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Abstract

Objective

Individuals carrying rare, but biologically informative genetic variants provide a unique

opportunity to model major mental illness and inform understanding of disease mecha-

nisms. The rarity of such variations means that their study involves small group numbers,

however they are amongst the strongest known genetic risk factors for major mental illness

and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1) is a gene

containing one such risk variant, identified in a single Scottish family through its disruption

by a balanced translocation of chromosomes 1 and 11; t(1;11) (q42.1;q14.3).

Method

Within the original pedigree, we examined the effects of the t(1;11) translocation on white

matter integrity, measured by fractional anisotropy (FA). This included family members with

(n = 7) and without (n = 13) the translocation, along with a clinical control sample of patients

with psychosis (n = 34), and a group of healthy controls (n = 33).
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Results

We report decreased white matter integrity in five clusters in the genu of the corpus callo-

sum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of

the mixed psychosis group also demonstrated decreased white matter integrity in the above

regions. FA values within the corpus callosum correlated significantly with positive psy-

chotic symptom severity.

Conclusions

We demonstrate that the t(1;11) translocation is associated with reduced white matter integ-

rity in frontal commissural and association fibre tracts. These findings overlap with those

shown in affected patients with psychosis and in DISC1 animal models and highlight the

value of rare but biologically informative mutations in modeling psychosis.

Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are severe neurodevelopmental disorders with a

combined lifetime prevalence of around 2% [1]. Together with major depressive disorder

(MDD) they are amongst the top ten leading causes of disability worldwide [1]. Although the

aetiologies of these disorders are incompletely understood, they are known to be highly herita-

ble with complex genetic architectures [2,3]. Genetic risk variants for these disorders are pro-

posed to lie along a spectrum of effect sizes: from rare monogenic variants of large effect, to

common but relatively weak variants that, in aggregate, result in disorder. Rare variants affect

small numbers of individuals but can be particularly informative in that they have a large effect

on underlying biology and studying them in multiply-affected families may substantially

reduce heterogeneity associated with clinically-defined cases. Studies of rare variants can there-

fore inform understanding of disease mechanisms relevant not only for individuals carrying

such mutations, but also for wider patient populations [4,5].

One such rare highly penetrant mutation occurs in the Disrupted-in-Schizophrenia 1 gene

(DISC1). DISC1 was first implicated in psychopathology after the identification of a balanced

chromosomal t(1;11) (q42.1;q14.3) translocation in an adolescent with conduct disorder. Fol-

low-up of this Scottish pedigree indicated the translocation co-segregated with multiple cases

of SZ, MDD and BD [6]. Further studies demonstrated that family members who carried the

translocation also showed deficits in attention and information processing [6]. Subsequently,

independent genetic evidence for the involvement of the DISC1 locus in SZ and affective disor-

ders has emerged [7–9] suggesting a role for DISC1 variants as risk factors in major mental ill-

ness [4,10]. Examination of the effects of this translocation could therefore bring insights into

how DISC1mediates its effects on psychopathology through intermediate phenotypes such as

brain structure and function.

DISC1 functions as a molecular scaffold protein interacting with other proteins contributing

to multiple neurodevelopmental processes [4,11–15]. Expression of DISC1 is highest in the

central nervous system, and is reported in both neurons and glial cells [4,16–18]. Although the

complex molecular consequences of the t(1;11) translocation are incompletely understood,

given roles of DISC1 in neurodevelopment, the translocation is likely to contribute to abnormal

brain development, including white matter. This is particularly relevant for major psychiatric

disorders where multiple lines of evidence implicate disruption of white matter connections in
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SZ, BD and MDD particularly in fronto-temporal and callosal tracts [19–21]. Further, animal

models of altered DISC1 expression are reported to result in a range of abnormalities including

partial agenesis of the corpus callosum (CC) [7,22–24]. Effects of common variants within

DISC1 have also been shown to affect white matter integrity and cognitive function, involving

the prefrontal cortex and inter-connecting regions [9,25–34]. The specific effects of the t(1;11)

translocation on white matter pathology in humans has, however, not previously been

reported.

