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SUMMARY
Calculations of viscoelastic perturbations of an incompressible £uid earth initially in
hydrostatic equilibrium have been conventionally based on models consisting of iso-
compositional layers. A special case is the incompressible, isocompositional half-space,
for which the initial density distribution is spatially uniform. One of the de¢ciencies of
this model is that it ignores the increase of the initial density with depth in the earth's
interior due to compressional and compositional strati¢cation.

The present study is concerned with load-inducedMaxwell viscoelastic perturbations
of a half-space with a compressional and compositional initial density gradient. Analytic
solutions to this problem are deduced for the limiting cases of purely compressional
strati¢cation (earth model P) and purely compositional strati¢cation (earth model C).

The comparison of the solutions for these earth models with that for the special case
of no density strati¢cation (earth model R) shows that e¡ects due to the initial density
gradient become important for perturbations whose lateral scale length exceeds about
103 km. Using axisymmetric models of the Pleistocene Fennoscandian and Canadian
ice sheets and considering the vertical surface displacements near the load axes, the
maximum di¡erences are found to be about 10 m (Fennoscandia) or 35 m (Canada) at
the beginning of relaxation for earth models P and R and about 50 m (Fennoscandia) or
150 m (Canada) at intermediate times of relaxation for earth models C and R.

Key words: Canadian ice sheet, density, Fennoscandian ice sheet, glacial rebound,
isostasy, viscoelasticity.

1 INTRODUCTION

For geodynamic processes of intermediate periods (e.g.
glacial^isostatic adjustment, long-period tidal deformation),
it is necessary to account for the deviations from elasticity
in the earth's interior. As long as the anelastic response can
be described by a linear^viscoelastic constitutive equation,
the formulation of the incremental ¢eld theory of viscoelasto-
dynamics is straightforward and solutions can be derived by
means of Laplace-transform methods (Peltier 1974; Wu &
Peltier 1982). The initial state has usually been assumed to be
hydrostatic and can be included in the theory in two ways.
One way is to parametrize seismologically inferred spherically
symmetric earth models in terms of density, pressure and
gravity, which is the approach taken by Peltier and most of
his followers. The other way is to determine the initial state by
solving suitable state equations. This approach is less common
but allows the explicit discrimination between di¡erent types
of strati¢cation, e.g. compressional strati¢cation due to self-
compression of the material and compositional strati¢cation
due to chemical heterogeneity of the material.

Solutions for perturbations of a spherical earth model with
a compressional initial density gradient speci¢ed by a state
equation were given by Li & Yuen (1987) andWu&Yuen (1991).
Since their analyses were restricted to viscous perturbations of
the initial state, the problem was simpli¢ed and solutions could
be readily obtained without recourse to Laplace-transform
methods. Later, Wolf (1991a, 1997) generalized the theory of
viscoelastodynamics in order to allow for an arbitrary initial
state. In particular, he showed that Laplace transformmethods
can be extended to include a compressible initial state.
However, no explicit solutions of the ¢eld equations were given
for this case.
A di¡erent type of compressibility was considered by Wolf

(1985a) for a viscoelastic half-space and later by Vermeersen
et al. (1996a),Vermeersen & Sabadini (1998), Hanyk et al. (1999)
and Wieczerkowski (1999) for a self-gravitating viscoelastic
sphere. In contrast to Li & Yuen (1987) andWu & Yuen (1991),
these investigators took the initial density as spatially homo-
geneous, but accounted for compressibility when modelling
the viscoelastic perturbations. Although this does not con-
stitute a physically self-consistent treatment of compressibility,
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their studies serve to illuminate the problem of compressibility
in general and to isolate the e¡ects due to compressible
perturbations in particular.
An intriguing topic is that of the appropriate mathematical

treatment of earth models with continuous variations of the
viscoelastic parameters with depth. This problem was originally
considered in the geophysical literature by Parsons (1972,
pp. 67^87) for a viscous half-space and has recently received
renewed attention for self-gravitating viscoelastic spheres (e.g.
Fang & Hager 1994, 1995; Han & Wahr 1995; Hanyk et al.
1995; Vermeersen et al. 1996b). A central question of the recent
discussion has been whether earth models consisting of homo-
geneous layers are adequate representations of continuously
strati¢ed models.
The present study is concerned with viscoelastic earth

models with continuous density strati¢cation. In particular,
the density increase with depth is assumed to be the total of
compressional and compositional strati¢cation. The purpose
is to show that it is important to specify the type of density
strati¢cation in the initial state in order that physically mean-
ingful equations governing the incremental state are obtained.
In agreement with the modest objectives of the present study,
the earth model is therefore kept simple. Hence, we use the
model of a plane half-space perturbed by an axisymmetric
surface load. Since e¡ects due to the associated perturbation of
the gravity ¢eld are small for deformations amenable to the
half-space approximation (Cathles 1975, pp. 72^83; Amelung
& Wolf 1994), the gravity ¢eld is taken as prescribed.
Following this introduction, the initial and incremental ¢eld

equations and interface conditions appropriate to an initial
density gradient produced by a combination of compressional
and compositional strati¢cation are collected (Section 2). After
that, the analytic solutions to the equations are deduced
(Section 3). The solution functions are studied more closely for
the special cases of no density strati¢cation (earth model R),
compressional density strati¢cation (earth model P) and com-
positional density strati¢cation (earth model C) (Section 4).
Finally, themain results of the study are summarized (Section 5).

