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SUMMARY
Mechanical e¡ects left by a model earthquake on its fault plane, in the post-seismic
phase, are investigated employing the `displacement discontinuity method'. Simple
crack models, characterized by the release of a constant, unidirectional shear traction
are investigated ¢rst. Both slip componentsöparallel and normal to the traction
directionöare found to be non-vanishing and to depend on fault depth, dip, aspect ratio
and fault plane geometry. The rake of the slip vector is similarly found to depend on
depth and dip. The fault plane is found to su¡er some small rotation and bending, which
may be responsible for the indentation of a transform tectonic margin, particularly if
cumulative e¡ects are considered. Very signi¢cant normal stress components are left
over the shallow portion of the fault surface after an earthquake: these are tensile for
thrust faults, compressive for normal faults and are typically comparable in size to the
stress drop. These normal stresses can easily be computed for more realistic seismic
source models, in which a variable slip is assigned; normal stresses are induced in these
cases too, and positive shear stresses may even be induced on the fault plane in regions
of high slip gradient. Several observations can be explained from the present model:
low-dip thrust faults and high-dip normal faults are found to be facilitated, according to
the Coulomb failure criterion, in repetitive earthquake cycles; the shape of dip-slip
faults near the surface is predicted to be upward-concave; and the shallower aftershock
activity generally found in the hanging block of a thrust event can be explained by
`unclamping' mechanisms.
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INTRODUCTION

The importance of normal stress in determining the conditions
for rock failure is well known from laboratory experiments and
reasonably well described by the Coulomb failure criterion
(e.g. Jaeger & Cook 1979; Fung 1965). Signi¢cant insight into
the aftershock generation process has been achieved by apply-
ing the modi¢ed Coulomb criterion (e.g. Turcotte & Schubert
1982) to computed stress ¢elds generated by dislocation events
(e.g. Stein et al. 1992; King et al. 1994). Similar methods have
also been employed to model complex faulting events in terms
of quasi-static interactions amongst di¡erent fault segments
(Nostro et al. 1997) and to evaluate changes in earthquake
hazards due to failure of a nearby fault (Stein et al. 1997).
Perfettini et al. (1999) found evidence that normal stress changes
as a result of unclamping the fault may have even larger e¡ects
on fault instability than predicted by the Coulomb criterion,
possibly due to £uid infusion over the fault, or the induction of
creep phenomena.
Most of the research carried out until now has concentrated

on the e¡ects of dislocation events on nearby faults. The e¡ect

of a dislocation event on its own fault plane has received little
attention. This may be partly due to mathematical problems
related to the presence of non-integrable stress singularities
inside fault edges when a constant slip is imposed, but it might
also be ascribed to the erroneous belief that no normal stress
should be generated by a shear fault on its own fault plane.
Modelling a fault as a shear dislocation crack (with assigned

stress drop) avoids the former problem; however, analytical
solutions obtained in a plane strain or anti-plane con¢guration
(i.e. in¢nite in the strike direction), embedded in an unbounded
homogeneous medium, provide no normal stress on the fault
plane. The same holds for a vertical strike-slip dislocation in
an anti-plane con¢guration, even when the presence of a free
surface is accounted for. A more realistic model of a fault
should take into account features such as the ¢nite dimension
of the fault plane, the presence of the free surface and a generic
fault dip that may give rise to e¡ects such as non-unidirectional
slip in response to unidirectional traction release and may
deform and stress the fault plane; it will be shown that these
features can be responsible for small perturbations to fault
geometry and for large normal stresses over the fault plane,

Geophys. J. Int. (2000) 141, 43^56

ß 2000 RAS 43

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/141/1/43/579589 by guest on 20 August 2022



which have received little attention in previous papers. The
present study aims to investigate how these features a¡ect
the fault behaviour in the post-seismic phase.
Okada (1992) gave the complete set of analytical solutions for

rectangular, inclined, buried and non-buried dislocation surfaces
with constant slip in the strike, dip and normal directions.
Using these analytical solutions a numerical solution can be
developed for the crack problem on a rectangular and plane
fault surface of any type. The problem to be solved is that
of computing the 2-D slip distribution over the fault plane
caused by a given stress drop. Only shear dislocations will
be considered in the following, in which slip is constrained to
be parallel to the dislocation surface (that is, the normal com-
ponent of slip is assumed to vanish). We use the Boundary
Element Method, which is often applied in geophysics and
mineral engineering (Crouch & Star¢eld 1983). Following this
method, we divide the fault surface into many rectangular
subsurfaces (termed `elements'), each characterized by con-
stant slip, described by Okada's solutions. Imposing a given
stress drop at the mid-point of each subsurface we recover
the slip of each fault element. The general distribution of
slip over the entire fault plane is computed by interpolating
these constant slip values of the elementary dislocations. The
fault's behaviour is determined by the superposition of each
element's behaviour. This model has been studied employing a
fortran 77 code. In particular, we analysed three problems
for faults of various dips, depths and mechanisms:

(1) the slip distribution on the fault surface in response
to a uniform and unidirectional traction release, taking into
account faults with di¡erent geometries and di¡erent failure
mechanisms;
(2) the deformation of the fault in the direction normal to

the fault plane;
(3) the stress normal to the fault plane that rises after the

earthquake.

The main results are as follows.

