
BioMed Central

Page 1 of 10

(page number not for citation purposes)

Reproductive Biology and 
Endocrinology

Open AccessResearch

Effects of 3-beta-diol, an androgen metabolite with intrinsic 
estrogen-like effects, in modulating the aquaporin-9 expression in 
the rat efferent ductules
Patrícia Picciarelli-Lima†1, André G Oliveira†1, Adelina M Reis2, 
Evanguedes Kalapothakis3, Germán AB Mahecha1, Rex A Hess4 and 
Cleida A Oliveira*1

Address: 1Department of Morphology, Federal University of Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil, 
2Department of Physiology and Biophysics, Federal University of Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, Minas Gerais, 
Brazil, 3Department of General Biology, Federal University of Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil 
and 4Department of Veterinary Biosciences, University of Illinois, 2001 S. Lincoln, Urbana, IL 61802, USA

Email: Patrícia Picciarelli-Lima - patpicciarelli@yahoo.com.br; André G Oliveira - andre@icb.ufmg.br; Adelina M Reis - adelina@icb.ufmg.br; 
Evanguedes Kalapothakis - ekalapo@icb.ufmg.br; Germán AB Mahecha - mahecha@icb.ufmg.br; Rex A Hess - rexhess@uiuc.edu; 
Cleida A Oliveira* - cleida@icb.ufmg.br

* Corresponding author    †Equal contributors

Abstract

Background: Fluid homeostasis is critical for normal function of the male reproductive tract and aquaporins

(AQP) play an important role in maintenance of this water and ion balance. Several AQPs have been identified in

the male, but their regulation is not fully comprehended. Hormonal regulation of AQPs appears to be dependent

on the steroid in the reproductive tract region. AQP9 displays unique hormonal regulation in the efferent ductules

and epididymis, as it is regulated by both estrogen and dihydrotestosterone (DHT) in the efferent ductules, but

only by DHT in the initial segment epididymis. Recent data have shown that a metabolite of DHT, 5-alpha-

androstane-3-beta-17-beta-diol (3-beta-diol), once considered inactive, is also present in high concentrations in

the male and indeed has biological activity. 3-beta-diol does not bind to the androgen receptor, but rather to

estrogen receptors ER-alpha and ER-beta, with higher affinity for ER-beta. The existence of this estrogenic DHT

metabolite has raised the possibility that estradiol may not be the only estrogen to play a major role in the male

reproductive system. Considering that both ER-alpha and ER-beta are highly expressed in efferent ductules, we

hypothesized that the DHT regulation of AQP9 could be due to the 3-beta-diol metabolite.

Methods: To test this hypothesis, adult male rats were submitted to surgical castration followed by estradiol,

DHT or 3-beta-diol replacement. Changes in AQP9 expression in the efferent ductules were investigated by using

immunohistochemistry and Western blotting assay.

Results: Data show that, after castration, AQP9 expression was significantly reduced in the efferent ductules. 3-

beta-diol injections restored AQP9 expression, similar to DHT and estradiol. The results were confirmed by

Western blotting assay.

Conclusion: This is the first evidence that 3-beta-diol has biological activity in the male reproductive tract and

that this androgen metabolite has estrogen-like activity in the efferent ductules, whose major function is the

reabsorption of luminal fluid.
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Background
Fluid homeostasis is critical for normal function of the
male reproductive tract and aquaporins (AQP) play an
important role in maintenance of this water and ion bal-
ance [1-3]. Some of these integral membrane proteins
allow transcellular movement of water, a function associ-
ated with their name, but other AQPs permit the move-
ment of small solutes [4]. At least 13 mammalian
isoforms (AQP0-AQP12) have been identified, particu-
larly in fluid-transporting tissues, but also in cells not rec-
ognized for this activity [5-7]. Several AQPs are expressed
in the male genital tract, with specific isoforms identified
in testes, efferent ductules, the epididymis and vas defer-
ens [8-12].