2 FIELD EQUATIONS AND INTERFACE
CONDITIONS

2.1 Tensor equations

2.1.1 Kinematics and notational conventions

We consider Cartesian tensor ¢elds in indicial notation and
use the summation convention: index subscripts i, j, k run
over 1, 2, 3 and index subscripts repeated in any term imply
summation over this range.We also employ the di¡erentiation
convention: index subscripts preceded by a comma denote
partial di¡erentiation with respect to the coordinate direction
indicated by the subscript.
Using these conventions, we further consider an arbitrary

¢eld quantity describing some aspect of the state of a £uid. In
particular, we use the Lagrangian formulation, fij...(X, t), of
this ¢eld quantity, which speci¢es the value of the ¢eld at the
current particle position, ri(X, t), as a function of the initial
particle position, Xi5~ri(X, 0), and the current time, t. In
the following, we assume that Xi [X3, where X3 is the 3-D
Euclidian domain and t [ [0, ?). We further assume that X3

can be decomposed into two open 3-D subdomains, X3
{ and

X3
z, and the 2-D interface, X2, such that X3~X3

{|X3
z|X2

applies. In the present study, we assume that fij...(X, t) is
continuous for Xi [X3

{|X3
z, but may be discontinuous for

Xi [X2.
For Xi [X3

{|X3
z, the current ¢eld, fij...(X, t), can be

decomposed into initial and incremental ¢elds according to
fij...(X, t)~fij...(X, 0)zf (d)ij...(X, t). In view of the de¢nition of
the Lagrangian formulation, the material incremental ¢eld,
f (d)ij...(X, t), describes the increment of fij...(X, t) observed at
the particle initially at Xi. Alternatively, the local incremental
¢eld, f (*)ij... (X, t), may be used, which describes the increment of
fij...(X, t) observed at Xi. Material and local increments are
related by

f (d)ij...(X, t)~f (*)ij... (X, t)zfij...,k(X, 0) uk(X, t)z . . . , (1)

where ui(X, t)~ri(X, t){ri(X, 0) is the displacement and
fij...,k(X, 0) uk(X, t) the advective incremental ¢eld.
The potentially discontinuous behaviour of fij...(X, t) for

Xi [X2 is expressed by

[ fij...(X, t)]z{5~[ fij...(X, t)]z{[ fij...(X, t)]{ , (2)

where [ fij...(X, t)]z and [ fij...(X, t)]{ denote the limits of
fij...(X, t) for the positive and negative sides, respectively, ofX2.
In the following, we consider a simpli¢ed mechanical ¢eld

theory applying the assumption that the £uid is isentropic
for Xi [X3

{ and Xi [X3
z, respectively, but may possess com-

pressional and compositional strati¢cation in these domains.
We further suppose that the £uid is non-rotating, externally
gravitating and subject only to gravitational volume forces.
For the ¢eld equations and interface conditions stated below,
Xi [X3

{|X3
z and Xi [X2, respectively, are always implied.

For notational convenience, the arguments Xi and t are sup-
pressed and the argument t~0 is displayed as the superscript
(0) appended to the function symbol from now on.

2.1.2 Equations for the initial ¢elds

Assuming that the £uid is initially in a state of hydrostatic
equilibrium and considering the assumptions and conventions
speci¢ed above, the initial ¢eld equations take the forms

{p(0),i zgio(0)~0 , (3)

o(0)~m(p(0), c(0)) , (4)

where gi denotes the gravity, p the (mechanical) pressure, c the
(chemical) composition, o the volume mass density and m the
state function. To decouple (3) and (4), consider the gradient
of (4):

o(0)
,i ~

Lm
Lp

� �(0)

p(0),i z
Lm
Lc

� �(0)

c(0),i , (5)

where (Lm/Lp)(0)5~[Lm/Lp]p~p(0) and (Lm/Lc)(0)5~[Lm/Lc]c~c(0) .
Also de¢ne

o(0)

i
5~

Lm
Lp

� �(0)

, (6)

ji5~
Lm
Lc

� �(0)

c(0),i , (7)
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with i the isentropic bulk modulus and ji the compositional
initial density gradient. The ratio i/o(0) is also referred to as the
seismic parameter. Comparison of (3)^(7) yields

o(0)
,i {

o(0)

i
gio(0){ji~0 . (8)

This is a generalized form of the Williamson^Adams equation
(Williamson & Adams 1923; Adams & Williamson 1924;
Bullen 1975, pp. 67^68), which includes a compositional initial
density gradient, ji. A comparison of (8) with a similar
expression by Birch (1952, eq. 7) shows that ji corresponds
to the non-isentropic initial density gradient, so(0)qi, in his
equation, with s the thermal expansivity and qi the non-isentropic
temperature gradient. Thus, non-isentropic strati¢cation can
be treated in complete analogy to compositional strati¢cation
(see also Wolf 1997, pp. 28-29). However, according to Birch
(1952, 1964), the combined contribution of non-isentropic
and compositional strati¢cation does not amount to more than
10^20 per cent of that of the compressional strati¢cation. In
view of the limited objectives of the present study, we do not
explicitly consider non-isentropic strati¢cation. Then, with gi,
i and ji prescribed, (3) and (8) are an overdetermined system
of partial di¡erential equations to be solved for p(0) and o(0).
The initial interface conditions to be satis¢ed by the solution
are

[ p(0)]z{~0 , (9)

[o(0)]z{~finite . (10)