Given that DISC1 is known to be involved in white matter formation [18,35], that white

matter integrity is highly heritable [36–38] and related to familial risk, as well as to illness [39–

41], we sought to compare white matter integrity in individuals from the original DISC1 Scot-

tish pedigree with and without the chromosomal translocation. We hypothesised that the t

(1;11) translocation would lead to reduced white matter integrity in multiple neural networks

that have been shown to be both heritable and genetically correlated with SZ and demonstrated

in animal models of DISC1 biology, including the corpus callosum, and tracts connecting with

prefrontal regions especially fronto-temporal connections. In order to relate the effect of the

translocation to the effect of major mental illness, we also compared a clinical control group

(of individuals with SZ or BD) to a matched control group.

Methods

Study population

The current analysis involved four study groups, (i) family members with and (ii) without the

t(1;11) translocation, (iii) a clinical control group of patients with a range of psychotic illness

and (iv) healthy controls. Family members were recruited from a previously reported Scottish

family known to carry the t(1;11) translocation [42,43]. Twenty five family members known to

carry the translocation were approached to participate. Through these individuals other mem-

bers of the family were also invited. All family members willing to participate were recruited

and, after informed consent obtained, translocation status determined.

Patients with clinical diagnosis of SZ or BD were identified across Scotland as part of the

Scottish Family Mental Health Study. Healthy controls were recruited from the same geo-

graphical areas as the patient groups. For all groups exclusion criteria included any major med-

ical or neurological conditions, any personal history of harmful substance abuse in the last year

or substance dependence, and for the control group any personal or familial history of psychi-

atric disorders. Subjects were excluded where there were MRI safety considerations.

Ethics Statement

A detail description of the study was given to all individuals and all participants gave written

informed consent. The study was approved by the Multicentre Research Ethics Committee for

Scotland.

Seven family members with, and 13 without the t(1;11) translocation provided usable diffu-

sion tensor imaging (DTI) data, along with the clinical control group of patients with a range

of psychotic illness (n = 34; comprising n = 23 with SZ, and n = 11 with BD) and a group of

healthy controls (n = 33). Of those family members with the t(1;11) translocation, all had a psy-

chiatric diagnosis (1 had a diagnosis of SZ, 3 of cyclothymia and 3 of MDD; 1 recurrent, 2 sin-

gle episode). For the non-carrier group 2 individuals met criteria for MDD (1 recurrent, 1

single episode). One individual from the carrier group was taking clozapine, valproate and lith-

ium, and one taking fluoxetine. One family member from the non-carrier group was taking

amytriptyline. Medication for the patient group is contained in S1 Table.

Effects of DISC1 onWhite Matter Integrity
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Inclusion of the patient group was to provide a clinical group to relate the effects of the t

(1:11) translocation to the effect of generalized psychotic illness. The analysis plan was to

examine the effects of the translocation (carriers versus non-carriers), and then to relate any

differences to those seen in the comparison of the clinical psychosis group versus controls. We

did not consider a direct comparison between the psychosis patient group and translocation

carriers justified given differences in degrees of relatedness and shared environmental effects

between groups.

The diagnosis of all affected subjects was confirmed using the structured clinical interview

for DSM IV (SCID) administered by one of two trained psychiatrists (DB, AW) [44]. Symptom

severity was assessed using the Young Mania Rating Scale (YMRS) [45], the Hamilton Depres-

sion Rating Scale (HRSD) [46], Positive and Negative Symptoms Scale (PANSS) [47] and the

Scale for the Assessment of Negative Symptoms (SANS) [48]. Symptom rating took place

within one week of the MRI scan. All participants IQ levels were assessed using the Wechsler

Abbreviated Scale of Intelligence (WASI) (Psychological Corporation, San Antonio TX).

PCR typing of translocation breakpoint

The translocation status of all participants was tested on new blood samplesusing polymerase

chain reaction (PCR) based methods. Primers were designed to span the t(1;11) breakpoint of

DISC1 exon9 using the Primer 3 design program [49,50], further details in S1 Text.

Scan Acquisition and Preprocessing

Whole brain DTI scans were acquired with a prototype single-shot pulsed gradient spin-echo

echo-planar imaging (EPI) sequence with diffusion gradients (b = 1000 s/mm2) applied in 56

non-collinear directions, further details in S1 Text. Standard pre-processing procedures were

employed involving conversion to NifTI format, eddy current correction, linear motion correc-

tion and brain extraction using tools in FSL (http://www.fmrib.ox.ac.uk/fsl). Water diffusion

tensor parameters, specifically fractional anisotropy (FA), were estimated by fitting the tensor

model to the data. Absolute motion was extracted for each subject using the 'avscale' tool and

averaged to produce a measure of mean displacement to the first EPI volume for each subject.