(1) When imposing a unidirectional traction release in the
strike or dip direction, both components of slip are generally
non-vanishing. Most of the slip is parallel to the direction of
the released traction, but a minor component of slip is present,
over the fault plane, even in the direction perpendicular to the
released traction; this component is generally lower than 6 per
cent of the maximum slip for a buried fault, but may be up to
20 per cent for a fault reaching the free surface.
(2) A deformation of the fault surface is found that is caused

by the displacement component normal to the fault plane. This
displacement can be 15^25 per cent of the maximum slip.
(3) The deformation of the fault plane is accompanied by a

stress component normal to the fault plane that can be com-
pressive or extensional, depending on the fault mechanism,
angle of dip and depth below the free surface. This normal
stress is absent on vertical faults (due to the symmetry of the
problem) and on very deep faults. The intensity of the normal
stress is non-negligible, particularly for dip-slip faults, where it
may reach 50 per cent of the stress drop for buried faults and up
to 120 per cent for faults reaching the free surface.

The importance of this self-induced normal stress has
been recently considered in dynamic simulations (numeric and
analogue models) of near-source ground motion; these show
signi¢cantly di¡erent modes of behaviour between thrust faults

and normal faults, which are ascribed to time-dependent
normal stresses, generated from the interaction of the fault
with the free surface, which are asymmetric for normal and
thrust faults (Oglesby et al. 1998; Shi et al. 1998). In the present
paper we demonstrate that these e¡ects are present even in
static models, and large normal stresses are permanently left
on the shallow section of a fault plane after an earthquake.
The role of a slowly increasing normal stress, related to

the slow build-up of tectonic stress, is similarly found to be
important in modelling the earthquake cycles on non-optimally
oriented, vertical strike-slip faults (Becker & Schmeling 1998).
The present paper provides a general overview of these e¡ects
depending on the fault depth, dip angle, aspect ratio and slip
mechanism.

REFERENCE SYSTEMS AND
CONVENTIONS

The results will be referred to the general system of coordinates
(x, y, z) and to the local system (s, d, t), consistent with
Okada's (1992) formalism (Fig. 1). Axes s, d, t are de¢ned as
the strike, dip and normal (pointing towards the free surface)
directions, respectively.
The origin and x, y axes of the system (x, y, z) are on the

free surface of the half-space and the z axis is upwards. The
fault plane has a dip angle d, positive in a counterclockwise
direction, as shown in Fig. 1. The fault plane dimensions are L
in the s direction and W in the d direction. In plots showing
the dependence of quantities on the angle of dip we shall keep
¢xed the depth of the upper edge of the fault plane while
varying the dip.
We de¢ne nz as the normal to the upper fault face, &z,

and n{ as the normal to the lower fault face, &{. The
nz vector also de¢nes the direction of the t axis of the local
system (s, d, t) (Fig. 1). Traction values given in the following
paragraphs refer to the upper fault face &z.
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Figure 1. Sketch of the geometry of the problem and reference
systems. The positive orientation nz of the fault plane &z is de¢ned as
that pointing into the hangingwall.
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For the slip vector, Di, we use the convention

Di~ lim
t?0z

ui{ lim
t?0{

ui , i~s, d, t ,

where ui is the displacement in the local system s, d, t.
According to this convention, used by Okada (1992), if
Ds > 0 (Dd > 0), the upper fault face &z moves towards the
positive direction of the s (d) axis with respect to the lower face
&{. Thus, for 00 < d < 900, Ds > 0 means a left-lateral strike-
slip fault, Ds < 0 a right-lateral strike-slip fault, Dd > 0 a
thrust fault and Dd < 0 a normal fault. In the following, only
shear faults will be considered, in which the normal opening is
constrained to vanish, i.e. Dt~0.
The following elastic constants are employed for the elastic

half-space:

j~k~5|1010 Pa ,

as assumed by Press (1965) and Kasahara (1981), whose results
were employed as control tests. The following fault dimensions
will generally be employed, unless stated otherwise:

L~12 km , W~8 km ,

as assumed in an example given by Okada (1992).

METHOD OF SOLUTION

The displacement discontinuity method, one of the boundary
element techniques, is used to solve the crack problem. We
consider a rectangular shear-fault with a dip angle d and divide
it into M|N rectangular dislocations, which we shall term
elements in the following; an ordinal number k~1, . . . , M|N
is assigned to each element; the kth element is characterized by
unknown constant slip in the strike and dip directions:

Dk~(Dk
s , D

k
d ) , k~1, . . . , M|N .

We impose the condition that the slip in the normal direction
is zero:

Dk
t ~0 , k~1, . . . , M|N . (1)

Looking at the fault surface from the t > 0 direction, k
grows from the left to the right in the strike direction and from
the bottom to the top in the dip direction. In this way the
element in the lower left fault corner is assigned an ordinal
number k~1 and that in the upper right corner is assigned
k~M|N (Fig. 2). Two fault mechanisms will be considered
in the following, in which a unidirectional traction release,
constant all over the fault surface, will be imposed:

strike model5
*ps~25 bar

*pd~0 bar

(
, dip model :

*ps~0 bar

*pd~25 bar

(
,

(2)

where the subscripts s and d indicate the strike and dip directions.
The free-surface condition in z~0 and the conditions (1) and
(2) over the fault surface are the boundary conditions for the
problem to be solved.
Consider the generic kth element. Employing Okada's

solutions, it is possible to compute the total traction, say t0(k),
induced on the kth element from the slip of all elements.
The traction release can be written as a function of the initial

traction, t0(k), and the ¢nal traction, tfin(k), in the following way:

*t(k)s ~t0s
(k){tfins

(k)

*t(k)d ~t0d
(k){tfind

(k)

(
, (3)

where

tfin(k)~t0(k)zt0(k) . (4)

Substituting (4) into (3) we obtain

*t(k)s ~{t0s
(k)

*t(k)d ~{t0d
(k)

(
. (5)

More speci¢cally, the total traction t0(k) induced on the kth
element is obtained by summing the tractions t(i) produced by
each ith element computed on the central point CP(k) of the
kth element. Therefore,

t0(k)~
XM|N

i~1

t(i)DCP(k) .