2.1.3 Equations for the incremental ¢elds: (Xi, t) domain

Considering in¢nitesimal, isentropic, quasi-static linear^
viscoelastic perturbations of a £uid and neglecting compositional
changes and bulk relaxation, the local form of the momentum,
constitutive, state and continuity equations, respectively, can
be written as

t(*)ij, jzgio(*)~0 , (11)

t(*)ij ~dij( p
(0)
,k ukziuk,k)

z

�t
0

k(t{t0) dt0 ui, j(t0)zuj,i(t0){
2
3

dijuk,k(t0)
� �

dt0 , (12)

o(*)~
o(0)

i
p(*){jiui , (13)

o(*)~{(o(0)ui),i , (14)

where tij is the Cauchy stress, k is the shear-relaxation function
and dt the material time-derivative operator. Equating (13) and
(14), we obtain

p(*)~{
i

o(0) [(o
(0)ui),i{jiui] . (15)

Suppose now that (15) can be replaced by the simultaneous
conditions

i?? , (16)

(o(0)ui),i{jiui?0 , (17)

p(*)~finite . (18)

The signi¢cance of (17) becomes evident noting that, by (14),
it can be recast into o(*)?{jiui, which, by (1), is equivalent to
o(d)?(o(0)

,i {ji)ui. Eq. (17) thus states that the dilatation of a
displaced particle is constrained to the extent that the local
incremental density equals the negative of the compositional
initial density gradient or, equivalently, that the material
incremental density exactly follows the compressional initial
density gradient. We refer to this approximation as local
incremental incompressibility. The same approximation has also
been employed for studying long-period viscous perturbations
of the Earth's mantle (e.g. Li & Yuen 1987; Wu & Yuen 1991;
Thoraval et al. 1994; Panasyuk et al. 1996). The adaptation of
this approximation to viscoelastic perturbations in the present
investigation must yield results of similar accuracy as the above
studies in the long-period viscous regime of the response. In
the short-period elastic regime of the response, the approxi-
mation is expected to be less accurate. However, in the elastic
regime, it is in conformity with the assumption of quasi-static
perturbations, which excludes the consideration of periods
close to those of elastic free oscillations. Using the approxi-
mation of local incremental incompressibility, the local form
of the incremental ¢eld equations and interface conditions
reduces to

t(*)ij, j{gijjuj~0 , (19)

t(*)ij ~{dijp(*)z
�t
0

k(t{t0) d 0t

| ui, j(t0)zuj,i(t0){
2
3

dijuk,k(t0)
� �

dt0 , (20)

ui,iz
o(0)

i
giui~0 , (21)

[ui]z{~0 , (22)

[n(0)j (t(*)ij {dijo(0)gkuk)]z{~{gip , (23)

where gi is normal to X2 and directed to its positive side, ni is
the unit normal in the direction of gi and p is the incremental
interface mass density. The incremental equations are to be
solved for p(*), t(*)ij and ui. We observe that i remains ¢nite in
(21). This is because i has entered by substituting the
Williamson^Adams equation, (8), into the local incremental
incompressibility condition, (17). If the initial state is also
taken as incompressible, then i?? applies also in (21) and
it reduces to the conventional incremental incompressibility
condition, ui,i~0.

2.1.4 Equations for the incremental ¢elds: (Xi, s) domain

As a ¢rst step towards a solution to (19)^(23), we take the
Laplace transforms of the equations. The Laplace transform of
an arbitrary function, f (t), is de¢ned by

~f (s)5~
�?
0

f (t) e{st dt , �24�

where s is the Laplace frequency. Using some elementary
consequences of (24) and taking ui?0 for t?0z, we obtain
from (19)^(23) the Laplace-transformed incremental ¢eld
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equations and interface conditions:

~t (*)ij, j {gijj ~uj~0 , (25)

~t (*)ij ~{dij ~p (*)zs~k ~ui, jz~uj,i{
2
3

dij ~uk,k

� �
, (26)

~ui,iz
o(0)

i
gi ~ui~0 , (27)

[~ui]z{~0 , (28)

[n(0)j (~t (*)ij {dijo(0)gk~uk)]z{~{gi ~p . (29)

As in the above equations, the argument of Laplace-transformed
quantities will usually be suppressed. We may use (26) to
eliminate ~t (*)ij from (25) and (29). With (27) we arrive at the
following incremental ¢eld equations and interface conditions:

{~p (*)
,i {

1
3
s~k

o(0)

i
gj ~uj

� �
,i
zs~k~ui, jj{gijj ~uj

zs~k, j ~ui, jz~uj,iz
2o(0)

3i
dijgk~uk

� �
~0 , �30)

~ui,iz
o(0)

i
gi ~ui~0 , (31)

[~ui]z{~0 , (32)

n(0)i ~p (*)z
2
3
s~kn(0)i ~uj, j{s~kn(0)j (~ui, jz~uj,i)zn(0)i o(0)gj ~uj

� �z

{

~gi ~p .

(33)

2.2 Scalar equations

2.2.1 Symmetries and simpli¢cations

We now assume that the £uid is initially con¢ned toX3
z, so that

p~0, k(t{t0)~0 and o~0 for Xi [X3
{. It then follows from

the incremental equations that ui~continuous for Xi [X2

and ui~indeterminate for Xi [X3
{ and that the remain-

ing incremental quantities vanish identically for Xi [X3
{.