The efferent ductules are a major site for fluid homeosta-
sis, as they reabsorb more than 95% of the luminal fluid
released from the seminiferous epithelium [13]. These
small coiled ductules transport sperm from the rete testis
and play a major role in concentrating sperm prior to their
maturation in the epididymis [14,15]. The male excurrent
ductal epithelia express at least four AQPs, with 1, 9 and
10 found in the efferent ductules and 1,3, and 9 reported
in the epididymis [9-11,16-18]. Although AQP1 and 9 are
common to both the efferent ductules and epididymis,
regulation of their expression shows significant diver-
gence, as AQP1 appears to be constitutively expressed,
while AQP9 responds to both estrogen and androgen
[16]. Of particular note, testosterone alone was not capa-
ble of restoring AQP9 after castration or efferent ductule
ligation [16,19]. However, both estradiol and dihydrotes-
tosterone (DHT) restored AQP9 expression in the efferent
ductules, but in the initial segment epididymis, only DHT
restored AQP9 to normal levels [16].

The differential regulation of AQP9 in the male tract,
depending on the steroid hormone and location in the
male reproductive tract, suggested that the selective pres-
ence of estrogen receptors (ERα and ERβ) [2,15] in effer-
ent ductule and epididymal epithelium and a selective
presence of 5α-reductase and DHT activity in maintaining
epididymal structure and function [20,21] may be respon-
sible for this unique hormonal activity. Recent data have
shown that DHT may be converted into 5α-androstane-
3β-17β-diol (3β-diol) in a virtually irreversible reaction
[22]. Once considered inactive [23,24], 3β-diol is present
in high concentrations in the male and indeed has biolog-
ical activity [25-30]. However, 3β-diol does not bind to
the androgen receptor (AR), but rather to ERα and ERβ,
with higher affinity for ERβ [26,31,32]. Based upon these
findings, we hypothesized that the modulation of AQP9
by DHT could be indirectly mediated by 3β-diol. To test
this hypothesis in the present study, surgical castration
followed by hormonal replacement with 3β-diol was per-
formed to investigate the regulation of AQP9 expression

in rat efferent ductules. Our results show that the 3β-diol
metabolite restores AQP9 immunostaining, similar to
DHT and estradiol replacement.

Methods
Animals

The present study was performed in adult male 120-day-
old Wistar rats, obtained from multiple litters and housed
in the Animal Facility (CEBIO) at the Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais – Brazil.
The rats were maintained under constant light cycle (12 h
of light and 12 h of darkness) and temperature (22°C),
and received peletized chow as diet (Nuvital Nutrientes
S.A, Colombo, Brazil) and water ad libitum. The principles
of research involving animals followed the protocol, pub-
lished by the Universidade Federal de Minas Gerais http:/
/www.ufmg.br/coep/cetea.html. The experimental proce-
dures were approved by the institutional Ethical Commit-
tee for Animal Experimentation of the Federal University
of Minas Gerais (CETEA), Brazil.

Surgical castration

Adult rats were anaesthetized with intraperitoneal injec-
tion of sodium pentobarbital (50 mg/kg) (Cristália Ltda.,
Itapira, Brazil) and ketamine chloridrate (10 mg/kg) (Lab-
oratorios König S.A., Avellaneda, Argentina). The bilateral
castration was performed following the protocol previ-
ously described [33]. In summary, the testes-epididymis
were exposed through a mid-line ventral scrotal incision,
the extratesticular rete testis together with the pampini-
form plexus vessels were ligated, the testes were removed,
and then the ligated efferent ductules and epididymis
were returned into the scrotum. For sham operation, the
testes were exposed, manipulated and then reinserted
intact into the scrotum. After surgery, the scrotal incision
was closed by suture. The animals received the analgesic
and anti-inflamatory Banamine® (Schering-Plough S.A.,
Rio de Janeiro, Brazil) (1.5 mg/kg). Post-operative condi-
tions of the animals were monitored daily.

