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Rehabilitation for stroke patients with severe motor impairments (e.g., inability to perform

wrist or finger extension on the affected side) is burdensome and difficult because

most current rehabilitation options require some volitional movement to retrain the

affected side. However, although these patients participate in therapy requiring volitional

movement, previous research has shown that they may receive modest benefits from

action observation, virtual reality (VR), and brain-computer interfaces (BCIs). These

approaches have shown some success in strengthening key motor pathways thought to

support motor recovery after stroke, in the absence of volitional movement. The purpose

of this study was to combine the principles of VR and BCI in a platform called REINVENT

and assess its effects on four chronic stroke patients across different levels of motor

impairment. REINVENT acquires post-stroke EEG signals that indicate an attempt to

move and drives the movement of a virtual avatar arm, allowing patient-driven action

observation neurofeedback in VR. In addition, synchronous electromyography (EMG)

data were also captured to monitor overt muscle activity. Here we tested four chronic

stroke survivors and show that this EEG-based BCI can be safely used over repeated

sessions by stroke survivors across a wide range of motor disabilities. Finally, individual

results suggest that patients with more severe motor impairments may benefit the most

from EEG-based neurofeedback, while patients with more mild impairments may benefit

more from EMG-based feedback, harnessing existing sensorimotor pathways. We note

that although this work is promising, due to the small sample size, these results are

preliminary. Future research is needed to confirm these findings in a larger and more

diverse population.

Keywords: brain-computer interfaces, virtual reality, action observation, stroke, neurorehabilitation

INTRODUCTION

Stroke is a leading cause of adult long-term disability worldwide (Mozaffarian et al., 2015), and an
increasing number of stroke survivors suffer from severe cognitive and motor impairments each
year. This results in a loss of independence in their daily life, such as decreased ability to perform
self-care tasks and decreased participation in social activities (Miller et al., 2010). Rehabilitation
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following stroke focuses on maximizing restoration of lost motor
and cognitive functions and on relearning skills to better perform
activities of daily living (ADLs). There is increasing evidence that
the brain remains plastic at later stages after stroke, suggesting
additional recovery remains possible (Page et al., 2004; Butler and
Page, 2006). To maximize brain plasticity, several rehabilitation
strategies have been exploited, including the use of intensive
rehabilitation (Wittenberg et al., 2016), repetitive motor training
(Thomas et al., 2017), mirror therapy (Pérez-Cruzado et al.,
2017), motor-imagery (Kho et al., 2014), and action observation
(Celnik et al., 2008), amongst others.

Recently, growing evidence of the positive impact of
virtual reality (VR) techniques on recovery following stroke
has accumulated (Bermúdez i Badia et al., 2016). When
combined with conventional therapy, VR is able to effectively
incorporate rehabilitation strategies such as intensity, frequency,
and duration of therapy in a novel and low-cost approach in
the stroke population (Laver et al., 2017). However, patients with
low levels of motor control cannot benefit from current VR tools
due to their low volitional motor control, range of motion, pain,
and fatigue. Rehabilitation for these individuals is challenging
because most current training options require some volitional
movement to train the affected side, however, research has shown
that individuals with severe stroke may receive modest benefits
from action observation and brain-computer interfaces (BCIs)
(Silvoni et al., 2011).

Merging BCIs with VR allows for a wide range of experiences
in which patients can feel immersed in various aspects
of their environment. This allows patients to control their
experiences in VR using only brain activity, either directly (e.g.,
movement in VR through explicit control) or indirectly (e.g.,
modulating task difficulty level based on workload as implicit
control) (Vourvopoulos et al., 2016; Friedman, 2017). This
direct brain-to-VR communication can induce a sensorimotor
contingency between the patient’s internal intentions and
the environment’s responsive actions, increasing the patient’s
sense of embodiment of their virtual avatar (Slater, 2009;
Ramos-Murguialday et al., 2013).

After a stroke resulting in severe motor impairments (e.g.,
inability to perform wrist or finger extension on the affected
side), research shows that action observation combined with
physical training enhances the effects of motor training (Celnik
et al., 2008), eliciting motor-related brain activity in the lesioned
hemisphere, leading to modest motor improvements (Ertelt et al.,
2007; Garrison et al., 2013). Moreover, action observation in a
head-mounted VR increases motor activity in both healthy and
the post-stroke brains (Ballester et al., 2015; Vourvopoulos and
Bermúdez i Badia, 2016a).

In addition, neurofeedback through BCIs has been proposed
for individuals with severe stroke because BCIs do not require
active motor control. Research on BCIs for rehabilitation
has shown that motor-related brain signals are reinforced by
rewarding feedback so they can be used to strengthen key
motor pathways that are thought to support motor recovery
after stroke (Wolpaw, 2012). Such feedback has previously shown
modest success in motor rehabilitation for severe stroke patients
(Soekadar et al., 2015).

The most common brain signal acquisition technology
used with BCIs in stroke patients is non-invasive
electroencephalography (EEG) (Wolpaw, 2012), which provide
a cost-effective BCI platform (Vourvopoulos and Bermúdez i
Badia, 2016b). In BCI paradigms for motor rehabilitation, EEG
signals related to motor planning and execution are utilized.
During a motor attempt, the temporal pattern of the Alpha
rhythm (8–12 Hz) desynchronizes. The Alpha rhythm is also
termed Rolandic mu or the sensorimotor rhythm (SMR) when
it is localized over the sensorimotor cortices of the brain.
Mu rhythms (8–12 Hz) are considered indirect indications of
the action observation network (Kropotov, 2016) and reflect
general sensorimotor activity. Mu rhythms are often detected
with changes in the Beta rhythm (12–30 Hz) in the form of
event-related desynchronization (ERD), in which a motor action
is executed (Pfurtscheller and Lopes da Silva, 1999). These
EEG rhythms, or motor-related EEG signatures, are primarily
detected during task-based EEG (i.e., when the patient is actively
moving or imagining movement) and used for neurofeedback.

Further, neurofeedback-induced changes in brain activity have
also been linked to changes in brain activity at rest. That is, after
training one’s brain activity using neurofeedback, the intrinsic,
resting brain activity (i.e., EEG activity in the absence of a task)
may also show changes. This resting brain activity can be used to
assess more generalized brain changes, and baseline resting-state
signatures may be used to predict recovery (Wu et al., 2015) or
response to treatments (Zhou et al., 2018). When combined with
neural injury information, resting EEG parameters can also help
predict the efficacy of stroke therapy.