All subjects with average motion estimates exceeding two-times the voxel size were excluded (3

controls; 4 SZ; 1 BD and 1 t(1;11) carrier diagnosed with MDD). Group numbers given above

refer to individuals with usable imaging data.

Tract Based Spatial Statistics

Tract-Based Spatial Statistics (TBSS) [51,52] was performed using the standard FSL procedure,

see S1 Text. Voxel-wise statistics were performed using threshold-free cluster enhancement

(TFCE) in FSL’s randomise [53]. P-values were corrected using family-wise error rate (pFWE)

over 5000 permutations, TFCE-corrected p-values were considered significant at pFWE< 0.05.

All analyses were corrected for age and sex.

Additional analyses were conducted in ASReml-R (www.vsni.co.uk/software/asreml) to

determine whether the main clusters of difference for the comparison of translocation carriers

versus non-carriers remained significant while accounting for relatedness between individuals

(as well as controlling for age and sex), see S1 Text. Statistical analysis of demographic and clin-

ical data was conducted using one-way ANOVAs, Mann-Whitney U tests or chi-squared tests

where appropriate.

Effects of DISC1 onWhite Matter Integrity
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Results

Demographic and clinical measures

Comparison of the translocation carrier versus non-carrier groups demonstrated significant

differences in age (Table 1). Although we had controlled for age, we additionally performed a

post-hoc analysis to maximize the age overlap in the familial samples (see below). There were

no significant differences in gender between groups. For the majority of clinical assessments

the translocation carriers had significantly higher scores than the non-carriers (Table 1). For

the comparison of patients versus controls, the groups were not significantly different in terms

of age or gender however there were significant differences in all clinical measures.

Effects of Translocation

Whole-brain voxel-wise comparison indicated that t(1;11) translocation carriers had reduced

FA in five clusters versus the non-carriers (pFWE = 0.05, Fig 1, Table 2, and contained within S1

Data). These included the genu of corpus callosum (cluster 1, size = 921 voxels and cluster 3,

size = 55 voxels, left and right respectively), right inferior fronto-occipital fasciculus (cluster 2

size = 63 voxels), right acoustic radiation (cluster 4 size = 38 voxels), and right fornix (cluster 5

Table 1. Demographics and clinical measures.

t(1;11) non-carriers t(1;11) carriers Statistics (T/ χ²) p-value

N 13 7 - -

Age (mean, std dev) 34.54 (20.38) 54.57 (9.88) 2.96 0.008

Gender (F:M) 5:8 (38%:62%) 2:5 (29%:71%) 0.120 0.658

Current IQ 87.75 (9.24) 92.43 (19.56) 0.61 0.555

Clinical measures#

PANSS + 7 (0.00) 7 (11.00) 2.49 0.013

PANSS - 7 (0.00) 7 (3.00) 1.98 0.048

PANSS gen 16 (5.00) 26 (16.00) 2.42 0.016

PANSS tot 30 (5.00) 40 (29.00) 2.46 0.014

HDRS 0 (1.00) 2 (6.00) 2.15 0.032

YMRS 0 (0.00) 1 (5.00) 2.95 0.003

SANS tot 0 (0.00) 0 (0.00) 0.53 0.594

Controls Psychosis Statistics p-value

N 33 34 - -

Age (mean, std dev) 37.15 (15.30) 40.21(11.40) 0.93 0.356

Gender (F:M) 15:18 (45%:55%) 14:20 (41%:59%) 0.13 0.724

Current IQ 116.58 (10.88) 106.58 (15.98) 2.73 0.009

Clinical measures#

PANSS + 7 (0.00) 10.5 (6.00) 5.40 <0.001

PANSS - 7 (0.00) 10 (5.00) 5.71 <0.001

PANSS gen 16 (0.00) 24.5 (10.00) 6.18 <0.001

PANSS tot 30 (0.50) 45 (19.25) 6.49 <0.001

HDRS 0 (1.00) 8 (13.50) 5.26 <0.001

YMRS 0 (0.00) 1 (3.00) 4.23 <0.001

SANS tot 0 (0.00) 18.50 (23.25) 6.04 <0.001

# median and interquartile range and non-parametric Mann-Whitney U statistics applied.

doi:10.1371/journal.pone.0130900.t001
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size = 23 voxels). There were no regions where FA was significantly increased in t(1;11) carriers

in comparison to t(1;11) non-carriers.

