer effects of curcumin on human beings. This
paper will be helpful for research and development of the third-generation function food
containing curcumin.
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