Hormone replacement

Starting on the day of bilateral surgical castration, the rats
were subjected to hormonal replacement, using subcuta-
neous injections once per day for 6 days. The treatment
period was chosen considering that at this time both cir-
culating and luminal source of hormones as well as sperm
passing through the male tract has already been depleted
[34-36]. Rats were randomly assigned to one of the fol-
lowing treatment groups (n = 5 for each group): 5 mg of
5α-dihydrotestosterone (DHT – Sigma, St.Louis, USA);
400 µg of 17-β-estradiol-3-benzoate (E2 – Sigma,
St.Louis, USA); 3 mg of 5α-androstane-3β-17β-diol (3β-
diol – Sigma, St.Louis, USA). Hormone dosages were
based on prior studies [26,33]. Steroids dissolved in corn
oil were injected with a total volume of 0.1 ml. The same
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volume of vehicle was given to the castration control
group.

Hormone measurements

Blood samples were collected by cardiac puncture imme-
diately after the animals reached a surgical plane of
anesthesia. The plasma was separated by centrifugation
and stored at -20°C for subsequent hormone assays.
Plasma testosterone and estradiol were measured by radi-
oimmunoassay, using commercial kits (Testosterone
MAIA and Estradiol MAIA kits – Adaltis, Rome, Italy),
according to instruction of the manufacturer [37]. The
limit of testosterone detection was 0.07 ng/ml and the
assay coefficient of variation was 4.7%. The antibody used
for testosterone radioimmunoassay (RIA) has low cross
reactivity to DHT (5%) and other androgens (less than
0.01%). The assay detection limit for estradiol was 15 pg/
ml and the intra- and inter-assay coefficient of variation
was 4.3% and 5.6%, respectively. All samples were meas-
ured in duplicate.

Tissue preparation

Rats surgically castrated were euthanized 6 days after the
initiation of hormone replacement. The rats were anaes-
thetized (intraperitoneal sodium pentobarbital; 80 mg/kg
body weight plus ketamine cloridrate 10 mg/kg body
weight), weighed and perfused intracardially with 10%
(v/v) neutral buffered formalin (NBF). After fixation, the
efferent ductules together with the epididymis, ventral
prostate, and seminal vesicle together with coagulating
gland were dissected out and weighed. The relative organ
weights were calculated per 100 g of body weight and the
results expressed as mean ± standard deviation. After
weighting, the efferent ductules were dissected out from
the epididymis, embedded in paraffin, sectioned (5 µm)
and mounted on glass slides.

Immunohistochemistry

Changes in the expression of AQP9 were investigated by
immunohistochemistry following the protocol previously
described [16]. Briefly, sections were deparaffinized, rehy-
drated, and then blocked for endogenous peroxidase.
After antigen retrieval using a standard microwave
method, the sections were incubated in 10% (v/v) normal
goat serum to block nonspecific binding, and then over-
night with the AQP9 polyclonal rabbit anti-rat primary
antibody (Alpha Diagnostic International, San Antonio,
USA), diluted 1:1000. For negative control, phosphate
buffer saline (PBS) was used in place of the primary anti-
body. Biotinylated goat anti-rabbit secondary antibody
(Dako, Carpinteria, USA) was used at 1:100 dilution. The
labeling was visualized using avidin-biotin complex
(Vectastain Elite ABC kit; Vector Laboratories, Burlin-
game, USA), followed by incubation in 0.05% (w/v)
3,3'diaminobenzidine containing 0.01% (v/v) H2O2 in

0.05 M Tris/HCl buffer, pH 7.6, until a brown reaction
was observed by microscopy. The reaction was stopped by
immersion in distilled water. Sections were counter-
stained with Mayer's haematoxylin then dehydrated in
ethanol, cleared in xylene and mounted. For semiquanti-
fication of the immunostaining, tissue sections from con-
trol and all other experimental groups were run in parallel
and staining was performed in triplicate sets to confirm
results.

Semiquantitative immunohistochemical study

AQP9 immunostaining intensity was quantified by com-
puter-assisted image analysis, based on previously
reported protocols [19,38]. Pictures from 10 different
areas of the proximal region of the efferent ductule epithe-
lium of each animal were taken by using a x40 objective
lens of a Nikon Eclipse E600 microscope (Nikon Corp.,
Melville, USA) and a Nikon Coolpix digital camera
(Nikon Corp., Melville, USA). Digital images were proc-
essed with Adobe Photoshop (Adobe Systems, Mountain
View, USA), converted to the grayscale mode and
inverted. The images were then exported to Image-Tool
software (version 3.00; University of Texas Health Sci-
ences Center, San Antonio, USA), for quantitative analy-
sis. For this proposal, the stained apical areas of the
nonciliated epithelial cells were traced and measured and
pixel intensity was determined for the traced areas. Back-
ground intensity was determined by tracing an unlabeled
area adjacent to the measured cells and subtracted from
values detected in the labeled regions. Data are expressed
as mean ± standard deviation.