The expression of t(i) is linear in the slip components (Dk
s , D

k
d ),

k~1, . . . , M|N, since Okada's solutions are linear in the slip
components. Writing (4) for each element we obtain a linear
system containing 2|M|N equations in the 2|M|N
unknowns (Dk

s , D
k
d ):

t0s
(k)~{*t(k)s ~

XM|N

i~1

Aik
ssD

i
sz

XM|N

i~1

Aik
sdD

i
d

t0d
(k)~{*t(k)d ~

XM|N

i~1

Aik
dsD

i
sz

XM|N

i~1

Aik
ddD

i
d

8>>>>><>>>>>:
, (6)

k~1, . . . , M|N ,

where Ass, Asd , Ads, Add are matrices with (M|N) rows
and (M|N) columns containing the in£uence coe¤cients of
the traction that are computed using Okada's solutions. For
example, Aik

sd means the in£uence coe¤cient of the t0s traction
component on CP(k) due to unit slip in the d direction at the
ith element. Tractions t0s

(k) . . . t0d
(k) . . . have been computed on

the central point of each element in order to keep as far away
as possible from the singularities present on element edges
(Okada 1992).

1 2 M

M+1 M+2 2xM

M   sub-divisions

N
sub-divisions

s

d

t

MxN

Figure 2. Fault plane subdivision into M|N rectangular elements,
each characterized by a constant slip (D(k)

s , D(k)
d ). Each element is

identi¢ed through its ordinal number k.
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Also, the third traction component, t0t, normal to the fault
plane, can be written as a function of the normal traction
generated by each element:

t0t
(k)~

XM|N

i~1

t(i)t DCP(k) .

Thus, the total normal traction as a function of the slip
Di, i~1, . . . , M|N, is

t0t
(k)~

XM|N

i~1

Aik
tsD

i
sz

XM|N

i~1

Aik
tdD

i
d , k~1, . . . , M|N . (7)

It is not possible to impose any condition on this normal
component of traction because the system (6) is already com-
pletely determined, having imposed the condition D(k)

t ~0,
k~1, . . . , M|N. Therefore, in general, a ¢eld of normal stress
is induced by a shear slip alone.
Solving the system (6) allows us to compute the distribution

of slip D(k), k~1, . . . , M|N, on the fault plane, for a given
distribution *t(k)s and *t(k)d , de¢ned on fault elements. Then,
using (7), we can compute the normal traction t0t. From the slip
distribution it is also possible to evaluate the displacement
¢eld, ut normal to the fault plane, employing the following
relation:

u(k)t ~
XM|N

i~1

Uik
ts D

i
sz

XM|N

i~1

Uik
tdD

i
d , k~1, . . . , M|N , (8)

where Uik
ts , U

ik
td are matrices containing the normal displace-

ment in£uence coe¤cients, computed from Okada's (1992)
solutions. For these matrices the notation is the same as for
matrices of traction in£uence coe¤cients.
Continuous displacement components us, ud have been

computed on the fault plane following Okada (1992) as the
average value of each fault face displacement:

ui D&~(ui D&zzui D&{ )/2 .

They are found to be generally smaller than ut. Their pattern is
very similar to that of the slip component they are parallel to
which is always greater by about one order of magnitude. Thus,
the slip components are mostly responsible for the displace-
ment ¢eld parallel to the fault plane. However, the derivatives
Lus/Ls and Lud/Ld are involved in the computation of t0t.
Because of the linearity in the slip components of the system

(6) and eqs (7) and (8), faults having the same slip components
in absolute value but of opposite sign develop tractions and
displacements that di¡er only in sign. This happens, for
example, for a normal and a thrust fault with the same dip and
stress drop.
The numerical procedure described above has been tested

comparing the analytical solution for a vertical crack in an
elastic half-space extending inde¢nitely in the strike direction
(Knopo¡ 1958) with the numerical solution for the same
problem. The analytical solution gives the strike-slip com-
ponent Ds as a function of the depth z for a given stress
drop. To ¢nd the numerical solution for this problem we use a
fault with L/W&1 to simulate a fault of in¢nite extent in the
strike direction, and divide it into N strips with dimensions
(L, W/N) and unknown slip Dk, k~1, N, to reproduce the slip
dependence on z. We obtained very good agreement, and, as
expected, the numerical solution improves as the fault plane

subdivision is re¢ned more and more (Fig. 3). In the calcu-
lations we use a model with M|N~10|10 elements as a
reasonable compromise between the requirement of accuracy
and computational e¤ciency.

SLIP DISTRIBUTION

In the following, by strike-slip fault we mean a fault releasing
traction in the strike direction and by dip-slip, a fault releasing
traction in the dip direction. In order to present the results we
de¢ne the following:

(1) Dk: slip component parallel to the released traction
(Dk~Ds for strike-slip faults; Dk~Dd for dip-slip faults);
(2) D\: slip component normal to the released traction

(D\~Dd for strike-slip faults; D\~Ds for dip-slip faults).