In this study, our goal was to combine the principles of virtual
reality and BCIs to elicit optimal rehabilitation gains for stroke
survivors. We hypothesized that merging BCIs with VR should
induce illusions ofmovement and a strong feeling of embodiment
within a virtual body via the action observation network,
activating brain areas that overlap with those controlling actual
movement, which is important for mobilizing neuroplastic
changes (Dobkin, 2007). Using a VR-based BCI, those with severe
stroke impairments can trigger voluntary movements of the
virtual arm in a closed neurofeedback loop. This helps to increase
the illusion of one’s own movements through the coordination
between one’s intention and the observed first-person virtual
action. Therefore, we developed a training platform called
REINVENT, which uses post-stroke brain signals that indicate
an attempt to move and then drives the movement of a virtual
avatar arm, providing patient-driven action observation in head-
mounted VR (Spicer et al., 2017). Our previous work using
REINVENT with healthy individuals indeed showed that the
combination of VR integrated into a BCI encouraged greater
embodiment, and greater embodiment was related to greater
neurofeedback performance (Anglin et al., 2019).

For this study, we recruited four chronic stroke survivors to
undergo a longitudinal BCI-VR intervention using REINVENT
to provide EEG-based neurofeedback with simultaneous EMG
acquisition. We assessed intervention results using clinical
measures, Transcranial Magnetic Stimulation (TMS) and
Magnetic Resonance Imaging (MRI) and compared these
measures before and after the intervention. The purpose of
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this study was twofold. First, we sought to determine whether
REINVENT is feasible for stroke patients to use across repeated
sessions and second, whether REINVENT might be able to
strengthen motor-related brain signals in individuals with
differing levels of motor impairment after stroke.

MATERIALS AND METHODS

Population
In this pilot study, we recruited four chronic stroke survivors (1
female, 3 male) with subcortical stroke (mean age: 60 ± 5.8 years
old). The inclusion criteria included: (1) chronic (>6 months)
stroke, between 18 and 80 years of age, (2) motor impairment
in the upper limb, and (3) brain lesion as demonstrated by
brain imaging. The exclusion criteria included: the presence of
(1) intracranial metal, (2) epilepsy, (3) pregnancy, (4) cognitive
impairments or psychiatric disorders, and (5) being unable to
understand the instructions. All individuals were right-handed
prior to the stroke, had a normal or corrected-to-normal vision,
and were safe for MRI. Medications for spasticity were not
permitted during the study intervention. The experimental
protocol was approved by the University of Southern California
Health Sciences Campus Institutional Review Board (IRB),
and written informed consent was obtained from all patients
upon recruitment in accordance with the 1964 Declaration of
Helsinki. Patient demographics and stroke characteristics are
described in Table 1.

REINVENT System
System Architecture

We implemented a software architecture that could be tailored
for stroke patients with different motor capabilities and
rehabilitation needs. This system incorporated interfaces with
different degrees-of-freedom (DoF) for training patients with:
(1) no active movement, using EEG in a direct brain-to-
VR interfacing, (2) weak muscle activation, using EMG in a
muscle-to-VR interfacing, and (3) substantial active movement,
using hand tracking. The VR paradigm included avatar
personalization with different gender hand models and different
skin tones to increase embodiment and expand demographic
inclusivity. Building upon our previous VR BCI training
paradigm (Spicer et al., 2017), we created this new version with

a distributed architecture, making it hardware independent, in an
open and modular design. This updated version makes it possible
to integrate as many new interfaces as needed to keep up with the
rapid pace of technology development. In this version, the data
acquisition and processing modules are also independent of the
VR task, communicating bidirectionally over a network layer.We
acquired the electrophysiological signals from the hardware using
a set of “satellite” clients (EEG, EMG) and sending them to the
processing module(s) and a logger via the Lab Streaming Layer
(LSL) protocol. After signal processing, the extracted features
(i.e., EEG bands, EMG flexion detection) were sent through the
same protocol to VR. The VR training environment streamed
back to the network the following items: task score, task events
(e.g., trial start, pause, complete), and rotational information of
the VR hand controllers in three-dimensions.

All VR elements were implemented in the Unity game engine
(Unity Technologies, San Francisco, CA, United States) and
rendered through an Oculus Rift HMD using the Oculus SDK
(Oculus VR, Menlo Park, CA, United States). Overall, the entire
architecture layout was encapsulated in three inter-dependent
layers: (1) interfacing, (2) processing, and (3) interaction. Each
layer can incorporate a subset of independent subcomponents
(e.g., device interfacing clients, custom processing code or out-
of-the-box processing software, and desktop VR or mobile
VR) (Figure 1).

Training Procedures and Tasks

We divided the experimental protocol is into three blocks: (a)
pre-intervention, (b) intervention, (c) post-intervention.

In the pre- and post-intervention blocks, we assessed motor
impairment in all the patients using a set of clinical tests. In
addition, we acquired functional and structural scans during
an MRI session and neurophysiological measurements during
a TMS session (Figures 2A,C; see also sections Behavioral and
Clinical Assessments and MRI and TMS Assessments).

In the intervention block, patients were trained over 8
sessions. Due to self-reported improvements in daily life
activities, patient S01 requested a second intervention block
of an additional 8 training sessions, leading in a total of 16
training sessions, lasting 6 weeks. However, for consistency across
patients, only the first 8 sessions are reported in this study. A case
report for this patient, including the results following the full 16
sessions, are presented separately (Vourvopoulos et al., 2019).

TABLE 1 | Patients demographics.

Patient number FMA-UEa SISb Time since stroke

(months)

Stroke lesion

location

Lesion size

(volume mm3)

Lesion overlap with the CST in

the damaged hemisphere (%)

Affected side

1 13 45 112 SC 5237 22 Left

2 28 35 186 SC 2686 15 Right

3 37 10 77 SC 4389 33 Right

4 49 40 59 SC 172 0 Right

Mean 31.8 32.5 108.5 –

SD 13.1 13.5 48.6 –

FMA, Fugl-Meyer Assessment; FMA-UE, Upper Extremity; and SIS, Stroke Impact Scale physical domain. aFMA-UE was scored on a scale up to 66 points. bSIS was

scored on a scale of 0–100. SC, subcortical stroke.
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FIGURE 1 | System architecture of a closed neurofeedback loop. From left, (1) the evoked physiological responses are captured at the interfacing layer through the

data acquisition clients, (2) sent to the processing layer where the signals are filtered and logged, and then, (3) the extracted features (e.g., EEG bands) are sent to

the interaction layer where VR training occurs. Written permission to use this photo was obtained from the individual.

FIGURE 2 | Experimental protocol in three levels. (A) Pre-intervention, including assessment through clinical scales, TMS, and MRI. (B) During each intervention

session, questionnaires were completed to assess pre- and post-simulation sickness, followed by a resting-state session in which raw the EEG was recorded with

the patients’ eye open and closed. Next, four training blocks consisting of 20 trials each were performed in VR. Resting-state and follow up questionnaires were then

completed. (C) Post-intervention assessment with MRI and TMS.

Each training session lasted for 1.5 h (Figure 2B). Before
each session, patients were seated in a comfortable chair with
a pillow under the affected arm for support. We instructed all
patients to remain relaxed and avoid any unnecessary movement
during the experiment. At the beginning and end of every
training session, patients completed a set of questionnaires

regarding simulator sickness. We also acquired a resting-state
EEG acquisition (4 min).

