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Abstract

Background Brown seaweeds are known to be a rich source of fiber with the presence of several non-digestible polysaccha-

rides including laminarin, fucoidan and alginate. These individual polysaccharides have previously been shown to favorably 

alter the gut microbiota composition and activity albeit the effect of the collective brown seaweed fiber component on the 

microbiota remains to be determined.

Methods This study investigated the effect of a crude polysaccharide-rich extract obtained from Laminaria digitata (CE) 

and a depolymerized CE extract (DE) on the gut microbiota composition and metabolism using an in vitro fecal batch culture 

model though metagenomic compositional analysis using 16S rRNA FLX amplicon pyrosequencing and short-chain fatty 

acid (SCFA) analysis using GC-FID.

Results Selective culture analysis showed no significant changes in cultured lactobacilli or bifidobacteria between the CE or 

DE and the cellulose-negative control at any time point measured (0, 5, 10, 24, 36, 48 h). Following metagenomic analysis, 

the CE and DE significantly altered the relative abundance of several families including Lachnospiraceae and genera includ-

ing Streptococcus, Ruminococcus and Parabacteroides of human fecal bacterial populations in comparison to cellulose after 

24 h. The concentrations of acetic acid, propionic acid, butyric acid and total SCFA were significantly higher for both the CE 

and DE compared to cellulose after 10, 24, 36 and 48 h fermentation (p < 0.05). Furthermore, the acetate:propionate ratio 

was significantly reduced (p < 0.05) for both CD and DE following 24, 36 and 48 h fermentation.

Conclusion The microbiota-associated metabolic and compositional changes noted provide initial indication of putative ben-

eficial health benefits of L. digitata in vitro; however, research is needed to clarify if L. digitata-derived fiber can favorably 

alter the gut microbiota and confer health benefits in vivo.

Keywords Seaweeds · Macroalgae · Laminaria digitata · Dietary fiber · Prebiotic · Gut microbiota · Short-chain fatty 

acids · Metagenomics

Introduction

Macroalgae as a food resource remains a substantial com-

ponent of the human diet with over 2 million kg of edible 

seaweed harvested globally every year [1]. There is increas-

ing interest in the health benefits associated with seaweed 

consumption, particularly in relation to the reduced risk of 

age-associated chronic diseases in Japanese populations; 

where seaweed consumption has been estimated to be as 

high as 5.3 g/day [2]. The high fiber content of seaweed, 

up to 46 g/100 g semi-dry sample weight [3], has been sug-

gested to contribute to the health benefits associated with 

seaweed consumption [4].

 * Philip J. Allsopp 

 pj.allsopp@ulster.ac.uk

1 Nutrition Innovation Centre for Food and Health (NICHE), 

Ulster University, Coleraine BT52 1SA, UK

2 Teagasc Food Research Centre, Moorepark, Fermoy, Ireland

3 Department of Life Science, Institute of Technology Sligo, 

Sligo, Ireland

4 Irish Seaweed Research Group, Ryan Institute 

for Environmental, Marine and Energy Research, National 

University of Ireland, Galway, University Road, Galway, 

Ireland

5 APC Microbiome Institute, University College Cork, Cork, 

Ireland

http://orcid.org/0000-0003-1327-162X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00394-019-01909-6&domain=pdf


310 European Journal of Nutrition (2020) 59:309–325

1 3

The health benefits of dietary fiber have been widely rec-

ognized, where a daily intake of 25 g/day and up to 38 g/

day has been recommended by the European Food Safety 

Authority and US Institute of Medicine, respectively [5, 6], 

owing to empirical evidence for dietary fiber in reducing the 

risk of obesity, type 2 diabetes, and coronary heart disease 

[7]. The mechanisms to support a role for fiber in health have 

been associated with its viscosity and fecal bulking proper-

ties which may impact the rate and nature of gastrointestinal 

digestion/absorption and transit time [8]. There is also con-

siderable evidence to support a possible role for fiber in pro-

moting health through its ability to modulate gut microbiota 

composition and metabolism [9]. The proposed benefits of 

fiber on the intestinal microbiota are associated with their 

uptake and utilization by putative health-promoting bacteria 

species and the subsequent cross-species metabolism of fer-

mentation by-products [10–13]. The short-chain fatty acid 

(SCFA) microbial metabolites are of particular interest, with 

suggestions that they can promote health through regula-

tion of gut hormone release, cholesterol synthesis/metabo-

lism, enhanced satiety as well as exerting anticancer and 

anti-inflammatory effects [14–16]. Each fiber source will 

exert different effects on the microbiota as the fermentation 

properties of non-digestible polysaccharides are strongly 

influenced by the monomer composition, type of bond, and 

degree of polymerization (DP) [9, 17].