Figs 4 and 5 show the two components of slip on faults with
traction release in the strike and dip directions, respectively.
The maximum slip is obtained for the Dk component. This has
its maximum in the central part of the fault surface and goes to
zero towards the edges, where the fracture closes. However, a
slip component normal to the released traction is present in
general, with relative maxima near the upper fault corners. The
location of D\ near these corners is clearly due to the fact that
the slip vector there has high gradients, being constrained to
vanish at and above the upper fault rim while the bottom rim
is far away. To show this more clearly, in Fig. 6 a strike-slip
rectangular fault is considered, with a 3 MPa stress drop over a
central asperity, while the rest of the fault is left free to slip with
vanishing stress drop. Fig. 6(b) shows that the D\ maxima are
located in regions where the slip gradient is high, rather than at
fault rims.
A trapezoidal strike-slip fault model was also considered,

by imposing the condition that the slip vanishes on a triangle
next to the top right corner (Fig. 7). A comparison with the
rectangular fault of Fig. 4 shows that the oblique angle under
which the released traction sees the fault border de£ects
D\ diagonally downwards. D\ maxima, however, are similar
(in absolute value) to those in Fig. 4.

Figure 3. Comparison of the analytical solution (solid line) for a
strike-slip crack in anti-plane con¢guration (Knopo¡ 1958) and
numerical solutions for a `very long' crack (symbols) obtained with an
increasing number of elements.
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Thus, even if a unidirectional traction is released, both
components of fault slip are non-vanishing, instead of only one
component in the strike or dip direction (as provided by plane
strain or anti-plane fault models).
The component D\ is found to be typically small but it

increases as the fault depth decreases. For a buried fault, we
¢nd

R1~
maxDD\D
maxDDkD

&3{5 per cent ,

while, if the fault reaches the free surface,

R1~
maxDD\D
maxDDkD

&8{20 per cent .

In Figs 8(a) and (b), the ratio R1 is plotted against the dip
angle for di¡erent fault depths for strike-slip and dip-slip models
respectively. Curves for buried faults show similar trends, while
curves for faults reaching the free surface are quite di¡erent
(Fig. 8c). Let us consider buried faults ¢rst. As the fault depth
decreases, R1 increases, faster for strike-slip than dip-slip

faults, and shows a more pronounced dependence on the
dip angle (nearly absent for very deep faults). Independently of
fault depth, when d&150^200 all the curves seem to approach
a common value.
The ratio R1 reaches the greatest values for an out-

cropping vertical strike-slip fault and for an outcropping,
shallow-dipping dip-slip fault (Fig. 8c). The dependence of
R1 on the fault aspect ratio L/W has been studied for faults
with their upper edge at 1 km depth. Fig. 9(a) shows that, for a
typical strike-slip fault, almost vertically dipping, the ratio R1

is maximum for L/W&1^1.5. For typical normal dip-slip
faults the ratio R1 reaches a maximum at L/W&1.5^3 for
high dip angles and at L/W&5 for an almost vertical dip
angle. The maximum R1 value is, however, for typical thrust
faults (shallow dipping) with aspect ratio L/W > 1. For neither
strike-slip or dip-slip faults does the ratio R1 increase for
L/W < 0:5 and L/W > 10.

Another ratio, R2~maxDD\/DkD, is worthy of mention. For
buried faults, its value is typically

R2~maxDD\/DkD &7{15 per cent ,

Figure 4. Slip along strike (a) and dip (b) for a rectangular fault with
upper edge at a depth of 1 km and releasing 2.5 MPa in the strike
direction with dip angle 600. The fault dimensions are L~12 km,
W~8 km.

Figure 5. Slip along strike (a) and dip (b) for a rectangular fault
with upper edge at a depth of 1 km and releasing 2.5 MPa in the dip
direction with dip 300. The fault dimensions are L~12 km, W~8 km.
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while for outcropping faults,

R2~maxDD\/DkD&10{40 per cent .

The maximum values are near the upper corners of the fault
and may cause a variation up to 200 in the slip rake. The
trend of the curves for R2 resembles that of the ratio R1. These
results are plotted in Fig. 10. The maximum of R2 is always on
elements near the fault edges. Here the values of Dk and D\

may be small, despite a high value of R2. Accordingly, max(R2)
may depend somewhat on the re¢nement of the fault plane
subdivision.
In Figs 8^10 and in some of the ¢gures that follow, some

sharp variations of trend are present. These may have two
causes. As the dip angle varies, absolute maxima may move
from a relative maximum to a di¡erent one, giving rise to sharp
changes in R1 or R2; minor changes are typically due to relative
maxima jumping from one element to the next and might
accordingly become smoother by increasing the number of
elements.
As an example, consider Fig. 10(a). The curve for an out-

cropping fault shows a very sharp cusp near d~600. We
checked that at this angle the maximum of R2 jumps from the
element k~1 (bottom) to the element k~100 (shallow) so that

the curve is composed of a segment of R2 computed on element
k~1 and a segment of R2 computed on element k~100;
no signi¢cant smoothing can be obtained in this case by
employing a greater number of elements.

FAULT PLANE DEFORMATION

The numerical model above allows us to study in some detail
the fault plane deformation after an earthquake. This problem
has received little attention up to now, probably because no
such e¡ect is present for in¢nitely long faults for which simple
analytical solutions exist. This deformation can be computed
interpolating the normal displacement calculated on each
centre point of the elements comprising the fault plane.
Fig. 11 shows how the fault plane is deformed by the con-

tinuous normal component of displacement, ut (ut should not
be confused with the discontinuous displacement Dt, which
is assumed to vanish. The displacement of the fault plane
consists mainly of a small rotation around an axis normal to
the released traction and a bending of the originally plane fault

Figure 6. Same as Fig. 4, for a vertical fault with 3 MPa stress release
in the strike direction, limited within a rectangular 4|3 km2 central
asperity, while the rest of the fault slips with vanishing stress drop.