The training task included a virtual environment in which
a set of virtual hands represented the patient’s physical hands
from a first-person perspective. During training, patients had
to perform a wrist and elbow extension attempt of the virtual
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hand toward a pre-defined target, followed by rest. The patient’s
virtual arm moved toward the target if their sensorimotor brain
activity during the motor attempt increased relative to baseline.
The intervention consisted of four blocks of training in VR
(each block consisted of 20 trials), and each trial lasted 30 s.
The first 10 s period was a resting baseline, during which the
patient was asked to relax. We chose this duration because event-
related changes need time to develop and then recover, and thus
the inter-event interval between two consecutive motor events
should last at least 10 s (Pfurtscheller and Lopes da Silva, 1999).
The next 20 s consisted of a motor intervention, during which
we asked the patient to try to move. This 20 s active movement
period was divided into epochs of 4 s each, during which the
average ERD was calculated and compared to the ERD of the
preceding 10 s baseline. Again, a trial was successful and triggered
positive neurofeedback of a virtual arm moving toward a target if
the ERD during the active trial was greater than at baseline. In
the current study, we collected both EEG and EMG signals, but
only EEG was used to control the VR neurofeedback to assess the
efficacy of the BCI paradigm across all patients.

The experimental setup consisted of a desktop computer (OS:
Windows 10, CPU: Intel R© CoreTM i7-6700 at 4.00 GHz, RAM:
16GB DDR3 1600 MHz, Graphics: NVIDIA GeForce GTX 1080)
running all the acquisition, processing, and VR software. An
Oculus Rift HMD was used to deliver the VR feedback to the
user. The HMD had two OLED displays, 1080 × 1200 resolution
per eye, at 90 Hz refresh rate, and 110◦ field of view (the extent
of the observable environment at any given time). The HMD
also featured 6-DoF tracking (3-axis rotational tracking and 3-
axis positional tracking) and integrated headphones with 3D
spatial audio. Moreover, the Oculus Rift HMD also included
two Oculus touch controllers with 6-DoF, delivering vibrotactile
feedback to the users.

Behavioral and Clinical Assessments
During pre- and post-intervention sessions, a battery of
assessments targeting the patient’s upper extremity motor
function, spasticity, stroke-related impacts on life and simulator
sickness for VR were completed. All clinical assessments were
performed by a trained occupational therapist. The clinical and
behavioral assessments included the following:

• Fugl-Meyer Upper Extremity scale (FMA-UA). The FMA-
UA is a scale (0–66) that evaluates motor impairment in
post-stroke individuals. A higher score is reflective of less
motor impairment (Fugl-Meyer et al., 1975).

• Modified Ashworth Spasticity (MAS) scale. The MAS is a
scale (0–4) that measures spasticity, or velocity-dependent
movement, in patients with central nervous system lesions.
A lower score indicates less spasticity in the assessed muscle
group (Gregson et al., 1999). We measured the MAS in the
wrist and elbow.

• Stroke Impact Scale (SIS). The SIS is a 59-item instrument
measuring the self-reported quality of life of stroke
survivors across eight categories. In the current study, we
only utilized the SIS-Physical domain. Each item is rated on
a 5-point Likert scale, designed for repeated administration

to track patient changes over time (Vellone et al., 2015). The
results are reported on a scale of 0–100, with higher scores
indicating the best self-reported quality of life.

• The Simulator Sickness questionnaire (revised by the UQO
Cyberpsychology Lab, 2013) includes 16 questions on a 0–3
Likert scale resulting in two sub-scales: Nausea (9 questions
for a maximum of 27 points) and Oculo-Motor (7 questions
for a maximum of 21 points) (Kennedy et al., 1993).

• Finally, we qualitatively acquired the patient’s feedback
regarding enjoyment and ease of use in a free-
form comments section that patients completed
after each session.

Physiological Measurements
EEG Acquisition and Online Processing

We used the Starstim 8 (Neuroelectrics, Barcelona, Spain) system
to capture EEG data. Starstim is a wireless hybrid EEG/tCDS 8-
channel neurostimulator system with a triaxial accelerometer for
the recording and visualization of 24-bit EEG data at 500 Hz.
The spatial distribution of the electrodes followed the 10–
20 system configuration (Klem et al., 1999), with electrodes
placed over the frontal, somatosensory and motor areas: frontal-
central (FC3, FC4), central (C3, C4, C5, C6), and central-parietal
(CP3, CP4). The electrodes were referenced and grounded to
the right ear lobe, and the electrode impedance was kept at
less than 10 k�. Finally, the EEG system was connected via
Bluetooth to the dedicated desktop computer for raw signal
acquisition and processing.

The EEG signals were first acquired through the
Neuroelectrics NIC-2 client before sending them to OpenVibe
platform for online processing. We used a surface Laplacian
for spatial filtering over the target location (C3 or C4) and the
adjacent electrodes because the desynchronization of SMRs are
enhanced and better localized with Laplacian (Pfurtscheller,
1988; McFarland et al., 1997). The online signal processing
included a bandpass filter (8–24 Hz), which was then squared,
averaged over 500 samples, and logarithmized. Finally, the
output was sent via LSL to the VR client.

EEG-Based Neurofeedback Training Performance

We measured training performance based on the number of
successful motor actions initiated by the virtual hand toward a
target. As described previously, each virtual action was triggered
when the ERD power exceeded the baseline measurement over
C3 or C4 locations and was calculated with the following formula:

Score =
1

n

(
n∑

i=1

xi

)
∗ 100 (1)

where n the total number of trials and xi the
successful motor actions.

EEG Post hoc Analysis

For the post hoc EEG analyses, we processed EEG signals in
Matlab (The MathWorks, MA, United States) with the EEGLAB
toolbox (Delorme and Makeig, 2004). After importing the
data and channel information, we used a high-pass filter at
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1 Hz to remove the “baseline drift,” followed by line-noise and
harmonics removal at 60 Hz. To reject bad channels and correct
continuous data, we used an artifact subspace reconstruction
(ASR) method (Kothe and Jung, 2016). The missing channels
were interpolated before re-referencing to average. Next, we
performed an independent component analysis (ICA) to remove
EOG, EMG, and ECG artifacts (Makeig et al., 1996).

To acquire the different EEG bands, we extracted the
power spectral density (PSD) for the following frequency
bands: alpha (8–12 Hz), beta (12–30 Hz), theta (4–7 Hz), and
gamma (25–90 Hz).

In addition, we extracted the event-related
synchronization/desynchronization (ERS/ERD) following
the standard ERS/ERD method (Pfurtscheller and Aranibar,
1979) in the mu band between 8 and 12 Hz and the beta band
between 12 and 30 Hz. Both mu and beta power were extracted
over C3 and C4 electrode locations. ERD was calculated using
the following formula:

ERD = (PowerMotor Activity − PowerBaseline)/PowerBaseline × 100
(2)

With positive numbers for ERS and negative
numbers indicating ERD.