Western blotting analysis

Efferent ductules of rats (n = 04) which were sham-oper-
ated or castrated and submitted to hormonal replace-
ment, as described above, were used for Western blotting
assay. Following dissection, the efferent ductules were
trimmed of fat tissue, rinsed vigorously in PBS and frozen
in liquid nitrogen. After maceration using dry ice, tissues
(100 mg) were solubilized in 750 µl of buffer sample (1%
sodium dodecyl sulfate, 30 mM Tris-HCl pH 6.8, 2-mer-
captoethanol, 12% (v/v) glycerol and bromophenol
blue), boiled for 5 min and then subjected to continuous
electrophoresis using 12.5% SDS-PAGE (sodium dodecyl
sulfate polyacrylamide gel electrophoresis). The separated
proteins were transferred to nitrocellulose membrane and
blocked with 10% normal goat serum for 1 h at room
temperature. Then, the membrane was incubated with
rabbit anti-rat primary antibody (alpha Diagnostic Inter-
national, San Antonio, USA), diluted 1:1000, for 1 h. After
washing with PBS-Tween 0.05%, the blot was incubated
in goat anti-rabbit secondary antibody diluted 1:1000.
After several washes, the reaction was developed by the
addition of 0.1% 3,3'diaminobenzidine in PBS contain-
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ing 0.05% chloronaphtol, 16.6% methanol and 0.04%
H2O2. The reaction was stopped with deionized water.

The AQP9 density was estimated using Scion Image soft-
ware http://www.scioncorp.com, as previously described
[39]. Briefly, the Western blots were electronically
scanned and saved as TIFF image. Specific bands were
traced and measured with a constant measurement area
around the protein bands. Background intensity was
determined by tracing an unlabeled area adjacent to the
measured band. The final intensity was determined by
subtracting background intensity from positive values for
each band.

Statistical analysis

Treatment related effects in body and organ weights, as
well as hormone levels and immunoquantification of
AQP9 expression, were analyzed statistically using multi-
ple variance analyses (ANOVA). The post-hoc Student-
Newman-Keuls test was used for multiple comparisons
between groups. Differences were considered significant
at p ≤ 0.05.

Results
Plasma hormone levels

Surgical castration resulted in a dramatic reduction of
93% in the serum testosterone concentration. DHT treat-
ment returned testosterone concentrations to control lev-
els. In contrast, estradiol and 3β-diol treatments showed
no effect on testosterone levels (Fig. 1).

Plasma estradiol concentrations were not affected by the
surgical castration procedure. DHT and 3β-diol, as well as
the corn oil vehicle injections showed no effect on the
hormone levels, compared to intact controls; however,
estradiol treatments resulted in a significant increase in
plasma estradiol levels (Fig. 1).

Body and organ weights

No significant difference in body weight was observed
when experimental groups were compared to control. On
the other hand, castration significantly diminished the
efferent ductules/epididymis (44%), ventral prostate
(80%) and seminal vesicle/coagulating gland (52%) rela-
tive weights (Fig. 2). Treatment with DHT, but not estra-
diol, was able to restore weights of accessory sex glands
and the efferent ductules/epididymis. Compared to cas-
trated animals, a slight but significant increase in the
weights of the epididymis (P = 0.048) and ventral prostate
(P = 0.005), but not the seminal vesicle, occurred after the
3β-diol replacement.