Furthermore, we consider the case that X2 is the horizontal
plane. In applications to the Earth, this approximation is
appropriate only to perturbations whose typical lateral wave-
length is short compared to the Earth's radius. We choose
cylindrical coordinates, Xi~(r, �, z), and stipulate X3

z~

{Xi D z [ (0, ?)}, whence X2~{Xi D z~0}. The £uid initially
occupying X3

z is referred to as a half-space, the material sheet
initially coinciding with X2 as a load and the coordinate triple
(r, �, z) as an observation point; the coordinates r, � and z are
called radial distance, azimuth and depth, respectively. For
convenience, we henceforth use

ci5~
o(0)

i
gi , (34)

with ci the inverse compressional scale length. Since, in view
of the assumption of initial hydrostatic equilibrium, gi and ji
are normal to X2, we may put in cylindrical coordinates
gi~(0, 0, g), n(0)i ~(0, 0, 1), ci~(0, 0, c) and ji~(0, 0, j). To
proceed more conveniently, we further simplify the problem
and in the following assume that g, c, j and ~k are spatially
constant.

2.2.2 Equations for the initial ¢elds

With the symmetries and simpli¢cations introduced above, the
relevant scalar components of (3) and (8)^(10) take the forms

{p(0),z zgo(0)~0 , (35)

o(0)
,z {co(0){j~0 , (36)

[ p(0)]z~0 , (37)

[o(0)]z~o1 , (38)

with o1 the surface value of the initial density.

2.2.3 Equations for the incremental ¢elds: (r, z, s) domain

In the following, we consider an axisymmetric load with the
z-axis coinciding with the symmetry axis. From symmetry
considerations, it then follows that f,�~0 and u�~0. Using
u5~ur for the radial displacement, w5~uz for the downward
displacement and the other symmetries and simpli¢cations
introduced above, the relevant scalar components of (30)^(33)
take the forms

~p (*)
,r {s~k ~u,rrz

1
r

~u,r{
1
r2

~uz~u,zz{
1
3

c ~w,r

� �
~0 , (39)

~p (*)
,z {s~k ~w,rrz

1
r

~w,rz ~w,zz{
1
3

c ~w,z

� �
zgj ~w~0 , (40)

~u,rz
1
r

~uz ~w,zzc ~w~0 , (41)

[~u,zz ~w,r]z~0 , (42)

~p(*){s~k
2
3

c ~wz2 ~w,z

� �
zo1g ~w

� �
z

~g~p . (43)

Eqs (39)^(41) are three coupled second-order partial di¡er-
ential equations for ~p(*), ~u and ~w, which must be solved subject
to (42) and (43). These equations are to be completed by
conditions requiring that the incremental ¢elds and their
spatial derivatives remain bounded as z??.
In order to solve the equations, we introduce the rotation

u~(u,z{w,r)/2. This allows us to reduce (39)^(41) to the
following ¢rst-order system:

~p (*)
,r {2s~k ~u,z{

2
3

c ~w,r

� �
~0 , (44)

~p (*)
,z z2s~k ~u,rz

1
r

~u{
2
3

c~u,r{
2
3r

c~u{
2
3

c2 ~w
� �

zgj ~w~0 , (45)

~u,rz
1
r

~uz ~w,zzc ~w~0 , (46)

~u,z{ ~w,r{2 ~u~0 . (47)

2.2.4 Equations for the incremental ¢elds: (k, z, s) domain

The equations can be decoupled by taking their Hankel trans-
forms. The lth-order Hankel transform of an arbitrary function,
f (r), is de¢ned by

F [l](k)5~
�?
0

f (r)Jl(kr) r dr , (48)
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where k is the Hankel wavenumber. Using some elementary
theorems for Hankel transforms (e.g. Sneddon 1951, pp. 60^62),
(44)^(47) become

Lz

eU [1]

eW [0]

e)[1]

eP (*)[0]

266666664

377777775~

0 {k 2 0

{k {c 0 0

0 {
2
3

ck 0 {
k
2s~k

4
3

cs~kk
4
3

c2s~k{gj {2s~kk 0

266666666664

377777777775

|

eU [1]

eW [0]

e)[1]

eP (*)[0]

266666664

377777775 . (49)

The interface conditions take the forms

[ eU [1]
,z {kfW [0]]z~0, �50)

eP (*)[0]{s~k
2
3

cfW [0]z2fW [0]
,z

� �
zo1gfW [0]

� �
z

~ge&[0] . (51)

In the following, the superscripts of the symbols are suppressed.

3 SOLUTIONS TO THE EQUATIONS

3.1 Initial ¢elds

The solution to (35)^(38) subject to g, c and j being constant is

o(0)~ o1z
j
c

� �
ecz{

j
c
, (52)

p(0)~
o1g
c

z
jg
c2

� �
(ecz{1){

jg
c

z . (53)

Since cz%1 for all depths of geophysical interest, we may write,
correct to ¢rst order, ecz^1zcz, such that (52) reduces to

o(0)~o1z co1zj
ÿ �

z . (54)

We brie£y consider three special cases of (54) and compare
them with the density strati¢cation according to the PREM
reference earth model (Dziewonski & Anderson 1981). If
c~j~0 (earth model R), we have an incompressible and iso-
compositional initial state and the initial density is spatially
homogeneous, o(0)~o1. If c=0 and j~0 (earth model P), the
initial density varies linearly as a result of the compressibility
of the material. For standard parameter values (Table 1), the

compressional density gradient is co1~5:6|10{4 kg m{4. As
a consequence, the initial density increases from its surface
value of o1~3380 kg m{3 to a value of *5000 kg m{3 at a
depth of 2900 km. This is somewhat lower than the PREM
density of 5545 kg m{3 above the core^mantle boundary. If
c~0 and j=0 (earth model C), the linear variation of the
initial density is due to compositional strati¢cation alone. For
a compressional gradient of j~8|10{4 kg m{4 (Table 1),
the initial density reaches a value of *5700 kg m{3 at a depth
of 2900 km. The more realistic assumption of both com-
pressional and compositional density gradients not considered
here would require a strong reduction of the compositional
gradient (Birch 1964).