Moreover, we extracted the event-related EEG data maps as a
time/frequency representation of ERD/ERS between 8 and 24 Hz
(Graimann et al., 2002). These maps are also known as ERSP
(event-related spectral perturbation) and act as a generalization
of the ERS/ERD (Makeig, 1993).

Furthermore, we assessed the hemispheric lateralization
through a hemispheric asymmetry index (HA). HA was
computed using both the relative EEG band power during rest
and the ERD during motor task over C3 and C4 electrode
locations. The power values were measured contralateral to the
lesioned side and were subtracted from ipsilateral values of the
non-affected side. For those with left hemiparesis, this index was
calculated using the following formula:

HAleft = PowerC4Left movement − PowerC3Left movement (3)

For those with right hemiparesis, the index was calculated
using the following formula:

HAright = PowerC3Right movement − PowerC4Right movement (4)

Finally, we extracted HA for alpha during the resting-state
because alpha oscillation at rest is associated with motor and
cognitive performance in stroke patients (Dubovik et al., 2012,
2013; Mottaz et al., 2015).

EMG Acquisition and Online Processing

We acquired surface EMG at 2000 Hz using a Delsys
Trigno Wireless System (Delsys, MA, United States) with their
proprietary software. Each sensor incorporated differential Ag
electrodes with amplification and filtering stages and a 16-bit
A/D converter. Three-axes of acceleration data were also acquired
with the same sensors at 150 Hz and 8-bit ADC resolution.
Delsys Trigno EMG sensors were placed on the extensor
digitorum comunis (EDC), flexor carpi ulnaris (FCU), biceps

brachii (BB), and triceps brachii (TB) muscles of the paretic
arm. Electrode positioning was selected by palpation while
individually performing elbow and wrist flexion and extension
and was confirmed by visual inspection of the EMG signals.
Skin preparation involved shaving the selected area, cleaning
with alcohol, and applying abrasive and conducting paste. Both
processing pipelines were implemented with a custom-made
script in Matlab (The MathWorks, MA, United States). All raw
and processed data were streamed and recorded via LSL.

EMG Post hoc Analysis

Online processing was performed by reading 0.5 s of the EMG
signal from EDC and BB, applying a DC-offset correction,
performing full-wave rectification and comparing the mean of
each epoch with a predefined threshold of muscle activation.

Offline processing of the EDC signal applied epoch extraction
within the boundaries of the trial markers of “baseline” and
“active contraction,” DC-offset correction, band-pass filtering
within 10-500 Hz, and full-wave rectification. Finally, the mean
absolute value (MAV) of the epoched EMG signal was extracted
as the main feature (Veer and Sharma, 2016):

EMGmean = MAV =
1

N

N∑
n=1

|xn| (5)

Where xn is the voltage read by the sensor at that point in
time, for N samples.

MRI and TMS Assessments
We also acquired additional neural assessments (MRI, TMS)
during pre- and post-intervention sessions for each patient to
assess any potential brain changes.

MRI Acquisition

Using MRI, we acquired an anatomical image (T1w MPRAGE),
a T2-weighted anatomical MRI, a diffusion-weighted MRI, and a
7 min resting-state fMRI (rs-fMRI). MRI data were acquired on
a 3T PrismaMRI scanner (Siemens, Germany) with a 32-channel
head coil, using protocols from the Human Connectome Project
(HCP)1. The MRI sequences acquired included the following:
T1-weighted MPRAGE scan (208 sagittal slices, 0.8 mm thick,
TR = 2400 ms, TE = 2.22 ms, flip angle = 8◦, voxel size
0.8 × 0.8 × 0.8 mm); T2-weighted turbo spin-echo scan (208
sagittal slices, 0.8 mm thick, TR = 3200 ms, TE = 523 ms, flip
angle = 8◦, voxel size 0.8 × 0.8 × 0.8 mm); diffusion MRI scan
(92 slices, 1.5 mm thick, TR = 3230 ms, TE = 89.20 ms, multi-
band factor = 4, flip angle = 78◦, voxel size 1.5 × 1.5 × 1.5 mm,
with a gradient protocol with seven scans at b = 0 s/mm2, 47 at
b = 1500 s/mm2, 46 at b = 3000 s/mm2, and a complete repetition
with reversed phase encoding in the A-P direction); and a rs-
fMRI scan (7 min and 6 s covering 520 volumes of 72 slices
per scan; TR = 800 ms, TE = 37 ms, flip angle = 52◦, voxel size
2 × 2 × 2 mm). For patients with a brain lesion in the left
hemisphere, we flipped both structural and functional scans to
the right hemisphere for the group analyses.

1http://protocols.humanconnectome.org/CCF/
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Lesion Map, Lesion Size, and Lesion Overlap

Using MRIcro software, we manually drew a lesion mask on each
patient’s brain (see Figure 3). Then, using FSL we calculated
the lesion size in mm3 (Table 1). Finally, we used the PALS
toolbox (Ito et al., 2018) to calculate the overlap of each patient’s
lesion with the corticospinal tract (CST), the primary descending
motor pathway (Table 1). The lesion overlap with the CST has
been shown to correspond to motor impairment after stroke
(Riley et al., 2011).

Resting-State fMRI Processing

We analyzed all rs-fMRI data in Matlab using SPM12 and the
CONN toolbox2. The preprocessing steps included slice-timing
correction, motion realignment, noise correction using white
matter, CSF and motion parameters as regressors, and band-
pass filtering (0.01–0.1 Hz). We also performed co-registration
between the functional scans and the 3D-T1wMPRAGE scans of
each patient. Finally, we normalized the functional scans to MNI
space and smoothed them using a Gaussian filter of 6 mm. To
measure functional changes in the motor network, we compared
the FC between regions of interest (ROI-to-ROI analyses).

ROI-to-ROI Analyses

We used four regions of interest (ROIs): left M1, right M1, left
PMd, and right PMd. We used a meta-analysis from Hardwick
and collaborators to define the location of the ROIs in the left
hemisphere and then flipped them to the right hemisphere. The
exact coordinates of the center of each ROI, which was defined as
a sphere with a radius of 10 mm, were: left M1 (x = −38, y = −24,
z = 56), right M1 (x = 38, y = −24, z = 56), left PMd (x = −26,
y = 2, z = 60), right PMd (x = 26, y = 2, z = 60). In addition, to
explore changes in the intra and inter-hemispheric connectivity
in the motor network pre- and post-intervention sessions,

2http://www.nitrc.org/projects/conn

we also classified these ROI-to-ROI interactions as follows:
(1) damaged intra-hemispheric motor network connectivity:
damaged M1-damaged PMd; (2) undamaged intra-hemispheric
motor network connectivity: undamaged M1-undamaged PMd;
and (3) inter-hemispheric motor network connectivity: average
of (undamaged M1-damaged PMd connectivity, damaged M1-
undamaged PMd connectivity, undamaged M1-damaged M1
connectivity, undamaged PMd-damaged PMd connectivity).