We repeated the analysis to determine whether differences in age could be confounding the

results. This was based on removing eight individuals aged 17–24 years from the non-carrier

group (leaving five subjects aged> 40, mean = 57.6 years, mean difference non-significant,

p = 0.647). White matter integrity remained significantly lower in translocation carriers in all

of the above clusters with the exception of the cluster in the left inferior fronto-occipital fascic-

ulus (p = 0.056, Table 2). Similarly, all clusters with the exception of the cluster in the inferior

fronto-occipital fasciculus, remained significantly different between carriers versus non-carri-

ers while controlling for relatedness between individuals (p = 0.048, p = 0.016, p = 0.003,

p = 0.015 for the left and right corpus callosum, acoustic radiation and fornix respectively).

Fig 1. Decreases in white matter integrity in t(1;11) translocation carriers (n = 7) versus non-carriers
(n = 13) and in patients (n = 34) versus controls (n = 33). Deceased white matter integrity in translocation
carriers versus non-carriers (shown in red), and in the patient group versus the control group (shown in blue).
Individual figures (a-d) present the main cluster peak co-ordinates for the translocation carrier versus non-
carrier comparison; (a) left genu of corpus callosum [–3, 28, 6], (b) right inferior fronto-occiptal fasciculus [29,
26, 15], (c) right acoustic radiation [20, 25, 0], and (d) right fornix [28, −24, −8]. For further details see Table 2.
To aid visualization the results (pfwe < 0.05) are thickened using the “tbss-fill” command. Statistics for FA
decreases in the patient group versus controls for these peaks; cluster 1: p = 0.023 at [-3, 28, 6; left genu of
corpus callosum], cluster 2: p = 0.032 at [29, 26, 15; right fronto-occipital fasciculus], cluster 3: p = 0.012 at
[11, 26, 14; right genu of corpus callosum], cluster 4: p = 0.033 at [20, 25, 0; right acoustic radiation], and
cluster 5: p = 0.031 at [28, -24, -8; right fornix] i.e. for clusters 1–5 respectively, see, Table 2).

doi:10.1371/journal.pone.0130900.g001
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Effects of Psychosis

Whole-brain comparison indicated that patients with psychotic illness exhibited reduced FA in

three clusters extending over much of the white matter skeleton (see Fig 1, Table 2). These clus-

ters included the body and splenium of corpus callosum (cluster 1, size = 31,818 voxels), right

external capsule, inferior fronto-occipital fasciculus and uncinate fasciculus (cluster 2;

size = 437 voxels), and bilateral fornix (cluster 3 size = 294 voxels). There were no regions

where FA was increased in the patient group relative to controls.

Fig 1 illustrates the peak co-ordinates of the clusters reported in the translocation analyses

to facilitate comparison with effects seen in the mixed psychosis group (versus controls). This

indicates an overlap of findings for all clusters reported in the comparison of translocation car-

riers versus non-carriers in the patient versus control comparison (see Fig 1 and Fig 1 legend

for more details). The extracted FA values across these main clusters for all four groups are

plotted in Fig 2.

Relation to positive symptom severity

We also examined the relationship between FA values from the five clusters of interest corre-

sponding to the above analysis (effects of translocation), with positive symptom severity as

determined by the PANSS positive total score across all individuals whilst controlling for

group. This indicated significant negative correlations for the two clusters in the genu of corpus

callosum (Spearman’s rho ρ = -0.366, p = 0.001; ρ = -0.233, p = 0.030). Other regions also dem-

onstrated negative correlations but were not significant (inferior fronto-occipital fasciculus ρ =

-0.197, p = 0.068; acoustic radiation ρ = -0.199, p = 0.065, fornix ρ = -0.190, p = 0.077). These

Table 2. TBSS findings.