3.2 Incremental ¢elds: (k, z, s) domain

We assume a general solution of the form

[ eU , fW , e), eP ]T~[A1, A2, A3, A4]T emz . (55)

Necessary and su¤cient for this solution to be non-trivial is
that the characteristic equation of (49) be satis¢ed:

(m2zcm{k2)(m2{k2)z
gjk2

s~k
~0 . (56)

This is a fourth-order equation in m, which has a simple
solution only if j~0 (earth model P), c~0 (earth model C) or
j~c~0 (earth model R). In the following, these cases are
considered individually.

3.2.1 Earth model P

If j~0, the characteristic equation has the following simple
roots:

m1,2~+k ,

m3,4~{
c
2
+

���������������
k2z

c2

4

r
,

(57)

which are the eigenvalues of the solution. The associated
eigenvectors can be found using standard procedures (e.g.
Gantmacher 1959, pp. 95^129). Requiring the boundedness of
the ¢elds for z??, the vectors associated with m1 and m3 are
without signi¢cance and the general solution for the basic ¢eldsfW , eU and eP takes the form

fWeUeP
2664

3775~

k

{(czm2)

{
1
3

cs~kk

26664
37775B2 em2zz

k

{(czm4)

{
4
3

cs~kk

26664
37775B4 em4z . (58)

The free constants, B2 and B4, follow from the interface
conditions, (50) and (52). We ¢nd

B2~
2

c 2s~k l{
c
2
{

2kl
c

z
2k2

c

� �
zo1g

� � ge&, (59)

B4~
2 1{

c
2k

� �
c 2s~k l{

c
2
{

2kl
c

z
2k2

c

� �
zo1g

� � ge& , (60)

Table 1. Standard parameter values used for earth models.

Quantity Symbol Value

Surface value of density o1 3380 kg m{3

Compositional density gradient j 8:00|10{4 kg m{4

Surface value of bulk modulus i1 2:00|1011 Pa
Elastic shear modulus k(e) 1:45|1011 Pa
Viscosity g 1:00|1021 Pa s
Gravity g 9:81 m s{2
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where l~
�������������������
k2zc2/4

p
has been used. Substitution of (59) and

(60) into (58) yields in particular

[fW ]z~
ge&

2s~k�kzo1g
, �61)

with the compressional coe¤cient, �, given by

�~
2k
c

{
c
2k

z

���������������
1z

c2

4k2

r
{

���������������
1z

4k2

c2

s
. (62)

In Fig. 1, �(n) is shown for three surface values of the bulk
modulus, i1, which, in view of c~o(0)g/i, corresponds to three
density strati¢cations. Here and in the following, we use the
normalized Hankel wavenumber, n5~ka, with a the earth
radius. The values of � are con¢ned to the interval ({1, 1].
They are non-decreasing for increasing n, with the zero-crossing
shifting to smaller n if i1 increases.

3.2.2 Earth model C

If c~0, the characteristic equation has the following simple roots:

m1,2~+k

������������������������
1zi

���������
jg
s~kk2

svuut , (63)

m3,4~+k

������������������������
1{i

���������
jg
s~kk2

svuut . (64)

The eigenvectors associated with the eigenvalues are calculated
as above. In order that the ¢elds remain bounded as z??,
the vectors associated with m1 and m3 are not required and the
general solution for the basic ¢elds fW , eU and eP reduces tofWeUeP
2664

3775~

k2

{m2k

s~km2(m2
2{k2)

2664
3775B2 em2zz

k2

{m4k

s~km4(m2
4{k2)

2664
3775B4 em4z .

(65)

Using the interface conditions, (50) and (52), the free
constants, B2 and B4, become

B2~
m2

4zk2

s~k[m4(m2
2zk2)2{m2(m2

4zk2)2]zo1gk2(m2
4{m2

2)
ge& ,

(66)

B4~
m2

2zk2

s~k[m2(m2
4zk2)2{m4(m2

2zk2)2]zo1gk2(m2
2{m2

4)
ge& .

(67)

Substitution of (66) and (67) into (65) gives in particular

[fW ]z~
ge&

2s~kdkzo1g
, �68)

where the k- and s-dependent compositional coe¤cient, d, is
given by

d~2
������������
1zf2

4
q

cos
#

2
z

1
2

f
2

{
2
f

� �
sin

#

2

� �
, (69)

f~

���������
jg
s~kk2

s
, (70)

#~ tan{1 f . (71)

In Fig. 2, d is shown as a function of n5~ka for two values of s
and three values of j. The values of d are con¢ned to the
interval [1, ?) and are non-increasing for increasing n or
decreasing s.

3.2.3 Earth model R

If j~c~0, the characteristic equation has two double roots:

m1,2~+k . (72)

This degenerate eigenvalue problem has been considered
before (Wolf 1985b,c, 1991b). Here, we only list the solution for
the downward surface displacement,

[fW ]z~
ge&

2s~kkzo1g
. �73)

We note that this also follows from (61) and (62) for c?0 or
�?0 and from (68)^(71) for j?0 or d?0. In the following, we
focus on the solutions for earth models P and C and recover the
behaviour for earth model R by taking the appropriate limits.