Transcranial Magnetic Stimulation (TMS)

We used single- and paired-pulse TMS (Magstim 2002

device with BiStim module; Magstim Inc., United Kingdom)
with a figure-of-eight coil combined with the Brainsight
neuronavigation system (Rogue Resolutions Ltd.,
United Kingdom) and surface electrodes to record muscle
activity (EMG; Delsys Trigno wireless sensors, Delsys Inc., MA,
United States). To localize the motor hotspot, we recorded EMG
at the right first dorsal interosseous (FDI). We then recorded the
patient’s resting motor threshold (RMT) and recruitment curve
in each hemisphere by acquiring 5 MEPs at each of the following
threshold 100, 110, 120, 130, 140, and 150% of the RMT.

Diffusion MRI
In addition, we acquired diffusion MRI in order to correlate
the baseline fractional anisotropy (FA) of the corticospinal tract
in the damaged hemisphere with the initial motor performance
as assessed by the FMA-UA and the changes in EEG-based
neurofeedback training performance in VR (i.e., last training
session versus first training session).

For the diffusion MRI preprocessing, we followed the HCP
processing pipeline3. We then, modeled each voxel using a multi-
compartment fiber orientation distribution (FOD) approach.

3https://github.com/Washington-University/HCPpipelines/tree/master/
DiffusionPreprocessing

FIGURE 3 | Lesion map does not overlap with cortical motor areas. Display of the lesion map (blue to green scale, with green indicating greater overlap across

participants) with regions of interest for M1 (red) and PMd (Yellow). The M1 and PMd ROIs are used in ROI-to-ROI analysis (section fMRI ROI-to-ROI Analysis).
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Finally, we obtained the diffusion tensor FA values using FSL
and completed the deterministic FOD fiber tracking using
the Quantitative Imaging Toolkit (QIT). For each patient, we
created two tracts: a damaged corticospinal tract (CST) and an
undamaged CST from an ROI covering the posterior limb of the
internal capsule in each hemisphere.

Statistical Analyses
We note that this is a pilot study with a small sample size (n = 4).
However, we performed statistical analyses at the group and
individual subject levels to provide a general indication of the
significance of any observed changes. We encourage the reader
to interpret these statistical analyses with caution.

We assessed the normality of the distribution of all data using
the Shapiro-Wilk (S-W) normality test. We used one-sample
t-tests to determine whether there was a significant difference
between the patient’s ERD values and the mean ERD values
of a healthy population from prior literature (Pfurtscheller and
Aranibar, 1979; Pfurtscheller et al., 2006). We performed paired
t-tests to compare pre- and post-intervention means for mu
and beta bands on the same continuous, dependent variable
(ERD %), and for pre- and post-intervention clinical scales. We
used repeated measures (RM) ANCOVAs (one RM-ANCOVA
for each ROI as a seed region using “sessions” (pre and post-
intervention sessions) as a factor and lesion size and lesion
overlap on the CST as covariates) in the CONN toolbox in
Matlab to compare combinations of pairs between the four
ROIs (the following six FC pairs: left M1-right M1, left PMd-
right PMd, left M1-left PMd, left M1-right PMd, right M1-left
PMd, right M1-right PMd) and to compare the intra/inter-
hemispheric connectivity across sessions. We used one RM-
ANOVA to compare the recruitment curve across session using
“thresholds” (RMT, 110, 120, 130, 140, 150%) and “sessions” (pre
and post-intervention sessions).

We used non-parametric group comparisons using the
Kruskal-Wallis H-test for the EMG data. Finally, we performed
Pearson’s correlations between the strength of the CST in
the damaged hemisphere (as measured by the FA value) and
the lesion size/location with the initial motor performance (as
measured by the FMA-UA score) and also with the changes in
EEG-based neurofeedback training performance (last training
session versus first training session).

For all statistical comparisons, the significance level was set to
5% (p < 0.05). All statistical analyses were done using IBM SPSS
20 (SPSS Inc., Chicago, IL, United States), R (The R Foundation
for Statistical Computing Platform, version 3.5.2), and Matlab
R2017a (The MathWorks, MA, United States).

RESULTS

Simulator Sickness in VR Training
A key concern of using a VR-based BCI over multiple sessions
is the possibility of discomfort resulting from VR-induced
simulator sickness. Simulator sickness refers to symptoms similar
to motion-induced sicknesses, such as dizziness and nausea,
following visually-induced simulations (e.g., from head-mounted

virtual reality) (Kennedy et al., 1993). We measured simulator
sickness before and after the first and last session of the
BCI-VR training. Across all patients, a paired-samples t-test
revealed no significant differences before and after REINVENT
use in either the first or last session for either the nausea
or oculomotor subscales [first session: Nausea, t (3) = 0.2928,
p = 0.79, Oculomotor, t(3) = 1.0954, p = 0.35; last session:
Nausea, t(3) = −0.7746, p = 0.50, Oculomotor, t(3) = −0.7746,
p = 0.50]. The average change in simulator sickness following
REINVENT use was small for both nausea (M = 0.13, SD = 1.46)
and oculomotor (M = −0.25, SD = 1.67) subscales (Figure 4).
This suggests that repeated VR intervention could be feasible and
does not induce increases in simulator sickness.

Neurofeedback Performance
We extracted the neurofeedback performance in terms of training
score in VR and ERD power between the first and the last session
of the intervention block.

Training Score

In terms of training performance (measured as successful when
the virtual hand reached the target), only S01 had an increased
score of 7.3% between the first (M = 73.3, SD = 17.2) and the last
session (M = 80.6, SD = 9.6) while the rest of the patients showed
a decrease over time. Specifically, S02 had a decreased score of
37.1% between the first (M = 80.9, SD = 7) and the last session
(M = 43.8, SD = 8.9); S03 had a decreased score of 5.4% between
the first (M = 65.4, SD = 8.7), and the last sessions (M = 60,
SD = 4) and S04 had a decreased score of 32.5% between the first
(M = 80.5, SD = 5) and the last sessions (M = 48, SD = 21.2).
A paired-samples t-test revealed a significant difference between
the first and the last sessions, only for S02, t(3) = 6.671, p = 0.007
(Figure 5). However, by examining the session scores, it is clear
that there was wide variability in training score individuals and
across sessions. This suggests that the patient’s ability to control
the neurofeedback was highly variable, and may depend on
variables such as mood, motivation, attention, and fatigue.

ERD Power

Because both movement and imagery are associated with
mu and beta rhythm desynchronization (McFarland et al.,
2000), we anticipated a stronger ERD (in terms of higher
negative percentage compared to baseline) at the end of the
intervention. However, a paired-samples t-test revealed no
significant differences between the first and last session across
patients (Figure 6).