Cluster
size

PFWE Co-ord Peak region

Effects of translocation (family members without (n = 13) > with (n = 7) translocation)

Non-carriers (n = 13) > carriers (n = 7)

1) 921 0.042#(0.039)* -3 28 6 L genu of corpus callosum

2) 63 0.049#(0.056)* 29 26
15

R inferior fronto-occipital fasciculus

3) 55 0.049#(0.046)* 11 26
14

R genu of corpus callosum

4) 38 0.040#(0.037)* 20–25 0 R acoustic radiation

5) 23 0.049#(0.035)* 28–24–
8

R fornix

Effects of psychosis (controls (n = 33) > psychosis patients (n = 34))

1) 31818 0.008 -6–31
22

R/L splenium body and genu of corpus callosum

2) 437 0.047 29 16–6 R external capsule, inferior fronto-occip fasciculus, uncinate
fasciculus

3) 294 0.047 -1–5 13 R/L fornix

reverse contrasts of carriers > non-carriers and psychosis patients > controls: not significant.
#peak also significant for the controls > patient analysis, see text for further details.

*number in brackets represents p values for at the same co-ordinate for the analysis removing the younger

individuals from the non-carrier group.

doi:10.1371/journal.pone.0130900.t002

Effects of DISC1 onWhite Matter Integrity
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findings therefore indicated that greater positive symptomatology was related to decreases in

callosal white matter integrity whilst controlling for group status in these regions.

Discussion

We examined the effects of the t(1;11) (q42.1;q14.3) chromosomal translocation on white mat-

ter integrity using DTI in individuals from the family where original linkage was first reported

[42,43]. As predicted, the translocation had a significant effect on multiple neural pathways

including callosal fibers and tracts connecting frontal regions. In addition, FA in the corpus cal-

losum was significantly negatively correlated with positive psychotic symptomatology. With

the exception of the inferior fronto-occipital fasciculus, these findings remained significant

after removing non-age matched individuals from the non-carrier group and controlling for

relatedness. In addition, all cluster effects were evident in the comparison of mixed psychosis

patients versus controls. We interpret the findings therefore as supporting a core role for aber-

rant white matter connectivity in these tracts in the risk-conferring effects of the DISC1

translocation.

DISC1 functions as a molecular scaffold protein interacting with other proteins and contrib-

utes to multiple neural processes including proliferation, migration, and differentiation [4].

Most literature has focused on the role of DISC1 in neuronal function and development,

Fig 2. FA values extracted from clusters of differences between carrier and non-carrier groups. Individual figures represent FA values across the main
clusters of differences from the comparison of translocation carrier versus non-carrier comparison; (a) cluster 1: genu of corpus callosum, (b) cluster 2: right
inferior fronto-occiptal fasciculus, (c) right acoustic radiation, and (d) cluster 4: right fornix. C = control group, Patient = group with mixed psychoses, Non-
carrier = family members not carrying translocation, Carrier = family members with the translocation.

doi:10.1371/journal.pone.0130900.g002

Effects of DISC1 onWhite Matter Integrity
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however recently attention has moved to its effects on glial cells [17,18]. These studies suggest

that DISC1 is expressed in glia and has a fundamental role in white matter development. In

particular, it has been reported that dysfunction of DISC1 or its interactors may result in

impaired oligodendrocyte differentiation resulting in deficits in axonal myelination, defective

neuronal communication, altered structural connectivity and altered white matter integrity

[18,54]. This is also highly compatible with other lines of evidence for the involvement of

DISC1 in white matter development from studies in both animals and humans [34], in particu-

lar in association with agenesis of the corpus callosum [24,35].

Overall these findings are consistent with hypotheses that aberrant fronto-temporal and cal-

losal connectivity underlie deficits seen in SZ and BD; through a loss of frontal executive con-

trol over temporal and limbic regions [55], and though reduced inter-hemispheric connectivity

and the impact on co-ordination of information processing [56]. One of the main findings was

decreased white matter integrity of callosal fibers, specifically in anterior regions, in transloca-

tion versus non-translocation carriers. This was also seen in patients versus healthy controls,

and was related to severity of symptoms, indicating a potential role for DISC1 in the genesis of

positive symptomatology. This finding is also consistent with reports of callosal abnormalities

in patients with psychosis and in unaffected relatives, particularly in anterior sections [57–63].