4 VERTICAL SURFACE DISPLACEMENT

4.1 Maxwell viscoelasticity and Heaviside loading

To proceed beyond (61), (68) and (73), we must specify ~k and e&.
As a simple example, we consider the shear-relaxation function
for Maxwellian viscoelasticity (e.g. Wolf 1994, 1997):

k~k(e)H(t) e{at , (74)

with a~k(e)/g the inverse Maxwell time, k(e) the shear
modulus, g the viscosity and H the Heaviside step function. In

Figure 1. Compressional coe¤cient, �, as a function of the normal-
ized Hankel wavenumber, n. Results apply to i1~1|1011 Pa (curve 1),
i1~1|1012 Pa (curve 2) and i1?? (curve 3); the other parameter
values are given in Table 1.
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the following, we consider instantaneous loading:

&~&0H(t) . (75)

The Laplace transforms of (74) and (75) are

~k~
k(e)

sza
, (76)

e&~
&0

s
. (77)

4.2 Transfer functions: (k, z, t) domain

We ¢rst introduce the viscoelastic transfer function in the
(k, z, s) domain:

eT (ve)5~[fW ]z
o1

&0
. (78)

Using this de¢nition, we proceed by deriving explicit expressions
of eT (ve) for earth models P and C and by inverting these into
the (k, z, t) domain.

4.2.1 Earth model P

In view of (61) and (76)^(78), we obtain

eT (ve)~
1
s

o1g(sza)
(2k(e)�kzo1g)szo1ga

. (79)

This can be recast into

eT (ve)~T (e) 1
s
zT (v) 1

s
{

1
szb

� �
, (80)

with

T (e)~
o1g

2k(e)�kzo1g
, (81)

T (v)~
2k(e)�k

2k(e)�kzo1g
, (82)

b~
o1g

2k(e)�kzo1g
a (83)

the elastic amplitude, the viscous amplitude and the inverse
relaxation time. The viscoelastic transfer function in the
(k, z, t) domain, T (ve), follows upon taking the inverse Laplace

transform of (80). This requires evaluation of the inverse
Laplace integral (e.g. LePage 1980, pp. 318^322),

F (t)~
1
2ni

�
L

eF (s) est ds , (84)

for eF (s)~ eT (ve)(s), where L is the Bromwich path. We obtain

T (ve)~H(t)[T (e)zT (v)(1{e{bt )] . (85)

For �~1, this reduces to the solution for earth model R (e.g.
Wolf 1991b, eq. 107).

4.2.2 Earth model C

In view of (68) and (76)^(78), we get

eT (ve)~
1
s

og1(sza)
(2k(e)dkzo1g)szo1ga

. (86)

In contrast to earth model P, the inverse Laplace transform ofeT (ve) for earth model C is not readily evaluated analytically.
This is because the s dependence of the function d is trans-
cendental, so that elementary methods fail. Here, the inverse
Laplace transformation is implemented numerically by means
of the collocation method (e.g. Peltier 1974; Mitrovica &
Peltier 1992).

4.3 Computation results: (k, z, t) domain

4.3.1 General characteristics

Fig. 3 shows the viscoelastic transfer functions, T (ve), for earth
models R, P and C. The model parameters are given in Table 1.
With i1~2|1011 Pa and j~8|10{4 kg m{4, the density
gradients of earth models P and C, respectively, are similar to
those in the earth's upper mantle.
For earth model R (Fig. 3a), T (ve) decreases with increasing

n. For small times, T (ve) approaches 0 for n larger than about 10
but nearly reaches the value of 1 appropriate to the ¢nal state
of hydrostatic equilibrium for n smaller than about 10{1.
For earth model P (Fig. 3b), the behaviour of T (ve) is similar

to that for earth model R provided that n is larger than
about 10; however, for smaller n, the values of T (ve) exceed
the corresponding values for earth model R signi¢cantly. We
note in particular that, for very small times, T (ve) may even

Figure 2. Compositional coe¤cient, d, as a function of the normalized Hankel wavenumber, n, for (a) s~1|104 s{1 and (b) s~1|10{20 s{1.
Results apply to j~8|10{4 kg m{4 (curves 1), j~8|10{6 kg m{4 (curves 2) and j?0 (curves 3); the other parameter values are given in Table 1.
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exceed the value of 1 appropriate to the ¢nal state of hydro-
static equilibrium. This indicates that, for earth model P, the
neglect of sphericity and self-gravitation becomes important
for perturbations of very long wavelengths. However, the over-
shoot decays rapidly and has disappeared by about 2 ka. The
closer distance between the curves for t~0 and t~2 ka for
earth model P as compared to earth model R indicates the
reduced relaxation time for the former model. For longer
times, the di¡erences between earth models R and P become
very small.
The behaviour of earth model C is distinctly di¡erent. Thus,

T (ve) remains small for small n. In addition, whereas the
relaxation is similar to that for earth model R for n larger
than about 102, it is strongly delayed for small n. For such
wavenumbers, the ¢nal state of hydrostatic equilibrium is only
reached after times exceeding the Maxwell time by several
orders of magnitude.
In the following, the viscoelastic response of earth models P

and C is discussed in greater detail.