Post hoc EEG Analyses
We extracted the ERSP maps for qualitative purposes
as a time/frequency representation of ERD/ERS for all
pre- and post-intervention trials. Maps illustrate a clear
desynchronization between 8 and 24 Hz compared to baseline
for all patients (Figure 7).

ERD Comparisons With Healthy Population Data

We then compared the mean ERD for our patients with the
mean for a representative healthy population, reported previously
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FIGURE 4 | Change in simulator sickness following REINVENT use in the domains of Nausea and Oculomotor disorientation for the first and the last sessions of the

BCI-VR intervention. A box and whisker plot showing medians and standard deviations are illustrated.

(Pfurtscheller and Aranibar, 1979; Pfurtscheller et al., 2006).
Because the healthy population data only reported the frequency
range of the mu band, we compared these data with the mu
ERD from the patients in our study. In this way, we were able
to quantify the difference between the evoked ERD of stroke
patients compared to healthy individuals.

We performed an independent one-sample t-test for each
patient, and it revealed significant differences between all patient
ERDs compared to the mean ERD of the healthy population
(Figure 8). Specifically, for S01, ERD (M = −10.8, SD = 21.3)
was lower than the mean healthy ERD value of −74.5, with a
statistically significant mean difference of 63.6, 95% CI [51.95–
75.3], t(15) = 11.591, p < 0.05. For S02, ERD (M = −25.3,
SD = 8) was lower than the mean healthy ERD value of −74.5,
a statistically significant mean difference of 49.2, 95% CI [42.1–
56.3], t(7) = 16.367, p < 0.05. For S03, ERD (M = −27.3,
SD = 19.3) was lower than the mean healthy ERD value of −74.5,
a statistically significant mean difference of 47.2, 95% CI [30–
64.5], t(7) = 6.479, p < 0.05. Finally, for S04, ERD (M = −34.8,
SD = 5.8) was lower than the mean healthy ERD value of −74.5,
a statistically significant mean difference of 39.7, 95% CI [33.9–
45.5], t(6) = 16.789, p < 0.05 (Figure 8).

Correlation Analyses
Resting-state EEG alpha oscillation synchrony was previously
determined to be related to cognitive and motor performance
in patients (Dubovik et al., 2012, 2013). Analysis of the
interhemispheric asymmetries might provide a valuable
neurophysiological parameter to determine prognosis and
follow-up of patients (Cicinelli et al., 2003). In addition, baseline
motor impairment level may impact the ability to control the
BCI feedback. We, therefore, assessed the relationship between
VR task (score) and the resting-state alpha, alpha hemispheric

asymmetry or motor impairment score (FMA). Specifically, a
strong significant negative correlation was observed between the
VR task score and the FMA score (r = −0.96, p = 0.04) but not
for resting-state alpha (r = −0.83, p = 0.17), nor the hemispheric
asymmetry of alpha (r = −0.82, p = 0.18). This suggests that
baseline motor impairment impacts a person’s ability to control
the BCI, similar to previous findings (Liew et al., 2016). In
addition, the results for the EEG correlations showed a strong
relationship, but this is not significant, likely due to the small
sample size and high variability.

Post hoc EMG Analyses
Because we designed the REINVENT system to match patients’
motor ability with the best available interfacing technology,
we also performed an offline analysis of muscle responses in
all patients to validate REIVENT’s ability to measure training
benefits across modalities and to examine the potential of using
EMG data as an interfacing modality for those with a degree of
active movement.

After analyzing the EMG data from all baseline sessions
(N = 640) and trials during BCI training, we extracted the
mean EMG (in mV) from all subjects. This allowed us to
quantify muscle activation differences between rest and during
motor intention. To compare the mean EMG activation between
patients, we used a Kruskal-Wallis H-test, which revealed
significant differences in signal amplitude χ

2(3) = 2044.43,
p < 0.001 as well as in resting-state amplitude χ

2(3) = 1711.63,
p < 0.001. Current data found EMG differences between patients
for both resting-state and muscle activation and also differences
within each patient for EMG signal during activation versus rest
periods (Figure 9). This suggests that active EMG signals can
be distinguished from baseline rest in all of our patients, across
different motor impairment levels.
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FIGURE 5 | In-game training score for each patient across the 8 sessions (each session score is an average of the 4 training blocks). A box and whisker plot

showing medians and standard deviations are illustrated.

We, then, examined whether EMG neurofeedback might have
been more successful for patients than using EEG neurofeedback.
In particular, we found that patients with less motor impairment
showed reduced performance in VR training when using EEG
neurofeedback. Therefore, we re-calculated the training score
for all patients using the EMG data and compared it with the
performance levels calculated using EEG (Figure 10).

Patients with higher motor ability showed a higher success
rate when using EMG neurofeedback than when using EEG
neurofeedback. Specifically, S02 (EEG Mdn = 72.5, EMG
Mdn = 100), S03 (EEG Mdn = 62, EMG Mdn = 100), and
S04 (EEG Mdn = 67, EMG Mdn = 100) had better results

using EMG neurofeedback. Only patient S01 (EEG Mdn = 79,
EMG Mdn = 55), who had a lower motor ability and muscle
flaccidity, showed better performance using EEG neurofeedback.
This suggests that motor impairment level should be used to
determine the modality of neurofeedback given to patients.

MRI, TMS, Behavior
TMS Sessions

Patients participated in two TMS sessions – one pre-intervention
and one post-intervention – to assess the functional integrity of
the corticospinal tract, or brain-to-muscle pathway, in patients
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FIGURE 6 | ERD values for mu and beta bands pre- and post-intervention for C3 and C4 electrodes. A box and whisker plot showing medians and standard

deviations are illustrated.

(Stinear and Byblow, 2017). This measure has been related to
post-stroke motor recovery and ability to benefit from therapy.

In the four patients (Table 2), we localized the motor hotspot
in the undamaged hemisphere around the M1 area (i.e., the
hand knob). This localization was reliable between pre- and
post-intervention assessments (Figure 11). At this location, we
acquired the RMT at the same intensity between the two sessions
(Pre: 51.3 ± 6.4, Post: 52.3 ± 5.1). It was difficult to localize
the motor hotspot in the damaged hemisphere; therefore, we
had to use a higher stimulator intensity to evoke an MEP.
At this location, only one patient (S04) had a reachable RMT
during the first session (71%). For the other patients, as RMT
was not reachable at each session, we determined the active
motor threshold (AMT) in both pre and post-intervention
sessions. Interestingly, however, while patient S01 did not have a
reachable RMT pre-intervention, he had a reachable RMT post-
intervention (which wasmaintained after his extended 16-session
protocol, Vourvopoulos et al., 2019). In this patient, the motor
hotspot localization from the AMT moved posteriorly to the
parietal cortex for the RMT (in the post-intervention session).