Figure 7. Slip along strike (a) and dip (b) for a vertically dipping
trapezoidal fault surface with upper edge at a depth of 1 km and
releasing 2.5 MPa in the strike direction. With respect to Fig. 4, fault
dimensions have been adjusted in order to have the same area with
non-vanishing slip (Lbottom~13:86 km, Ltop~6:93 km, W~9:24 km).
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surface. Consider the direction de¢ned by the main slip Ds

(for Fig. 11a) or Dd (in 11b) and let s~a or d~a, respectively,
be the fault plane rotation axes. We de¢ne the s0 or d 0 axes as
having their origin on the straight line s~a or d~a and
oriented in the direction of the main slipDs orDd , respectively.
Looking at the fault surface from t > 0 we identify two areas:

(1) fault plane front area; s0 > 0 or d 0 > 0;
(2) fault plane back area; s0 < 0 or d 0 < 0.

Using the above conventions, the results on fault deformation
show that

(1) the front area moves in the t > 0 direction; we say that
it uplifts;

(2) the back area moves in the t < 0 direction; we say that
it subsides.

This normal displacement has greater amplitude on the
shallower section of the fault surface. The mean ratio between
the maximum normal displacement (in absolute value), Dumax

t D,
and the maximum slip, DDmax

k D, is found to be typically less than
20 per cent.Values of the ratio R3~Dumax

t D/DDmax
k D are plotted in

Fig. 12. The deformation grows as the fault depth decreases.R3

is more sensitive to depth for typical dip-slip faults than for
typical (vertical) strike-slip faults.
The deformation of the fault plane induced by the occur-

rence of an earthquake may need a few words of comment.
The rotation of the fault plane in Fig. 11 may seem opposite to
what is expected intuitively, given the slip direction. However,
this rotation is easily understood in terms of the distribution of
double couples, which are equivalent to the given dislocation.
The non-uniform distribution of slip is responsible for a non-
uniform distribution of force couples. Force couples normal
to the fault plane are responsible for the rotation of the fault

(a)

(b)

(c)

Figure 8. Plots of the ratioR1~maxDD\D/maxDDkD as a function of dip
angle for (a) strike-slip faults at di¡erent depths, (b) dip-slip faults at
di¡erent depths, and (c) strike-slip and dip-slip surface faults. The
stress drop is 2.5 MPa and fault dimensions are L~12 km, W~8 km.

(a)

(b)

Figure 9. Plots of the ratioR1~maxDD\D/maxDDkD as a function of dip
angle for di¡erent aspect ratios L/W . (a) Strike-slip faults, (b) dip-slip
faults with upper edge at 1 km depth and stress drop of 2.5 MPa.
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plane, while their non-uniform intensity is responsible for
the fault concavity/convexity (see e.g. Aki & Richards 1980,
Chapter 3). In Fig. 11 the balancing force couples normal and
parallel to the fault plane are shown qualitatively by vertical
and horizontal arrows respectively.
It must be mentioned that the rotation of the fault plane

was correctly reproduced in previous far-¢eld analyses (e.g.
Chinnery 1961, 1963; Press 1965), but no mention was made
of this e¡ect, probably due to the negligibly small values of
rotation. The fault plane deformation might seem insigni¢cant,
amounting to a few centimetres compared to typical fault dimen-
sions (here &10 km). However, these e¡ects may accumulate
for subsequent earthquakes on the same fault or nearby faults
and may give rise to signi¢cant fault indentation. If the stress
drop on the fault is strongly heterogeneous, as is often the case
in real earthquakes, the deformation is found to concentrate
around heterogeneities, giving rise to further undulations of
the fault surface. The normal component of displacements is
moreover accompanied by large normal stresses, which are
probably the most relevant e¡ects produced by the interaction
between fault plane and free surface, as discussed below.

SELF-INDUCED NORMAL STRESS

The normal traction t0t
(k), k~1, . . . M|N, that develops on

the fault after a slip event will be called the self-induced normal
stress ¢eld. The main features of this stress component are as
follows:

(1) the normal traction is absent on vertical faults (either
strike-slip or dip-slip), or on inclined very deep faults;
(2) its absolute value is larger on the more deformed and

shallower areas;
(3) it increases considerably as the fault approaches the free

surface;
(4) its pattern is similar to that of the normal displacement.

After the earthquake, there is extension in the fault area that
uplifts ( front area) and compression in the area that subsides
(back area).

In Fig. 13 the normal stress ¢eld is plotted on (a) a strike-slip
fault dipping at 600 and (b) on a dip-slip fault dipping at 300.
We de¢ne the ratio

R4~
maxDt0tD
D*pD

,

where maxDt0tD is the maximum intensity of self-induced normal
stress and *p is the stress drop as de¢ned in (2). In Figs 14(a)
and (b) the ratio R4 as a function of the fault dip angle is
plotted for faults at di¡erent depths.
The normal stress ¢eld is not negligible. In the more realistic

cases of Fig. 14, it can be 10 per cent of the stress drop for
buried strike-slip faults (typically dipping with d > 750), 50 per
cent for buried dip-slip faults and even 120 per cent for a dip-
slip fault with d~600 (typical normal fault) that reaches the
free surface. From Fig. 14 it can be inferred that this ¢eld is due
to the interaction between the fault deformation and the free
surface. Consider t0t as given by the elastic deformation in the
local system (s, d, t):

t0t~(jz2k)
Lut
Lt

zj
Lus
Ls

z
Lud
Ld

� �
, (9)

where (us, ud , ut) is the displacement ¢eld. It can be shown that
the term containing (jz2k) always prevails over the term
containing j and is mostly responsible for the pattern and
intensity of the normal stress ¢eld. If the term multiplied by j is
neglected, it can be seen that the self-induced normal stress
is mainly caused by the gradient in the normal direction t of the
normal displacement ut on the fault plane. This gradient is non-
vanishing for inclined faults and is caused by the di¡erent
behaviour of the regions lying above and below the fault. In
other terms, the hangingwall block above the fault deforms
much more easily than the footwall block. For a vertical fault,
the normal displacement is horizontal and since the half-space
is horizontally homogeneous, the gradient Lut/Lt vanishes by
symmetry over the fault plane.