4.3.2 Earth model P

Fig. 4 shows e¡ects due to variations of k(e); the other
parameters have their standard values (Table 1). Fig. 4 (top)
applies to k(e)~1:45|1011 Pa. Then, i1/k(e)^1, and we expect
that compressibility contributes signi¢cantly to the response of
earth model P. Compared to earth model R, the compressional
density gradient enhances T (e) for n smaller than about 10. In
the range 10{2 < n < 1, T (e) barely exceeds the value of 1, which
is compensated by corresponding negative values of T (v). The
behaviour of b{1 shows that the inclusion of a compressional
density gradient slightly reduces the relaxation time for n < 10.
In Fig. 4 (bottom), k(e) is reduced to 1.45|1010 Pa. Since

i1/k(e)^10, earth model P is e¡ectively incompressible. As
a result of this, its response is mainly determined by k(e) and
the di¡erences in T (e), T (v) and b{1 between earth models R
and P are small. The reduction of k(e) by one order of magni-
tude tends to increase T (e) and b{1 for small n. However, for
earth model P, the enhancement of T (e) is counteracted by a
reduction resulting from the model's e¡ectively incompressible
response. Note in particular that the overshoot has almost
disappeared.
Fig. 5 shows the in£uence of i1 on the response; the other

parameters continue to have their standard values (Table 1). In
Fig. 5 (top), i1 is increased to 2|1012 Pa. Then, i1/k(e)^10,
and the response of earth model P is again predominantly
determined by k(e). Hence, the values of T (e), T (v) and b{1 are
similar to those for earth model R. At the same time, since the
values of k(e) and i1 are larger by a factor of 10 than the values
used in Fig. 4 (bottom), the elastic amplitudes remain smaller.
The e¡ect of reducing i1 to 1|1011 Pa is shown in Fig. 5
(bottom). Now, i1/k(e) < 1, which means that the response of
earth model P is strongly in£uenced by its compressibility. The
e¡ects caused by compressibility shown in Fig. 4 (top) are thus
even more pronounced and, in particular, the overshoot of T (e)

for small n is prominent. However, values of i smaller than
those of k are not encountered in the earth and the result is thus
mainly of theoretical interest.

4.3.3 Earth model C

As for earth models R and P, T (e) can be calculated analytically
for earth model C and T (v) is given as 1{T (e). However,
since the response of earth model C is not characterized by
exponential decay, the relaxation time is not de¢ned and the
behaviour in time must be discussed using T (ve).

Figure 3. Viscoelastic transfer function, T (ve), as a function of the normalized Hankel wavenumber, n, for selected times (in units of ka) after onset of
loading. Results apply to (a) earth model R, (b) earth model P and (c) earth model C. Parameter values are given Table 1.
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Fig. 6 shows e¡ects due to variations of j; the other
parameters have their standard values (Table 1). In Fig. 6
(top), j~8:81|10{4 kg m{4 applies. Then, earth models
R and C show similar values of T (e) down to n^10. If n
becomes still smaller, the compositional density gradient
leads to a pronounced reduction of T (e). Its maximum
is near n~1 and it approaches 0 for n?0. For n < 10, the
relaxation for earth model C is strongly retarded in com-
parison to earth model R. In Fig. 6 (bottom), j is reduced to
8:81|10{6 kg m{4. Now, signi¢cant discrepancies between

the responses of earth models R and C are limited to n < 1,
which is beond the range of applicability of the half-space
approximation.
Physically, the slower relaxation associated with a com-

positional density gradient is due to a retarding force. Thus,
if a surface load deforms earth model C, particles below the
load are displaced to greater depths than particles further away
from the load. This gives rise to a lateral density gradient
away from the load centre and thus to a buoyancy force, which
counteracts the vertical displacement.

Figure 5. Elastic amplitude, T (e), viscous amplitude, T (v), total amplitude, T (e)zT (v), and relaxation time, b{1, as functions of the normalized
Hankel wavenumber, n, for earth model R (solid) and earth model P (dashed). Results apply to i1~2:00|1012 Pa (top) and i1~1:00|1011 Pa
(bottom); the other parameter values are given in Table 1.

Figure 4. Elastic amplitude, T (e), viscous amplitude, T (v), total amplitude, T (e)zT (v), and relaxation time, b{1, as functions of the normalized
Hankel wavenumber, n, for earth model R (solid) and earth model P (dashed). Results apply to k(e)~1:45|1011 Pa (top) and k(e)~1:45|1010 Pa
(bottom); the other parameter values are given in Table 1.
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4.4 Computational results: (r, z, t) domain

Next, the vertical surface displacement for earth models R, P
and C in the (r, z, t) domain is calculated and discussed. This
requires that the load cross-section be speci¢ed and the inverse
Hankel transformation be implemented.

4.4.1 Load cross-section

In order to obtain crude approximations of the major
Pleistocene ice sheets in Fennoscandia and Canada, we choose
circular disc loads with elliptical load cross-sections. With hL
the maximum load thickness, rL the load radius and oL the load
density, we thus have

p0(r)~oLhL

���������������������
1{

r
rL

� �2
s

, 0¦r < rL ,

0 , rL < r <? .

8>><>>: (87)

Its zeroth-order Hankel transform is (e.g. Farrell 1982)

&0(k)~oLhL
rL
k

j1(kR) , (88)

where j1(x)~ sin x/x2{ cos x/x is the spherical Bessel function
of the ¢rst kind (e.g. Abramowitz & Stegun 1965, pp. 437^438).
The lth-order inverse Hankel transform given by

f (r)~
�?
0

F [ l ](k)Jl(kr) k dk (89)

is evaluated numerically for F (k)~[W (k)]z~T (ve)(k)&0(k)/o1:

4.4.2 Discussion

Fig. 7 shows the vertical surface displacement, [w]z, as a
function of radial distance, r, caused by loads with elliptical
cross-sections. The parameters are oL~1000 kg m{3 and
hL~2 km, rL~800 km (Fennoscandian ice load, top) or

hL~3 km, rL~1600 km (Canadian ice load, bottom); as above,
a Heaviside loading history is assumed. The parameters of the
three earth models considered are given in Table 1.
Near the load axis, [w]z is always larger for earth model P

than for earth model R. The maximum di¡erences amount to
*10 m (Fennoscandia) or *35 m (Canada) and are reached
before 5 ka after the onset of loading. After about 10 ka, the
di¡erences have essentially vanished. In contrast to this is the
relaxation of earth model C, for which [w]z is smaller than for
earth model R. Near the load axis, the maximum di¡erences
reach *50 m (Fennoscandia) or *150 m (Canada) shortly
after 5 ka. At later times, the di¡erences diminish and vanish in
the ¢nal state of hydrostatic equilibrium.
Earth model P relaxes faster than earth model R also in the

region peripheral to the load. However, the di¡erences in [w]z
are smaller than in the central region and usually remain below
5 m (Fennoscandia) or 15 m (Canada). In contrast to this are
the responses of earth models C and R, which continue to show
prominent di¡erences in the peripheral region. As a consequence
of its longer relaxation time, [w]z for earth model C may be
reduced by as much as 15 m (Fennoscandia) or 50 m (Canada).
The result that [w]z is identical for the three earth models

in the ¢nal state of hydrostatic equilibrium can be understood
from the fact that, for a given load, the surface displacement
in this limit is solely controlled by the product o1g. Since
o1~3380 kg m{3 for each of the earth models used, the
di¡erences must therefore vanish in this limit.

5 CONCLUDING REMARKS

The main results of this study are the following.

(1) We have developed the theory governing viscoelastic
perturbations of a half-space with an initial density gradient
due to both compressional and compositional strati¢cation.
(2) For the special case of a purely compressional or a

purely compositional density gradient, closed-form solutions

Figure 6. Elastic amplitude, T (e), viscous amplitude, T (v), total amplitude, T (e)zT (v), and viscoelastic transfer function, T (ve), as functions of the
normalized Hankel wavenumber, n, for earth model R (solid) and earth model C (dotted). Numbers denote times (in units of ka) after onset of
loading. Results apply to j~8:81|10{4 kg m{4 (top) and j~8:81|10{6 kg m{4 (bottom); the other parameter values are given in Table 1.
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for the incremental ¢elds have been obtained in the (k, z, s)
domain. For compressional strati¢cation, the inverse Laplace
transform can be implemented analytically and leads to a
relaxation characterized by an exponentially decaying normal
mode. On the other hand, for compositional strati¢cation the
transcendental character of the transfer function to be inverted
requires the use of numerical methods.
(3) Computational results in the (k, z, t) domain for the

surface of the half-space show that e¡ects due to the density
strati¢cation on the vertical displacement are limited to low
wavenumber deformations and only become prominent for
normalized wavenumbers smaller than *10. Compared to the
special case of a half-space with spatially homogeneous density,
vertical displacements are enhanced for compressional density
strati¢cation and reduced for compositional strati¢cation.
(4) Computational results in the (r, z, t) domain and for

disc loads with dimensions typical of the Pleistocene ice sheets
in Fennoscandia and Canada show that the vertical surface
displacement may deviate from that for spatially homogeneous
density by *10 m and *35 m, respectively (compressional
strati¢cation) and by *50 m and *150 m, respectively
(compositional strati¢cation). Whereas compressibility leads
to an enhancement of the displacement, the internal buoyancy
associated with a compositional density increase results in
a reduction of the displacement. These deviations represent
upper limits, since the e¡ects partially compensate each other if
both compressional and compositional density strati¢cations
are present.
(5) Since the in£uence of the density strati¢cation on the

displacement is limited to low wavenumber deformations, the
neglect of sphericity and self-gravitation e¡ected in this investi-
gation should be justi¢ed more carefully in the future. The next
step would therefore be to extend our study to gravitationally
self-consistent spherical earth models. At the same time,
this extension may illuminate the physics of the overshoots

observed for the elastic response of compressionally strati¢ed
half-spaces.
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dt material time-derivative operator
e 2:71828 . . .
f scalar function or field
f 1 surface value of f or f (0)

F [ l ]
ij lth-order Hankel transform of fij
fij Cartesian tensor field
fij,k material gradient of fij
~f ij Laplace transform of fij
f (0)ij initial value of fij
f (*)ij local incremental value of f (0)ij

f (d)ij material incremental value of f (0)ij
gi gravity
H Heaviside step function
hL maximum load thickness
i imaginary unit
k Hankel wavenumber
m eigenvalue
n normalized Hankel wavenumber
ni unit normal in direction of gi
p mechanical pressure
r radial distance
ri current particle position
rL load radius
s Laplace frequency
T (e) elastic amplitude
T (v) viscous amplitude
T (ve) viscoelastic transfer function
t current time
t0 excitation time
tij Cauchy stress
u radial displacement
ui displacement
w downward displacement
Xi initial particle position
z depth

A2 Greek symbols
a inverse Maxwell time
b inverse relaxation time
ci inverse compressional scale length
d compositional coefficient
dij Kronecker symbol
� compressional coefficient
g viscosity
i isentropic bulk modulus
ji compositional density gradient
k shear-relaxation function
k(e) elastic shear modulus
m state function
o volume mass density
oL load density
p incremental interface mass density
qi non-isentropic temperature gradient
� azimuth
s thermal expansivity
u rotation

A3 Calligraphic symbols

X2 2-D domain of Xi

X3 3-D domain of Xi

APPENDIX A: LIST OF IMPORTANT
SYMBOLS

A1 Latin symbols

a earth radius
c composition
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