The majority of research investigating the health ben-

efits associated with fiber and/or its fermentation properties 

have predominantly focused on cereal and vegetable derived 

fiber [18]. More recently, there is increasing interest in the 

putative health benefits that may be associated with the fer-

mentation of brown seaweed fiber owing to the presence 

of polysaccharides not typically present in high amounts in 

the human diet, including alginates (blocks of 1–4-linked 

β-mannuronate and α-guluronate glycosides), fucoidan 

(primarily made up of sulphated 1,2- 1,3- and 1,4-linked 

α-L-fucose) and laminarins (a 1–3-linked β-glucan back-

bone with short 1–6 β-linked side chains) [19–22]. A small 

number of studies have investigated the effects of the indi-

vidual polysaccharides derived from brown seaweed on the 

gut microbiota composition using both in vitro and in vivo 

methods [23–35]. These studies have provided initial indica-

tions of the potential fermentability of these brown seaweed 

fiber components by the human microbiota. Nevertheless, it 

must be noted that the fermentation and metabolism of each 

individual non-digestible polysaccharide are considerably 

influenced by the availability of other, potentially competing, 

polysaccharide substrates that may be present in the digesta. 

In summary, extrapolating the putative health benefits of 

seaweed fiber from the aforementioned studies which inves-

tigated singular polysaccharides is limited by the absence 

of simultaneous exposure to the numerous polysaccharides 

present in the seaweed. This study aimed to investigate the 

fermentation properties of a relatively crude fiber mixture 

derived from the brown seaweed, Laminaria digitata, in 

an attempt to determine the fermentation properties of the 

whole fiber component. This study specifically evaluated 

the effects of a crude polysaccharide-rich extract obtained 

from L. digitata, (CE), and a processed depolymerized CE 

(DE), both of which were previously subjected to a simu-

lated in vitro digestion, on the microbial composition and 

metabolic activity of the human gut microbiota, where fruc-

tooligosaccharides (FOS) and cellulose served as positive 

and negative controls, respectively, using an in vitro human 

colonic model.

Materials and methods

Harvesting of L. digitata

Laminaria digitata was harvested at Finavarra, County 

Clare (53.159294, − 9.100080), during low tide 

(12.30 p.m.–4.00 p.m.) one day in June 2012. Identification 

of macroalgae species was carried out on-site by a marine 

biologist (National University of Ireland, Galway). The sea-

weed was gathered by detaching the holdfast from the rock 

using a knife, placed in black refuse bags, and transferred 

within 6 h to storage at − 20 °C until processing.

Polysaccharide extraction

Crude seaweed powder production

The seaweed was washed with freshwater to remove sand 

and epiphytes and laid onto trays and blast frozen (Blast 

freezer, New-Avon). The frozen seaweed was freeze-dried 

(FD80, Cuddon Freeze Dry, New Zealand) and processed 

into a powder using a Waring blender (New Hartford, CT, 

USA) and stored in vacuum-packed bags at − 20 °C prior 

to extraction.

Hot acid extraction

Ground seaweed was suspended in 0.1 M HCl at a ratio of 

1:10 (w/v). The extractions were carried out by incubating 

in an orbital shaker (MaxQ 6000 Shaker; Thermo Fisher 

Scientific, Dublin, Ireland) at 70 °C at 175 rpm for three 

successive time periods of 3, 3 and 24 h. The extracts were 

filtered with a muslin bag with the extract removed after 

each period and fresh solvent added to the retentate. The 

three extract batches were collated and underwent further 

filtering with cotton and glass wool using a funnel, Buchner 

flask and vacuum pump. The filtrates were neutralized with 

the addition of 20 M NaOH and freeze-dried (FD80, Cuddon 

Freeze Dry, New Zealand).



311European Journal of Nutrition (2020) 59:309–325 

1 3

Puri�cation and further processing of extract

Ethanol precipitation

The freeze-dried acid extract was dissolved in Milli-Q water 

(1:2 w/v). This solution was mixed with analytical-grade 

ethanol (1:5 v/v) before centrifugation at 8000g for 10 min. 

The supernatant was subsequently discarded and the pellet 

obtained was allowed to air dry overnight in a fume cabinet 

before blast freezing and freeze-dried (FD80, Cuddon Freeze 

Dry, New Zealand) to produce the crude extract (CE).

Soluble and insoluble dietary �ber analyses

Soluble dietary fiber (SDF) and insoluble dietary fiber 

(IDF) were measured according to AOAC 991.43, AACC 

32-07.01, NMKL 129, 2003 methods using the ANKOM 

Dietary Fiber analyser (Macedon NY, USA).

Depolymerization of extract

A sample of CE underwent a depolymerization step using 

a Fenton’s reaction. CE was dissolved in 0.04%  FeSO4 (1:5 

w/v) solution to which  H2O2 (30% puriss grade) was added 

(1:40 v/v). The flask was incubated in an orbital shaker 

(MaxQ 6000 Shaker; Thermo Fisher Scientific, Dublin, Ire-

land) for 45 min at 80 °C and 175 rpm. The solution was 

then blast frozen and freeze-dried (FD80, Cuddon Freeze 

Dry, New Zealand) to produce the depolymerized CE extract 

(DE).