DISCUSSION

The self-induced normal stress may in£uence the fault behaviour
during slip or in the post-seismic phase. Suppose that the fault
undergoes shear failure following the Coulomb criterion:

DqDzf (pnzp)§S0 , (10a)

(a)

(b)

Figure 10. Plots of the ratio R2~maxDD\/DkD as a function of dip
angle for (a) strike-slip faults and (b) dip-slip faults at di¡erent depths
(referred to the upper fault edge). The stress drop is 2.5 MPa and fault
dimensions are L~12 km, W~8 km.
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where q is the shear stress, f is the friction coe¤cient, pn is the
normal stress (negative if compressive) on the fault plane, p is
the pore pressure and S0 is a positive constant that may be
regarded as the inherent shear strength of the material. If the
medium is isotropic, Skempton (1954) showed that the pore
pressure change in undrained conditions is related to the stress
change in the solid matrix according to

*p~{
B
3

*pkk ,

where B is the Skempton parameter (B~1 for incompressible
rock^£uid constituents). It has been suggested (Rice 1992;
Harris 1998) that *p!*pn in fault zones, so that eq. (10)
may be rewritten incorporating *p into an e¡ective friction
coe¤cient f 0 < f in the following way:

DqDzf 0pn§S0 . (10b)

Version (10b) of the failure criterion has been employed by e.g.
Stein et al. (1992) and King et al. (1994). In this section we shall

Figure 11. Fault plane deformation after the earthquake on (a) a strike-slip fault at a depth of 1 km dipping at 600 and (b) a surface thrust fault
dipping at 300. Deformation is plotted with respect to the undeformed fault plane t~0. A qualitative scheme is also shown for the system of forces
responsible for the fault plane deformation (vertical arrows), the second couple of forces (horizontal arrows), the maximum slip direction and the axis
of fault plane rotation (s~a, d~a). The stress drop is 2.5 MPa and fault dimensions L~12 km, W~8 km.
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employ the failure criterion (10b) but in the following section
we shall also employ the criterion (10a).
During the slip, a fraction *q of the total shear stress q

is released and a normal stress *pn is induced. After the
earthquake the failure condition (10b) is

Dqz*qDzf 0 (pnz*pn)§S0 , (11)

where we assume that f 0 and S0 do not change following the
earthquake. The Coulomb failure function is de¢ned as

CFF~DqDzf 0 pn . (12)

Let us assume q > 0. Then *q (the stress drop) is usually
negative over the fault plane, but it might be positive on some
elements if the slip is highly inhomogeneous. In the present
section we shall consider a constant stress drop on the fault
plane, so that

*q~{D*pD on the fault plane ,

where *p is the stress drop as de¢ned in (2).

If we furthermore say that D*pD < DqD, the change *CFF due
to the earthquake is

*CFF~{D*pDzf 0 *pn . (13)

Regions where *CFF > 0 are left nearer to failure than they
were before the earthquake, while regions where *CFF < 0
should be strengthened. Then, changes in the Coulomb failure
function computed over the fault surface in the absence of
self-induced normal stress, say *CFF 0, are always negative in
constant stress drop models,

*CFF 0~{D*pD < 0 ,

and accordingly, after the earthquake, all the fault would be
further from failure. It should be noted that the opposite takes
place in the prolongation of the fault surface beyond the
slipped region.
In the numerical model discussed in the previous section

the normal stress ¢eld on the kth element is proportional to the
shear stress release *p (from eq. 6):

*pk
n~akD*pD , (14)

a)

b)
(b)

(a)

Figure 12. Fault plane deformation: plots of the ratio R3~maxDut/DkD
as a function of dip angle for (a) strike-slip faults and (b) dip-slip faults
of di¡erent depths. The stress drop is 2.5 MPa and fault dimensions
L~12 km, W~8 km.

Figure 13. Self-induced normal stress on the fault plane of (a) a
strike-slip fault and (b) a dip-slip fault. Fault parameters are the same
as in Fig. 4.