AQP9 expression

In control rats, AQP9 was expressed in efferent ductule
epithelium, but restricted to the microvillus border of

non-ciliated cells (Fig. 3). Epithelial ciliated cells, as well
as the peritubular cells and components of the intertubu-
lar tissue were negative for AQP9. Bilateral surgical castra-
tion significantly reduced the AQP9 expression by 20%
compared with sham-operated controls, as determined by
image analysis. Similar result was found in castrated ani-
mals that received corn oil. Treatment with estradiol and
DHT, as well as 3β-diol, restored staining intensity to con-
trol level in the ductule epithelium (Fig. 4).

The results were confirmed by Western blotting assay.
AQP9 was detected in extracts prepared from rat efferent
ductules as a protein band of 32 kDa (Fig. 5), similar to
data previously shown for rat genital tract [19]. Compara-
tively the AQP9 expression was decreased after castration
(60%) and greatly recovered after estradiol (70%
increase), DHT (52% increase) and 3β-diol (66%
increase) replacement (Fig. 5).

Discussion
In the present study we investigated the relative contribu-
tions of estradiol, DHT, and its metabolite 3β-diol, in the
regulation of AQP9 expression in adult rat efferent duc-
tules. The data show that 3β-diol was equal in its ability to
maintain AQP9 to that observed with estradiol and DHT.
These results confirm our previous investigation of AQP9
regulation [16], but add to the growing body of data sup-
porting a steroid hormonal role for 3β-diol in the male
reproductive system. Although little is known regarding
the physiology of this androgen metabolite, in the present
study it was capable of upregulating AQP9, indicating that
3β-diol may serve as an additional ligand for estrogen
receptors found in the efferent ductules [40]. The tissue
selectivity of 3β-diol action is supported by the fact that
the seminal vesicle/coagulating gland weight and blood
testosterone or estradiol levels were not affected by 3β-
diol treatment, in contrast to ventral prostate and epidi-
dymis weights, which were significantly increased by this
androgen metabolite.

The importance of DHT in maintaining epididymal struc-
ture and function is well established [20,21]. However,
compared with epididymis, low 5α-reductase activity has
been found in the rodent efferent ductules [41,42]; and
AR appears to be expressed at lower levels than in the
epididymis [43]. Thus, it is unlikely that DHT resupple-
mentation after castration was able to directly restore the
AQP9 staining. If DHT was acting directly through its high
affinity binding to AR, then testosterone alone should
also have modulated AQP9 expression. Instead, the over-
all data suggests that it is the DHT metabolite, 3β-diol,
that is active in efferent ductules. This conclusion is sup-
ported by the following observations:

http://www.scioncorp.com
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Plasma hormonal levels after castration and hormonal replacementFigure 1
Plasma hormonal levels after castration and hormonal replacement. (A) Castration resulted in a significant reduc-
tion of 93% in the serum testosterone concentration. Corn oil, estradiol (E2) and 3β-diol maintained the testosterone level 
similar to castrated rat, while DHT increased the plasma testosterone concentration. (B) The plasma estradiol concentration 
was not affected by the castration or replacement with corn oil, DHT and 3β-diol. However, after estradiol replacement, a sig-
nificant increase in the plasma estradiol level was observed. Values represent mean ± SEM; n = 5 in each group; (*) = P ≤ 0,05 
when compared to control group; (‡) = P ≤ 0,05 when compared to castrated group.
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a) It has been shown that 3β-diol may have hormonal
activity, not acting through the AR, but rather as a ligand
for both ERα and ERβ.

b) 3β-diol has higher affinity for ERβ [31], which is abun-
dant in the efferent ductule epithelium [40].

c) In human testis, the 3β-diol concentration is higher
than DHT and estradiol [44,45]. It is reasonable to postu-
late that high concentrations of this metabolite may enter
the lumen of efferent ductules.

d) The existence of this estrogenic DHT metabolite has
raised the possibility that estradiol may not be the major
estrogen in males [29]. For instance, in the prostate there