Simulated human gastrointestinal digestion

Prior to carrying out the in vitro digestion both the CE and 

DE underwent size-exclusion dialysis using dialysis tub-

ing with a molecular weight cutoff of 1 kDa (Standard RC 

dialysis tubing, Spectrum labs, Rancho Dominguez, USA). 

For this, the extracts were dissolved in Milli-Q water (1:1 

w/v) and placed within the dialysis tubing. The tubes were 

closed with clips and placed in 10 L of Milli-Q water and 

incubated in an orbital shaker (MaxQ 6000 Shaker; Thermo 

Fisher Scientific, Dublin, Ireland) at 25 °C, 50 rpm for 72 h. 

The water was changed every 24 h throughout the dialysis. 

The dialysate was discarded and the remaining extract was 

freeze-dried (FD80, Cuddon Freeze Dry, New Zealand). 

60 g of each sample obtained (> 1 kDa CE and DE, and cel-

lulose) was suspended in 180 mL of Milli-Q water (1:4 w/v) 

and added to a 500-mL Erlenmeyer flask to which a 6.25 mL 

solution of  CaCl2 (1 mM pH 7) with 20 mg of dissolved 

α-amylase had been added. The solutions were incubated 

in an orbital shaker (MaxQ 6000 Shaker; Thermo Fisher 

Scientific, Dublin, Ireland) at 150 rpm at 37 °C for 30 min. 

On completion of the incubation, the solutions were adjusted 

to pH 2 with concentrated HCl (37% puriss, 12.06 M). A 

pepsin solution of (2.7 g pepsin in 125 mL of 0.1 M HCl) 

was then added to each sample and the sample solutions 

were incubated in an orbital shaker (MaxQ 6000 Shaker) at 

37 °C 150 rpm for 2 h. The solutions were neutralized with 

1 M NaOH and 125 mL of 0.5 M  NaHCO3 followed by the 

addition of 560 mg pancreatin and 3.5 g bile extract. The 

solutions were adjusted to pH 7 with either the addition of 

1 M HCl or 1 M NaOH and further incubated in an orbital 

shaker (MaxQ 6000 Shaker) at 37 °C, 150 rpm for 3 h. The 

sample solutions (CE, DE and Cellulose) were subsequently 

transferred into 1-kDa dialysis tubing (Standard RC dialysis 

tubing, Spectrum labs) and placed in Milli-Q water for 72 h 

with the dialysate replaced every 24 h with fresh Milli-Q 

water. The solutions were then blast frozen and freeze-dried 

(FD80, Cuddon Freeze Dry, New Zealand) and stored at 

− 20 °C until use.

The controls used in the in vitro study were fructooli-

gosaccharides (FOS) and cellulose. FOS was selected as a 

positive control as it is a prebiotic fiber, while cellulose was 

chosen as a negative control as it is poorly fermented. The 

FOS solution did not undergo the in vitro digestion process 

as it is known to be resistant to digestion and would not be 

retained by the 1-kDa-molecular weight-cutoff dialysis tub-

ing. To account for any components which may result from 

the in vitro digestion procedure, an in vitro digestion was 

carried out without any substrate and the resulting freeze-

dried material was added to FOS in the correct ratio.

Fecal fermentations

Basal growth media

The basal growth medium used was similar to Fooks and 

Gibson [36] [2 g of peptone water (Oxoid thermos Fischer 

scientific, Renfrew, UK), 2 g of yeast extract (Oxoid ther-

mos Fischer scientific, Renfrew, UK), 0.1 g NaCl, 0.04 g of 

 K2HPO4, 0.04 g of  KH2PO4, 0.01 g of  CaCl2·6H20, 0.01 g 

of  MgSO4·7H20, 0.2 g of  NaHCO3, 2 mL of Tween-80 

(Sigma-Aldrich, St Louis, USA), 0.05 g of Hemin (Sigma-

Aldrich, St Louis, USA) dissolved in 0.5 mL of 1 M NaOH, 

10 µL of vitamin K dissolved in 200 µL of ethanol, 0.5 g of 

cysteine–HCl (Sigma-Aldrich, St Louis, USA), 0.5 g bile 

salts powder (Oxoid thermos Fischer scientific, Renfrew, 

UK)]. The pH of the media was reduced to 6.8 by the addi-

tion of 1 M HCl, autoclaved, and allowed to cool to 37 °C 

before use in the experiments.

Fecal sample collection and processing

Fecal fermentation experiments were carried out in triplicate 

on 3 different days. Freshly voided fecal samples from three 

healthy donors (Male, Caucasian Aged 18–32) were obtained 
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within 1 h prior to the beginning of each experiment. A 20 g 

portion of fecal sample of each donor was collected in a 

Stomacher strainer bag (Seward Limited, Worthington, UK) 

to which 240 mL of autoclaved maximum recovery diluent 

(MRD, Oxoid Ltd, Hampshire, UK) cysteine–HCl solution 

was added. The mixture was homogenized using Seward 

Stomacher 400 circulator machine (Seward Limited, Wor-

thington, UK) at a normal speed for 1 min.