ß 2000 RAS, GJI 141, 43^56

52 M. Bonafede and A. Neri
D

ow
nloaded from

 https://academ
ic.oup.com

/gji/article/141/1/43/579589 by guest on 20 August 2022



where ak is positive in `uplifted' fault portions and is negative in
`subsiding' fault portions. When self-induced normal stress is
considered, *CFF is found by inserting (14) into (13):

*CFF~{D*qD(1zaf 0) , (15)

where the index k is omitted for brevity. Using f 0~0:85, a
value typical for rocks in laboratory tests (Byerlee 1977), and
a&+0:5, which is a typical maximum value for shallow dip-
slip faults according to Fig. 14(b), we ¢nd af 0&+0:4. The
factor af 0 is able to amplify or decrease *CFF by&40 per cent
with respect to *CFF 0. Normal compressive self-induced stress
generates a stronger decrease of Coulomb stress, *CFF <
*CFF 0 < 0, which brings the fault further from failure.
Normal extensional self-induced stress causes a minor decrease
of the Coulomb stress, *CFF > *CFF 0, which might even be
an increase under favourable circumstances. In the latter case
the fault would move closer to failure.
To be more speci¢c, let us consider dip-slip faults. According

to the numerical models presented, a thrust fault mainly
develops extensional stress while a normal fault mainly develops
compressive stress. Both are maxima in absolute value in the

sur¢cial fault portion (Fig. 15). As a ¢rst observation it can
be stated that the occurrence of an earthquake always leads
the shallower section of a normal fault towards a more stable
equilibrium than a thrust fault. In the case of buried faults,
the absolute value of normal stress is maximum for inter-
mediate and shallow dip angles, whilst it vanishes as d?900
(see Fig. 14b). Following the above considerations about
*CFF , we are lead to conclude that

(1) thrust faults with a dip shallower than 450 are favoured
to slip again in the post-seismic phase;
(2) normal faults with a dip shallower than 600 are

strengthened and post-seismic slip is likely to occur for higher
dip angles.

These results are in rough agreement with those predicted by
Anderson's theory of faulting and suggest that cumulative
e¡ects after several seismic cycles tend to favour low-dip thrust
faults and high-dip normal faults.
The present computations suggest that Coulomb stress

changes caused by self-induced normal stress may in£uence
signi¢cantly future fault activity. In fact, extensional stress

Figure 14. Plots of ratio R4~maxDt0t D/D*pD, where maxDt0t D is the maxi-
mum absolute value of self-induced normal stress and D*pD is the stress
drop as de¢ned in (2), as a function of a dip angle on (a) strike-slip
faults and (b) dip-slip faults of di¡erent depths. The stress drop is
2.5 MPa and fault dimensions L~12 km, W~8 km.

Figure 15. Self induced normal stress on (a) an outcropping normal
fault dipping at 700 and (b) an outcropping thrust fault dipping at 300.
The stress drop is 2.5 MPa and fault dimensions L~12 km,W~8 km.
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in the front area of the fault and compressive stress in the
back area leave these areas in a less stable and more stable
equilibrium, respectively. In the front area aftershocks or
future stress release would occur, while the back area would be
moved further from failure.
As a consequence, very shallow seismic activity can be

expected in the post-seismic phase on thrust faults, while the
shallowest portion of normal faults should be frictionally
stable. In the long-term, due to cumulative e¡ects, seismicity
on thrust faults is expected to be shallower than on normal
faults, as long as brittle rheology is assumed. However, in the
ductile regime this e¡ect may be cancelled or reversed since
extensional regions, which are generally sites of normal earth-
quakes, are generally associated with high heat £ow, which
shifts the brittle^ductile transition to shallower depths.
We consider also the case of a thrust fault reaching the free

surface. In Fig. 16 the maximum extension or compression
computed on horizontal stripes of di¡erent depths is plotted as
a function of the dip angle. The maximum extension in deeper
areas is for 00 < d < 300. At great depths, thrust faults dipping
at these angles are favoured by the stress ¢eld left by previous
events. In the 2^3 km below the free surface, the maximum
extension is for 300 < d < 600. From this result one might infer
that, in the most sur¢cial area, the fault surface may vary its
dip from a value d~300 at depth to d§600 near the surface, in
order to follow the path that minimizes normal compression
(i.e. friction). Such a bending of thrust faults near the free
surface is commonly observed in the ¢eld or from seismic
prospecting (e.g. Finetti et al. 1979). The same upward-concave
bending is predicted for normal faults, typically with a dip
greater then 600, since high compression is induced on shallow
strips with this dip while the minimum compression is found
for vertically dipping strips.

FIELD EVIDENCE

In this section we present a few examples that seem to support
a signi¢cant role being played by self-induced normal stress in
the post-seismic phase, as discussed in the previous section. An

interesting data set refers to four seismic sequences located in
the proximity of the Italy^Slovenia border, accurately located
thanks to the presence of local and mobile seismic networks
connected to the permanent national Italian seismic network.
Accurate hypocentre determinations of these sequences are
given by Bressan et al. (1999). Three seismic sequences were in
the thrust domain of the Friuli region (NE Italy) with main
shocks taking place respectively on 1988 February 1 (M~4.2),
1991 October 5 (M~3.9) and 1996 April 13 (M~4.3); the
fourth sequenceö1998 April 12 (M~5.6)öwas in western
Slovenia, and in spite of the short distance from the previous
sequences, was located in the strike-slip domain. In Fig. 17,
focal mechanisms of the main events are shown, together with
main shock and aftershock hypocentres. From the discussion
in the previous section we should expect that, other things
being equal, thrust fault earthquakes should be followed by
shallow aftershocks due to the lower friction produced by self-
induced tensile normal stress (see Fig. 13b) concentrated near
the surface. No self-induced stress is present on a vertical
strike-slip fault so that aftershock hypocentres after the fourth
(strike-slip) earthquake should not show any preference for
shallower depth. This is actually found to be the case for the
data sets in Fig. 17.
In the 1997 Umbria^Marche seismic sequence (central

Apennines), two main shocks very close in time and space
(with Mw~5:7 and 6:0) on 1997 September 26 were followed
by thousands of aftershocks, several of which were located
very close to the normal fault plane, dipping 450 towards the
SW (Amato et al. 1998). The main shock hypocentres were
approximately in the middle of the aftershock distribution
(Fig. 4 in Amato et al. 1998) but the rupture mechanisms
inferred from near-source strong motion records (Zollo et al.
1999) show up-dip rupture propagation for both events, with
maximum slip taking place 3^4 km up-dip of the nucleation
point. Accordingly, among the aftershocks located next to the
fault plane, many more took place on the deeper fault section
than on the shallower section, in agreement with the increased
friction inferred in the previous section for the shallow part of

Figure 16. Self-induced normal stress t0t as a function of the dip angle
on horizontal stripes of the fault plane. A surface thrust fault is con-
sidered. The ranges of d in the plot represent the stripe extension along
the d axis (see Fig. 1); shallower stripes have greater d values. The stress
drop is 2.5 MPa and fault dimensions are L~12 km, W~8 km.