We were able to reliably acquire the recruitment curves only in
the undamaged hemisphere for all patients. Using a RM-ANOVA,
we compared the recruitment curves across the two sessions and
observed only an effect of the “thresholds” (meaning an increase
of the MEP amplitude with increased threshold) but there was
no effect of “sessions” nor an interaction effect (RM ANOVA:
interaction “thresholds”x”sessions”: F(5) = 0.084, p = 0.99;
thresholds: F(5) = 3.96, p = 0.006; sessions: F(1) = 0.275, p = 0.60).

fMRI ROI-to-ROI Analysis

We next examined changes in connectivity for each motor
ROI-to-ROI pair using an ANOVA with time as a factor.
We did not observe any significant differences in the ROI-
to-ROI functional connectivity measurement between pre- and
post-intervention at the group level as assessed using an

integrated ANOVA in the CONN toolbox. Finally, we averaged
the functional connectivity measurements for the intra- and
inter-hemispheric motor network connectivity and observed also
no significant changes between pre- and post-intervention in the
intra-hemispheric connectivity in the damaged hemisphere. We
also did not observe any statistically signitficant impacts of the
lesion size or the lesion overlap with the CST on: (1) connectivity
[mean connectivity session pre: 0.27 ± 0.36; mean connectivity
session post: 0.19 ± 0.18; ANCOVA: time: F(3) = 0.92, p = 0.44,
lesion size: F(1) = 0.82, p = 0.53, lesion overlap with the CST:
F(1) = 8.49, p = 0.22], (2) the intra-hemispheric connectivity
in the undamaged hemisphere [mean connectivity session pre:
−0.10 ± 0.19; mean connectivity session post: 0.05 ± 0.19;
ANCOVA: time: F(3) = 5.19, p = 0.11, lesion size: F(1) = 0.22,
p= 0.72, lesion overlap with the CST: F(1) = 10.65, p= 0.19], or (3)
the inter-hemispheric connectivity in the damaged hemisphere
[mean connectivity session pre: 0.21 ± 0.19; mean connectivity
session post: 0.29 ± 0.22; ANCOVA: time: F(3) = 0.74, p = 0.45,
lesion size: F(1) = 0.13, p = 0.77, lesion overlap with the CST:
F(1) = 3.12, p = 0.33].

Diffusion MRI

We obtained the CST tract in the damaged and undamaged
hemisphere of each of the four patients. As shown in Figure 12,
patients S03 and S04 overall had intact CST tracts in both
hemispheres, whereas patients S01 and S02 had impaired CST
tracts in the damaged hemisphere. We explored if the strength
of the CST in the damaged hemisphere could predict the
changes in EEG-based neurofeedback training performance. This
analysis revealed no correlation (Pearson: r = −0.03, p = 0.96)
between these measurements. We also performed a Pearson
correlation analysis between the FA of the CST in the damaged
hemisphere and the initial motor ability of the patients and
observed a positive non-statistically significant trend with the
initial FMA-UA score (r = 0.92, p = 0.07), suggesting a loose
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FIGURE 7 | ERSP activation maps, pre and post stimulus between mu and beta bands over the lesioned side during motor attempt. Significant ERD is illustrated

with blue.

relationship between patients with a stronger CST in the damaged
hemisphere and better initial motor ability.

Lesion Size and Lesion Location

We used the size of the lesion and the lesion overlap with the CST
to explore the impact of the lesion location and size on the initial
motor impairment (initial FMA-UE). There was no relationship
between either the size of the lesion and the initial FMA-UE
(Pearson: r = −0.81, p = 0.19), or the lesion overlap on the CST
and the initial FMA-UE (Pearson: r = −0.47, p = 0.53).

We also explored if the lesion size and location had any
impact on the EEG-based neurofeedback training performance.
We found a strong positive, but non-significant, correlation
between the changes in EEG-based neurofeedback performance
and both the lesion size (Pearson: r = 0.84, p = 0.16) and the
lesion overlap with the CST (r = 0.91, p = 0.09). Although these

were not significant, these show a potential trend that patients
with larger lesions and greater lesion overlap with the CST may
have greater improvements on the EEG-based neurofeedback
training performance.

Clinical Outcomes

Last but not least, in terms of clinical scales, we compared
whether there was a difference in FMA-UE, MAS, or SIS
before and after the 8 week intervention block, expecting
an improvement in clinical scales. A paired-samples t-test
yielded no significant group differences between pre- and post-
intervention for all scales.

Nonetheless, patients S01, S03, S04 had increased FMA-
UE scores, with S03 demonstrating a six-point increase in the
FMA-UE. According to Page et al. (2012) this degree of increase
in the FMA-UEmeets theminimal clinically important difference
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FIGURE 8 | ERD power of the Mu band over the lesioned side of the four

stroke patients compared with healthy population data (Pfurtscheller and

Aranibar, 1979; Pfurtscheller et al., 2006). ∗ indicates significance of p < 0.05.

A box and whisker plot showing medians and standard deviations are

illustrated.

threshold of 4.25–7.25 points. Finally, the self-reported SIS
scores increased in all patients except one (S04), while the MAS
remained stable (Table 3).

DISCUSSION

In this pilot study, we described the use of an EEG-based
BCI for motor rehabilitation that provides biologically-
relevant neurofeedback in head-mounted virtual reality
(REINVENT) with four chronic stroke patients across different
motor impairment levels. We demonstrated that VR-based
neurofeedback may be feasible for stroke patients with motor
impairments for prolonged, multi-session use. We also suggest
that the source of neurofeedback should be tailored to the
individual’s impairment level and that for individuals with more
motor ability, EMG-based feedback may be more useful. Overall,
the current results contribute toward our understanding of how
BCI-VR training can be used for chronic stroke patients with
different levels of motor impairment.

First, we found that repeated use of a BCI with head-mounted
VR-based neurofeedback (8 sessions of 1.5 h each) was feasible
and tolerable for stroke patients across a variety of motor
impairment levels. The overall set-up process took about 20 min
per individual, including setting up the 8-channel EEG and 4-
channel EMG systems and putting on the HMD-VR over the
EEG cap. However, there were no issues with simulator sickness
following any of the sessions and no other complaints about pain,
discomfort or fatigue. Overall, patients were enthusiastic about
using REINVENT and appreciated the new form of therapy.
Despite variable motor results after using REINVENT, patients
self-reported positive changes in overall quality of life on a

FIGURE 9 | Average EMG activation during baseline (resting) and motor

action (muscle activation). ∗ indicates the significance of p < 0.05. A box and

whisker plot showing medians and standard deviations are illustrated.

FIGURE 10 | Re-calculated average score from EMG data (shown as a blue

and red circle) compared to the average EEG-based score (shown as a box

and whisker plot) during training. A box and whisker plot showing medians

and standard deviations are illustrated.

comments form and asked to continue using REINVENT after
the study was completed. This suggests that the use of multiple
sessions of a VR-based BCI paradigm not only could be feasible
but potentially enjoyable for individuals after stroke.