The corpus callosum contributes the bulk of axonal transmission between the cerebral hemi-

spheres hence sub-serves inter-hemispheric information transfer. Topographical organisation

means that anterior regions carry connections between frontal regions and are responsible for

transfer and co-ordination of cognitive information [64]. Animal literature also confirms a spe-

cific role for DISC1 in corpus callosum development [18,24,35]. In terms of human studies,

one report investigated three family members with complete agenesis of the corpus callosum

and reported that all three shared deletions in chromosome 1q24, including the DISC1 region

[35,65]. A larger study of 144 individuals with partial or complete agenesis of corpus callosum

also identified multiple rare variants and deletions involving DISC1 [35,65]. Further, in

humans, agenesis of the corpus callosum is typically associated with impaired higher-order

cognitive functioning similar to that found in patients with psychosis [66]. Taken together

these findings strengthen evidence that DISC1 maintains a critical role in corpus callosum

development and indicate that its involvement in the pathogenesis of psychiatric disorders

may indeed be mediated through these structural white matter abnormalities.

This study also reported structural connectivity deficits in prefrontal association fibers,

including those connecting the frontal cortex with temporal and limbic regions. These findings

were also replicated in the comparison between patients and healthy controls. While the direct

effects of DISC1 on these tracts remain largely underexplored in animals and humans, deficits

have been reported in these tracts, or in the functional connections between regions concerned,

in both SZ and BD and in unaffected relatives [41,67–70]. Neurobiological models proposed to

underlie these disorders suggest either a loss or reduction of higher order cognitive control

from the prefrontal cortex over temporal and limbic regions. Disconnection between these

regions is proposed to underpin executive impairments in SZ and BD and is central to cogni-

tive models of psychotic disorders. In such models deficits in self-monitoring and corollary

discharge across a range of emotional and cognitive domains are proposed to result in charac-

teristic neuropsychological and clinical features seen in the disorders [71]. Here, evidence sug-

gests involvement of DISC1 in disconnectivity within these circuits.

Studying rare genetic events in multi-affected families carries several inherent disadvan-

tages, unavoidable given the challenges of recruiting from a single pedigree. These include

small group numbers, difficulties in age-matching, and a potential lack of generalisability of

findings. Here, all analyses were corrected for age, and findings were replicated in an age-

matched sub-group. Also, all clusters reported in the translocation carriers were seen in the
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patient-control comparison. Further, although all members of the family with the t(1;11) trans-

location who participated in the study had a psychiatric disorder, the severity of this ranged

from cyclothymia to chronic SZ. Notably however, phenotypic pleiotropy of DISC1 has been

evident since the first description of the family [43] and is consistent with emerging genetic

findings from large genome-wide association studies [72], showing a significant degree of over-

lap in the genetic associations of different psychiatric disorders. Regarding possible confound-

ing effects of anti-psychotic medication, it should be noted that only one individual from either

of the familial groups was taking psychotropic medication (a translocation carrier). Further,

examination of the correlation between FA values from the clusters of interest and chlorproma-

zine equivalents across the entire study sample, or within the patient sample alone, did not

indicate any significant relationship with FA. Other studies have also reported decreased FA in

anti-psychotic naïve cohorts [73]. The decreases in FA reported here are therefore unlikely to

be attributable to medication effects.

It should also be noted that although DTI is an established method of indexing white matter

integrity, deficits in FA could be due to a number of factors, including differences in axonal

density, myelination, diameter, membrane permeability, or in the orientational coherence of

axons within voxels [74]. Hence we are unable to interpret findings as providing evidence of a

particular cellular pathology [74]. Also, FA cannot accurately describe multifiber architecture

and might be influenced by motion, eddy currents, misregistration, and partial volume effects

[75].

In summary, rare, causal and family-specific mutations may usefully model the neurobiol-

ogy of SZ both in vitro and in vivo in the presence of greatly reduced genetic complexity and

greater penetrance at the level of both clinical diagnosis and biological intermediates. The t

(1;11) translocation involving DISC1 is one of the few such rare mutations implicated in psy-

chiatric disorders. Our results suggest that the t(1;11) translocation is associated with reduced

white matter integrity in frontal commissural and association pathways, also seen in the com-

parison of the patient group to healthy controls. The replication of corpus callosum abnormali-

ties previously seen in animal studies in humans also indicates an exciting translational

opportunity. These findings are consistent with the notion that white matter integrity could

mediate the effects of the t(1;11) translocation on risk for major psychiatric disorders. Further

investigation through molecular and cellular studies may bring new insights into biological

pathways and mechanisms of the DISC1 gene and may have an important impact on identifi-

cation of new interventions.
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