Figure 17. Hypocentre distribution of aftershocks of three thrust
fault earthquakes in NW Italy (a, b and c) and one strike-slip earth-
quake in western Slovenia (d). The main shock depths and focal
mechanisms are indicated (redrawn after Bressan, G. et al. 1999).
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a normal fault. According to the present model, however, we
should also expect very shallow aftershocks to be inhibited by
increasing friction on the shallowest fault section, which does
not seem to be the case in the data set. This partial failure might
be explained in terms of induced (positive) pore pressure in
compressive regions or in terms of the large heterogeneities
present in shallower layers, or else in terms of a shear stress
increase produced by highly variable slip over the fault plane
or by stress concentration just outside the fault plane. In other
words, it must be stated clearly that the self-induced normal
stress is not claimed to be the only parameter governing
aftershock occurrence.
Finally, we shall consider the 1983 M~7.3 Borah Peak

(Idaho) seismic sequence for which a detailed slip distribution
is available for the main shock (Mendoza &Hartzell 1988). The
earthquake occurred on an outcropping normal fault dipping
at 500. From the slip distribution, the induced stresses can
be computed according to eqs (6)^(7). The slip distribution
shows regions with high variability, where positive shear stress
changes can be induced. In Fig. 18(a) the e¡ective normal
stress,

*peff
n ~*pn{B

*pkk

3
, (16)

is plotted (positive values involve extension, negative values
involve compression). Most aftershocks are concentrated in
regions of positive *peff

n , where friction is lowered after the
main shock. In Fig. 18(b) the change in the Coulomb failure
function *CFF is plotted, as given by *qz*peff

n (consistent
with version 10a of the failure criterion). *CFF is dominated
by the shear stress change *q, and essentially the same pattern
would be produced from (10b). Aftershocks seem to stay away
from high negative *CFF areas of the fault plane, but no clear
concentration inside positive *CFF regions is evident. This
might give support to the hypothesis that the unclamping e¡ect
of positive *peff

n can be more important than the shear stress
in triggering instability, as also suggested by Perfettini et al.
(1999).

CONCLUSIONS

Numerical models of a shear fault with constant stress drop
and variable slip suggest that an earthquake can change signi-
¢cantly the state of normal stress on the fault plane itself,
particularly at shallow depth. The self-induced normal stress
depends critically on fault mechanism and fault geometry (dip,
depth, aspect ratio) and is not uniform over the fault plane.

Figure 18. (a) E¡ective normal stress variation *pn{B*pkk/3 (eq. 10a) computed from the Mendoza^Hartzell (1988) slip model of the 1983 Borah
Peak earthquake with B~0:8. Thin lines show the slip contours, black dots show aftershock locations on the fault plane. (b) Coulomb failure function
variation *CFF for the same earthquake computed from (10a) with friction coe¤cient f~0:85 and B~0:8.
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If normal stress changes are neglected, a shear stress drop,
uniform over the fault plane, should always lead to a situation
of more stable equilibrium. If self-induced normal stresses are
taken into account, according to the Coulomb failure function,
we see that di¡erent fault areas are brought to di¡erent states
of equilibrium following the earthquake. Thrust faults become
weaker in their shallow regions, while normal faults become
stronger. No self-induced normal stress is present on typical
(vertical) strike-slip faults. After the earthquake, the originally
plane fault surface undergoes a rotation and a deformation
(strictly related to the self-induced stress) that may signi¢cantly
perturb an originally straight tectonic margin. These e¡ects are
typically small for a single event but may be signi¢cant for a
sequence of several events, even if anelastic deformation must
be taken into account in the long term. In general, self-induced
extension cannot by itself produce positive values for *CFF ,
but it may contribute to generate positive *CFF in regions of
high stress gradient (Fig. 18b). Its plausible e¡ect is to decrease
the repeat time of the next shock; Perfettini et al. (1999) also
proposed that a tensile normal stress may a¡ect signi¢cantly
the slip amplitude by unclamping the fault.
Among the models presented, those characterized by uniform

traction release are clearly oversimpli¢ed with respect to real
faulting events. The uniform stress drop models constitute only
a preliminary step to understanding the physics of permanent
self-induced e¡ects. Real fault surfaces may be non-planar and
bends in the fault strike can be the source of large normal
stresses. Complex events may involve di¡erent fault segments
with di¡erent dip and depth. Even in the case of planar
faults, very heterogeneous slip distributions are often inferred
from the inversion of seismic and geodetic data, which in turn
require a very heterogeneous stress drop. As mentioned in the
previous section, these heterogeneities can be responsible for
positive changes of *q and thus produce large positive *CFF
on the fault plane. These complex slip distributions can be
easily inserted in the boundary element model, as shown in
Fig. 18 for the Borah Peak earthquake.
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