Fermentation vessel setup and sampling

The fermentations were carried out in two Multifors units 

(four vessels in total; Infors, Bottmingen, Switzerland) with 

160 mL of basal growth medium added to each vessel. First, 

the vessels were purged with filtered nitrogen gas for 2 h 

prior to the addition of the fecal slurry and for the duration 

of the experiment. After purging, 2 g of the extracts and con-

trols (2%) were subsequently added to their respective fer-

mentation vessel. The vessels were maintained at 37 °C and 

pH 6.8 with stirrers set at 100 rpm. A 40 mL sample of fecal 

slurry was immediately injected into each vessel. Within 

2 min following the addition of fecal slurry, a 13 mL aliquot 

was removed from each vessel for analysis to represent a 

baseline (T0), with further samples collected at 5, 10, 24, 36 

and 48 h. From each 13 mL sample collected, 2 × 1 mL ali-

quots were immediately used for culture-dependent bacterial 

enumeration. Also, a 5 mL sample was spun at 15,000 rpm 

for 5 min, and a total of 3 × 1 mL aliquots of supernatant 

were removed and stored at − 80 °C for future short-chain 

fatty acid (SCFA) analysis. For culture-independent PCR-

based GM analysis, 2 × 1 mL from each sample were ali-

quoted into microtubes and centrifuged at 15,000 rpm, with 

the supernatant discarded and pellets stored for pyrose-

quencing and stored at − 80 °C until analysis.

Enumeration, isolation and identi�cation 
of Bi�dobacteria and Lactobacillus species

Sample dilution

A 1 mL aliquot of the fermenter slurry sample was added 

to 9 mL of sterile MRD (Oxoid Ltd). A serial dilution was 

carried out by removing 1 mL from the previous tube and 

adding to the next 9 mL of MRD for a total of seven serial 

dilutions in duplicate.

The dilutions of the samples were then inoculated in 

duplicate onto selective agars, i.e., Lactobacillus selec-

tive (LBS) agar (Difco Becton Dickinson, Franklin Lakes, 

USA) supplemented with acetic acid (32 mM) and MRS agar 

(Oxoid thermos Fischer scientific, Renfrew, UK) with added 

0.2 g of L-cysteine–HCl and 100 × 200-µg mupirocin disks 

(Oxoid thermos Fischer scientific, Renfrew, UK). Inoculated 

LBS plates were incubated in an anaerobic cabinet at 37 °C 

for 120 h while MRS plates were incubated for 72 h before 

enumerating colonies on a SC6 plus Colony Counter (Stu-

art equipment, Stone, UK); for confirmation of species, five 

colonies from each plate were randomly selected and Gram 

stained.

Analysis of short-chain fatty acids

Internal standard and external standard curve generation

As an internal standard, 2-ethyl butyric acid was added to 

both samples and standard curve solution at 1 mM. The 

seven SCFAs (acetic acid, propionic acid, iso-butyric acid, 

butyric acid, valeric acid, iso-valeric acid and hexanoic 

acid at 0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, 8 mM and 

10 mM) were used to generate a standard curve. Additional 

2 mM SCFA standard vials were used to check for reproduc-

ibility. A standard curve and five repeat injections of 2 mM 

SCFA were carried out prior to analysis.

Sample processing

A 200 µL sample of fermenter slurry supernatant was added 

to a 1.5-mL microtube along with 700 µL of Milli-Q water 

and 100 µL of 10 mM of 2-ethyl butyric acid. The samples 

were spun at 5,000 rpm and the supernatants were trans-

ferred to a 1.5-mL glass vial (Agilent Technologies, Santa 

Clara, USA).

GC-FID analysis

The concentration of SCFA was determined by gas chro-

matography flame ionization detection (GC-FID) using a 

Varian 3500 GC system, fitted with a TRB-FFAP column 

(30 m × 0.32 mm × 0.50 µm; Teknokroma, Barcelona, Spain) 

and a flame ionization detector. Helium was supplied as the 

carrier gas at an initial flow rate of 1.3 mL/min. The ini-

tial oven temperature was 100 °C, and was maintained for 

0.5 min, and then raised to 180 °C at 8 °C/min and held for 

1.0 min, before being increased to 200 °C at 20 °C/min, 

and finally held at 200 °C for 5.0 min. The temperatures 

of the detector and the injection port were set at 250 °C 

and 240 °C, respectively. The injected sample volume was 

0.5 µL. Peaks were integrated using Varian Star Chromatog-

raphy Workstation version 6.0 software.