Body, epididymis and sexual accessory gland weights after castration and hormonal replacementFigure 2
Body, epididymis and sexual accessory gland weights after castration and hormonal replacement. (A) No signif-
icant difference in body weight was observed in any experimental group.(B) Castration significantly diminished the efferent 
ductules/epididymis relative weights, whereas replacement with DHT and 3β-diol, but not estradiol, recovered the organ 
weight. (C) The weight of ventral prostate were significantly decreased after castration, but restored by DHT and 3β-diol. (D) 
There was also a significant reduction in the seminal vesicle/coagulating gland weight, which was recovered by DHT, but not by 
3β-diol or estradiol. Values represent mean ± SEM; n = 5 in each group; (*) = P ≤ 0,05 when compared to control group; (‡) = 
P ≤ 0,05 when compared to castrated group.
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is a growing body of evidence that 3β-diol, acting through
ERβ, may regulate important physiological events
[26,28,32,46].

e) Although the targeted disruption of ERβ has not
resulted in alterations of the male reproductive phenotype
[47], the aromatase knockout mouse (ArKO), which lacks
estradiol and estrone, provides the strongest data in sup-
port of 3β-diol having hormonal activity in the male tract.
In ArKO mice, spermatogenesis appears normal at first,
without efferent ductule abnormalities or disruption in
fluid reabsorption, which are observed in the ERα knock-
out [40,48]. Because estrogen receptors are expressed in
the efferent ductule epithelium [40], and are likely
expressed in the ArKO mouse, it is reasonable to hypoth-
esize that other ligands, such as 3β-diol, are capable of
binding ER for maintenance of normal physiological
functions, in the absence of estradiol.

f) Also noteworthy is the fact that 3β-diol stimulates ERβ
induced transcriptional activity equal to the cognate lig-
and estradiol, and the transcriptional selectivity of 3β-diol
for ERβ is much greater than its binding selectivity
[30,46].

g) AQP9 expression in developing rats progressively
increases and reaches adult levels by 4 weeks post-natal
[9]. At this time, testosterone is not the predominant
androgen, but there are high levels of DHT and its metab-
olites [24,49]. Thus, 3β-diol could be the alternative mod-
ulator of AQP9 expression even during the pre-pubertal
period.

These data are in agreement with those of Badran and
Hermo (2002), who concluded that a luminal factor com-

AQP 9 immunohistochemical staining intensity quantification in the rat efferent ductulesFigure 4
AQP 9 immunohistochemical staining intensity quan-
tification in the rat efferent ductules. Castration signifi-
cantly reduced the AQP9 expression in the efferent ductules 
compared with controls. Similar result was found in the 
corn-oil treated group. 3β-diol, as well as estradiol and DHT, 
restored the efferent ductules AQP9 staining intensity to 
control level. Values represent mean ± SEM; n = 3 in each 
group; (*) = P ≤ 0,05 when compared to control group; (‡) = 
P ≤ 0,05 when compared to castrated group.

Expression of AQP9 in the rat efferent ductulesFigure 3
Expression of AQP9 in the rat efferent ductules. (A) In control rats AQP9 was expressed in the microvillus border of 
the non-ciliated cells in the epithelium. Ciliated cells (c) were negative for AQP9. (B) Castration caused an evident decrease in 
the AQP9 staining when compared to controls. (C) Treatment with corn-oil maintained the AQP9 staining at levels similar to 
castrated rats. Replacement with estradiol (D), DHT (E) and 3β-diol (F) recovered the epithelial AQP9 staining to control lev-
els. Insert in A = negative control. Inserts in B-F = detail of ciliated cells negative for AQP9. Scale bar in A = 25 µm.
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ing from the testis, but not testosterone per si, was
involved in the modulation of AQP9 in the initial seg-
ment epididymis. As shown more recently, targeted dis-
ruption of ERα resulted in a small reduction of AQP9 in
the male tract [17], providing further support for the par-
ticipation of another testosterone metabolite in the regu-
lation of AQP9. It is also relevant that female tissues show
a similar regulation of AQP9 by androgen metabolites,
such as estradiol [50]. Taken together, these data indicate
that the underlying mechanisms for AQP9 regulation are
complex and likely involve multiple androgen metabo-
lites.

Conclusion
In conclusion, this is the first evidence that 3β-diol has
biological activity in the efferent ductules. Data presented
here support the hypothesis that DHT regulation of AQP9
expression in efferent ductules is likely to be mediated by
its reduction to 3β-diol and that this androgen metabolite
may play a role in luminal fluid homeostasis.
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