Second, we found that the EEG-BCI seemed to have the
greatest positive effects for the patient with the worst motor
impairments (patient S01), and little-to-no effects for individuals
with more motor ability (e.g., more volitional movement of
the affected limb). Patient S01 was the only one to have
significant changes in cortical physiology, as measured by
TMS as the appearance of a motor-evoked potential during
rest, and he also had large improvements in SIS following
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TABLE 2 | TMS motor hotspot.

Undamaged hemisphere Damaged hemisphere

RMT pre-int RMT post-int RMT pre-int AMT pre-int RMT post-int AMT post-int

S01 48% 48% n/a 68% 73% 68%

S02 58% 58% n/a 75% n/a 75%

S03 55% 55% n/a 75% n/a 75%

S04 44% 48% 71% Not acquired 75% Not acquired

Mean 51.25% 52.25% Cannot be calculated due to missing data 72.7% 74% 72.7%

SD 6.40% 5.06% 4.04% 1.41% 4.04%

RMT, Resting Motor Threshold; AMT, Active Motor Threshold; Pre-Int, Post-Int, Pre- and Post-Intervention. Results displayed are a percentage of stimulator output.

FIGURE 11 | Individual motor hotspot locations in each session. On each individual brain, a blue acquisition grid is displayed around the sensorimotor cortex. Using

this grid, we localized the motor hotspot during the initial and final session. The site where the hotspot was localized for each session is displayed with a colored

arrow in both the damaged and undamaged hemispheres. In patients S01 and S04, the motor hotspot in the damaged hemisphere was found at a different grid

node between the two sessions.

REINVENT use. He was also the most successful at controlling
the EEG-BCI feedback and showed improved performance
following REINVENT training. In contrast, the other three
patients all had volitional movement of the affected hand
and wrist and did not show improved performance with
REINVENT training. They also showed many fewer and more
variable changes in behavior and neural assessments. This
finding mirrors previous work showing that individuals with
greater motor impairments after stroke show the greatest
benefits from real-time fMRI neurofeedback (Liew et al.,
2016). One potential hypothesis to explain this finding is
that in individuals with worse motor impairment, there are
fewer inputs to and outputs from the damaged motor cortex,
hence poorer motor ability. Given this, these brain areas
may be more flexible to neuromodulation and may be more
easily trained because these regions are not being actively
engaged for other tasks. On the other hand, in individuals
with volitional movement, these brain regions may already
be actively recruited through more naturalistic processes
(e.g., trying to move one’s arm on a regular basis) and
may be less flexible to learn new patterns imposed by the
neurofeedback training.

On the other hand, individuals with volitional movement
may show greater benefits from a form of neurofeedback
that strengthens their existing brain-to-muscle pathways. Our
post hoc EMG analysis showed that if individuals with volitional
movement had been given EMG-based feedback, instead of
EEG-based feedback, they would have shown much better BCI
control and performance. This was the opposite for Patient S01,
who would have performed worse with EMG-based feedback.
Although more research is needed in a larger and more diverse
sample, these data provide some insight into how BCIs could be
personalized to each patient’s needs. For those without volitional
motor control, learning to control the damaged hemisphere at
all, using broad motor frequency bands was successful. However,
for those with some motor control or at least muscle activity,
harnessing the individual’s own already established pathwaysmay
be more effective. This could potentially be done with EEG,
by matching the neurofeedback to the specific ipsilesional brain
activity evoked when the individual moves, or with EMG, which
by nature utilizes an established pathway from the brain to the
muscle. A flexible BCI that collects multimodal data (e.g., EEG
and EMG), and can provide a tailored neurofeedback signal, may
have the best potential for improving recovery.
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FIGURE 12 | Individual corticospinal tracts in both hemispheres. The damaged hemisphere is represented on the right hemisphere in all images.

Overall, these results show that the training paradigm was
feasible and safe. However, there were no significant group
changes in clinical scales or in brain imaging metrics following
REINVENT. This is perhaps not surprising, given that three of
the individuals with greater motor ability did not show improved
performance on the BCI, and thus would be unlikely to show
improvements in motor function or brain activity. The one
consistent improvement was in the SIS, which improved in three
of the four patients, and could be more related to the social
interactions of engaging in a novel therapy and therapy team.
In terms of actual motor changes, the most notable change was
the detection of a resting motor threshold in patient S01 after
neurofeedback training, and he was also the only person to
improve on the neurofeedback training. We hypothesize that for
the other three patients, using EMG-based neurofeedback will
have more positive effects. It is possible that 8 sessions might
be too few sessions to show marked changes in either behavior
or intrinsic brain activity; future studies should explore this with
longer study duration. It is also worth noting that there is high
variability in BCI performance across sessions, suggesting that
individual state factors, such as fatigue, motivation, and attention
may have a strong influence on patients’ ability to control the BCI.
Patients also reported experimenting with trying out different

TABLE 3 | Clinical scales pre- and post-intervention.

FMA-UA MAS SIS

Patient Pre Post Pre Post Pre Post

S01 13 14 2 2 45 75

S02 28 25 0 0 35 50

S03 37 43 1 1 10 60

S04 49 50 0 0 40 30

FMA-UA, Fugl-Meyer Assessment – Upper Extremity; MAS, Modified Ashworth

Scale; SIS, Stroke Impact Scale.

strategies to control the BCI across days, which could also have
introduced variability in overall BCI performance and resulting
behavioral and neural changes.

LIMITATIONS

Although this study collected and explored 160 EEG datasets
(128 motor related and 32 resting-state data) along with pre- and
post-intervention MRI, TMS, and clinical behavior datasets from
stroke patients, it was limited by its sample size (N = 4). Our
findings, therefore, are preliminary, have limited statistical power,
and should be interpreted with caution. In addition, the statistical
outcomes relating to our measurement (efficacy of the proposed
technique) and the comparisons presented here are exploratory
and not confirmative. Furthermore, increasing the number of
sessions per patient could also have resulted in more positive
results. Finally, as noted above, given the wide range of motor
impairment levels across our four patients, there was significant
variability in results. Future studies should focus on testing EEG-
based BCIs with VR in a wider population of individuals with
severe motor impairments.

CONCLUSION

Overall, in this study, we illustrated a novel architecture with
multimodal interfaces for widening the inclusion criteria into
VR rehabilitation and training. We showed the effect of an
EEG-based VR BCI in stroke survivors with a wide range of
motor disabilities and identify a potential clinical profile of
those who can benefit from an EEG-based interface. This pilot
data suggests that patients with more severe motor impairments
achieve the maximum benefits of a BCI paradigm, while those
with active movement may benefit more from EMG feedback
in a multimodal platform. Finally, this VR-based platform is
feasible for use by individuals with stroke across repeated
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sessions, opening the potential for new VR-BCI paradigms for
stroke rehabilitation.
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