454 Pyrosequencing

DNA extraction

Total microbial DNA was extracted from pellets of 1 mL of 

fermenter slurry using a MO BIO PowerFecal DNA isolation 

kit (Mo Bio, Carlsbad, USA) according to the manufacturer’s 
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instructions. To ensure complete lysis of bacterial cells, an 

additional heating step was carried out at 90 °C for 10 min 

prior to the bead beating step. The extracted DNA was quan-

tified in triplicate using a Nanodrop 3300 spectrophotometer 

(Thermo Scientific, Ireland) and stored at − 80 °C for future 

PCR amplification of the V4 amplicon.

Generation of 16S rDNA amplicons

PCR amplification of the V4 region was carried out using 

the KAPA3G Plant PCR kit (Kapa Biosystems, USA). 

Amplicons of the V4 region were generated by employing 

one forward, i.e., F1 (5′ AYT GGG YDTAAAGNG), and a 

mix of four reverse primers, i.e., R1 (5′ TAC CRG GGTHTCT 

AAT CC), R2 (5′ TAC CAG AGT ATC TAA TTC ), R3 (5′ 
CTACDSRGGTMTCT AAT C) and R4 (5′ TACNVGGG 

TAT CTA ATC ). In addition, the F1 contained an A adaptor 

sequence along with a distinct multiple identifier (MID) for 

each sample, while the R primers contained a B adaptor. The 

PCRs were carried out on a G-storm PCR machine under the 

following conditions: heated lid 110 °C, 95 °C for 10 min 

followed by 47 cycles of 95 °C for 20 s, 55 °C for 15 s and 

72 °C for 15 s followed by a 1 min at 72 °C after which the 

samples were held at 4 °C. The PCRs had a final volume 

of 50 µL and consisted of 25 µL of KAPA3G Plant PCR 

buffer, 0.4 µL of KAPA3G plant DNA polymerase, 1 µL of 

F1 primer (0.15 µM), 1 µL of the R1–4 primers (0.15 µM), 

1 µL of MgCl2 (to give a final concentration of 2 mM), ster-

ile PCR-grade water and 2.5 µL template DNA. PCR prod-

ucts were analyzed by agarose gel electrophoresis (1.5% in 

1× TBE buffer + 2 µL of Midori Green Advance DNA stain 

(Nippon Genetics)) loading 5 µL of PCR product with 2 µL 

of Bioline DNA loading buffer, blue. The remaining PCR 

product (45 µL) of each sample was cleaned using Agent-

court AMPure XP kit (Beckman Coulter Genomics, UK) as 

per the manufacturer’s protocol. The cleaned PCR products 

were eluted in 40 µL of solution C6 from the PowerFecal 

kit. The pooled sample underwent further cleaning using the 

AMPure XP kit and then quantified again with the Quant-

iT Picogreen kit. Emulsion-based clonal amplification was 

carried out before sequencing on a Genome Sequencer FLX 

platform (Roche Diagnostics Ltd, West Sussex, UK) accord-

ing to the manufacturer’s protocols. Sequencing was carried 

out at the Teagasc Moorepark Sequencing facility.

Bioinformatics analysis

Quality trimming of raw sequences was carried out using the 

QIIME program suite [39]. A minimum quality score of 25 

with sequence length of 150 bp was employed and any reads 

below these levels were discarded. Taxonomy was assigned 

using BLAST [37] referenced against the SILVA SSURef 

database (version 111) [38] and OTU alignment was carried 

using PyNAST Phylogenetic tree [39]. Alpha diversity indi-

ces were calculated using QIIME.

Statistical analysis

The statistical analysis was carried out on SPSS v18. The 

independent t test was employed to assess for statistically 

significant differences between groups, with p < 0.05 consid-

ered significant. The Benjamini–Hochberg false discovery 

rate procedure was applied to sequencing data with Q set 

at 20%.

Results

Dietary �bre analysis

The pre-simulated digested CE was found to contain 60% 

soluble dietary fiber and 0.5% insoluble dietary fiber.

E�ects on bacterial composition as assessed by 454 
pyrosequencing

All treatment vessels (Cellulose, FOS, CE and DE) at base-

line (0 h) had similar proportions of phyla with Firmicutes 

the most abundant (69.67–75.881%) followed by Bacteroi-

detes (19.257–26.358%), Proteobacteria (2.881–3.449%) and 

Actinobacteria (0.873–1.499%) (Fig. 1). Other Phyla such as 

Cyanobacteria, Fibrobacteres, Fusobacteria, Lentisphaerae, 

Tenericutes, Verrucomicrobia, RF3 and bacteria unassigned 

to phyla (no blast hit) were lower in abundance. Figures 1, 

2 and 3 show a graphical representation of the taxa at the 

Phylum, Family and Genus levels at time 0 and after 24 h 

of fermentation with the test substrates (Fig. 1—Phylum; 

Fig. 2—Family; Fig. 3—Genus).

There were no significant differences between any test 

compounds and cellulose for the alpha diversity indices 

Chao1, Simpson, Shannon, phylogenetic diversity and num-

ber of observed species after 24 h (Fig. 4). There were no 

significant effects of any test compounds on Firmicutes to 

Bacteroidetes ratios after 24 h of fermentation (Fig. 4).

Crude extract (CE) (Table 1)

The Phyla Fibrobacteres was significantly reduced in CE-

treated vessels in comparison to cellulose-treated control 

vessels (p = 0.026, q = 0.018) (see Table 1). At the fam-

ily level, Porphyromonadaceae (p = 0.043, q = 0.014) and 

Lachnospiraceae (p = 0.015, q = 0.004) were significantly 

increased compared to cellulose. Porphyromonadaceae 

was the fourth most dominant bacterial family after 24 h 

of CE treatment as opposed to the seventh in cellulose-

treated vessels. In contrast, Fibrobacteraceae (p = 0.026, 
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Fig. 1  Mean relative abun-

dances of the five most 

abundant bacterial phyla of 

cellulose (Cell), fructooligo-

saccharides (FOS), Laminaria 

digitata crude polysaccharide-

rich extract (CE)- and Lami-

naria digitata-depolymerized 

polysaccharide-rich extract 

(DE) (1%)-treated fecal fermen-

tation vessels (n = 3) at 0 and 

24 h. Bacterial composition was 

assessed by 16S rDNA sequenc-

ing using 454 FLX technology 

and bacteria were assigned 

to their Phyla. The remaining 

Phyla were combined and repre-

sented within the group “Other”

Fig. 2  Mean relative abun-

dances of bacterial families of 

cellulose (Cell), fructooligo-

saccharides (FOS), Laminaria 

digitata crude polysaccharide-

rich extract (CE)- and Lami-

naria digitata-depolymerized 

polysaccharide-rich extract 

(DE) (1%)-treated fecal fermen-

tation vessels (n = 3) at 0 and 

24 h. Bacterial composition was 

assessed by 16S rDNA sequenc-

ing using 454 FLX technology 

and bacteria were assigned 

to their family. The figure 

represents the 15 most abundant 

families and any remaining 

families were combined and 

represented as other
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q = 0.01) and Streptococcaceae (p = 0.025, q = 0.007) were 

both reduced with CE treatment (see Table 1).

The increases in Porphyromonadaceae could be 

attributed to the stimulation of Parabacteroides species 

which increased significantly compared to control vessels 

(+ 4.754% vs. + 0.805%; p = 0.005, q = 0.003) (Table 1). 

There was a modest but significant increase in an uncul-

tured genera belonging to the B38 Proteobacteria line-

age (p = 0.045, q = 0.008), and also an increase in Dial-

ister species compared to cellulose-treated vessels was 

noted (p = 0.005, q = 0.001). Ruminococcus (p = 0.027, 

q = 0.007), Streptococcus (p = 0.022, q = 0.004) and Fibro-

bacter (p = 0.026, q = 0.005) species were all reduced 

after 24 h of fermentation of CE compared to cellulose-

treated vessels. There was no significant increase of any 

Lachnospiraceae genera, suggesting that the increases in 

this family occurred division wide.

Depolymerized extract (DE) (Table 2)

In common with CE extract, DE extract had a significant 

effect on the relative abundance of the genus Parabac-

teroides (p = 0.017), with DE treatment significantly 

increasing the relative abundance compared to cellulose 

(Table 2). DE treatment also had an effect on several 

families and genera within the Clostridiales order. The 

relative abundance of the Lachnospiraceae family was 

significantly higher after 24 h of fermentation when com-

pared to cellulose (p = 0.039, q = 0.007) and within this 

family there were significant increases in an uncharacter-

ized bacterium with DE treatment compared to cellulose 

Fig. 3  Mean relative abun-

dances of bacterial genera of 

cellulose (Cell), fructooligo-

saccharides (FOS), Laminaria 

digitata crude polysaccharide-

rich extract (CE)- and Lami-

naria digitata-depolymerized 

polysaccharide-rich extract 

(DE) (1%)-treated fecal fermen-

tation vessels (n = 3) at 0 and 

24 h. Bacterial composition was 

assessed by 16S rDNA sequenc-

ing using 454 FLX technology 

and bacteria were assigned to 

their genera. The figure repre-

sented the 15 most abundant 

genera and any remaining 

genera were combined and 

represented as other
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(p = 0.003, q = 0.001), although this was a less abundant 

genus that was not detected at 0 h in the cellulose vessel. 

A significant decrease in the relative abundance of the 

Peptostreptococcaceae Incertae Sedis family was observed 

with DE treatment. It should be noted that the relative 

Fig. 4  Mean alpha diversity indices and firmicutes:bacteroidetes 

ratios of cellulose (Cell), fructooligosaccharides (FOS), Laminaria 

digitata crude polysaccharide-rich extract (CE) and Laminaria dig-

itata-depolymerized polysaccharide-rich extract (DE) (1%)-treated 

fecal fermentation vessels (n = 3) after 24  h. Bacterial composition 

was assessed by 16S rDNA sequencing using 454 FLX technology 

and alpha diversity indices were calculated using QIIME
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abundances of the Peptostreptococcaceae Incertae Sedis 

family were statistically different at 0 h between DE and 

cellulose. As with the CE treatment, the relative abun-

dance of Dialister was significantly higher with DE treat-

ment compared to cellulose (p = 0.008, q = 0.003). The 

relative abundance of the Alcaligenaceae family belong-

ing to the Proteobacteria Phyla was significantly reduced 

compared to cellulose (p = 0.03, q = 0.004).

Fructooligosaccharides (Table 3)

FOS-fermented vessels had significantly lower proportions 

of Proteobacteria (p = 0.043, q = 0.018), with significantly 

lower representations of Alcaligenaceae (p = 0.01, q = 0.007) 

compared to cellulose. The reduction in Alcaligenaceae abun-

dance was mostly owing to reductions in the relative abun-

dance of Sutterella (p = 0.03, q = 0.009) compared to cellulose. 

There was a significant reduction in the relative abundance 

Table 1  Significant differences induced by crude polysaccharide-rich extract (CE) treatment on bacterial Phyla, Families and Genera

An overview of the significant changes in the relative abundance of the Phyla, Family and Genus (as determined by 454 pyrosequencing of the 

16S rDNA region) of the batch culture fermentate following a 24-h incubation with 1% (w/v) CE or cellulose under anaerobic conditions at 

37 °C. Significant differences of delta change values (∆) (difference 0 and 24 h) between CE and cellulose were determined using independent t 

tests (n = 3). Data presented are mean (SEM)

0 h 24 h ∆ Effect P

Cellulose (%) CE (%) Cellulose (%) CE (%) Cellulose CE

Phylum

 Fibrobacteres 0 (0) 0.009 (0.006) 0.04 (0.01) 0.012 (0.009) + 0.04 (0.005) + 0.003 (0.005) ↓ 0.026

Family

 Porphyromonadaceae 1.305 (0.176) 1.232 (0.175) 2.856 (0.703) 5.941 (0.546) + 1.551 (0.813) + 4.709 (0.713) ↑ 0.043

 Fibrobacteraceae 0 (0) 0.009 (0.006) 0.04 (0.01) 0.012 (0.009) + 0.04 (0.005) + 0.003 (0.005) ↓ 0.026

 Streptococcaceae 0.067 (0.043) 0.06 (0.004) 0.097 (0.056) 0.028 (0.016) + 0.03 (0.014) − 0.033 (0.012) ↓ 0.025

 Lachnospiraceae 32.303 (2.438) 32.55 (1.878) 16.718 (0.458) 26.182 (2.781) − 15.585 (1.992) − 6.368 (1.03) ↑ 0.015

Genus

 Parabacteroides 0.488 (0.152) 0.511 (0.05) 1.293 (0.35) 5.085 (0.674) + 0.805 (0.255) + 4.574 (0.633) ↑ 0.005

 Fibrobacter 0 (0) 0.009 (0.006) 0.04 (0.01) 0.012 (0.009) + 0.04 (0.005) + 0.003 (0.005) ↓ 0.026

 Streptococcus 0.06 (0.041) 0.06 (0.004) 0.097 (0.056) 0.028 (0.016) + 0.037 (0.015) − 0.033 (0.012) ↓ 0.022

 Ruminococcus 2.235 (0.983) 2.058 (0.524) 2.204 (1.291) 0.675 (0.377) − 0.032 (0.369) − 1.383 (0.148) ↓ 0.027

 Dialister 0.589 (0.107) 0.504 (0.169) 0.132 (0.084) 0.463 (0.136) − 0.457 (0.037) − 0.042 (0.062) ↑ 0.005

 γ B38UC 0.019 (0.009) 0.007 (0.007) 0.029 (0.01) 0.041 (0.003) + 0.01 (0.008) + 0.034 (0.004) ↑ 0.045

Table 2  Significant differences induced by depolymerized crude polysaccharide-rich extract (DE) on bacterial Phyla, Families and Genera

An overview of the significant changes in the relative abundance of the Phyla, Family and Genus (as determined by 454 pyrosequencing of the 

16S rDNA region) of the batch culture fermentate following a 24-h incubation with 1% (w/v) DE or cellulose under anaerobic conditions at 

37 °C. Significant differences of delta change values (∆) (difference 0 and 24 h) between DE and cellulose were determined using independent t 

tests (n = 3). Data presented are mean (SEM)

0 h 24 h ∆ Effect P

Cellulose (%) DE (%) Cellulose (%) DE (%) Cellulose DE

Phylum

 Actinobacteria 1.499 (0.299) 0.873 (0.218) 1.955 (0.284) 0.607 (0.13) + 0.456 (0.068) − 0.266 (0.171) ↓ 0.017

Family

 Lachnospiraceae 32.303 (2.438) 30.968 (1.478) 16.718 (0.458) 25.724 (3.06) − 15.585 (1.992) − 5.244 (2.791) ↑ 0.039

 Alcaligenaceae 0.636 (0.088) 1.071 (0.142) 6.444 (0.569) 3.864 (0.54) + 5.807 (2.793) + 2.793 (0.682) ↓ 0.030

Genus

 Parabacteroides 0.488 (0.15) 0.618 (0.206) 1.293 (0.35) 5.64 (1.234) + 0.805 (0.255) + 5.022 (1.039) ↑ 0.017

 Lachnospiraceae uc. 0 (0) 0.007 (0.003) 0.003 (0.003) 0.046 (0.003) + 0.003 (0.003) + 0.039 (0.005) ↑ 0.003

 Peptostreptococcaceae IS 0.846 (0.048) 1.299 (0.074) 0.32 (0.085) 0.244 (0.074) − 0.526 (0.051) − 1.056 (0.147) ↓ 0.027

 Dialister 0.589 (1.234) 0.418 (0.107) 0.132 (0.084) 0.277 (0.104) − 0.47 (0.037) − 0.141 (0.054) ↑ 0.008
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of the gamma Proteobacteria genus Cronobacter (p = 0.019, 

q = 0.004). FOS fermentation significantly decreased the 

relative abundance of two Bacteroidetes genera belonging to 

the Porphyromonadaceae family, Butyricimonas (p = 0.03, 

q = 0.008) and Parabacteroides (p = 0.023, q = 0.007). Within 

the Firmicutes phylum, FOS treatment resulted in a signifi-

cant reduction in Streptococcus (p = 0.023, q = 0.005), Chris-

tensenella (p = 0.033, q = 0.01) and Flavonifractor (p = 0.047, 

q = 0.012) and an increase in the relative abundance of Lach-

nospiraceae (p = 0.009, q = 0.004) and a poorly understood 

family (p = 0.032, q = 0.014) and genus (p = 0.016, q = 0.003) 

belonging to the Clostridiales Family XIII, when compared 

to cellulose.

E�ects on culture-dependent Lactobacillus 
and Bi�dobacteria populations

Neither CE nor DE stimulated cultivable Lactobacillus or Bifi-

dobacteria species numbers at any time point. FOS was found 

to significantly (p = 0.044) increase cultivable Bifidobacteria 

populations after 10 h compared to cellulose control.

E�ects on short-chain fatty acid production

Crude extract (CE) (Table 4)

Within 5 h of fermentation of the CE, propionic acid con-

centrations were significantly increased (p = 0.003), and 

remained significantly higher over all subsequent time 

points in comparison to the cellulose control. Propionic 

acid concentrations in the CE-treated vessels were simi-

lar to that of the FOS-treated vessels for all time points 

assessed. After 10  h of CE fermentation, acetic acid 

(p = 0.001), butyric acid (p = 0.031), and total SCFA 

(p = 0.002) concentrations were also significantly higher 

than cellulose. Concentrations of acetic acid, butyric acid, 

and total SCFA were significantly higher with CE treat-

ment compared to cellulose for all subsequent time points. 

The acetate:propionate ratio was significantly lower than 

the cellulose control following 24, 36 and 48 h of fermen-

tation (p < 0.05) (Fig. 5). There were no significant differ-

ences in the concentration of valeric acid, hexanoic acid, 

the individual branched-chain SCFAs iso-butyric acid and 

Table 3  Significant differences induced by FOS treatment on bacterial Phyla, Families and Genera

An overview of the significant changes in the relative abundance of the Phyla, Family and Genus (as determined by 454 pyrosequencing of the 

16S rDNA region) of the batch culture fermentate following a 24-h incubation with 1% (w/v) FOS or cellulose under anaerobic conditions at 

37 °C. Significant differences of delta change values (∆) (difference 0 and 24 h) between FOS and cellulose were determined using independent 

t tests (n = 3). Data presented are mean (SEM)

0 h 24 h ∆ Effect P 

Cellulose (%) FOS (%) Cellulose (%) FOS (%) Cellulose FOS

Phylum

 Proteobacteria 3.11 (0.312) 2.881 (0.279) 11.082 (1.226) 3.968 (1.628) + 7.972 (1.368) + 1.087 (1.904) ↓ 0.043

Family

 Streptococcaceae 0.067 (0.043) 0.129 (0.045) 0.097 (0.056) 0.003 (0.003) + 0.03 (0.014) − 0.126 (0.043) ↓ 0.025

 Clostridium XIII IS 0.032 (0.013) 0.011 (0.011) 0.069 (0.067) 0.227 (0.063) + 0.037 (0.016) + 0.216 (0.053) ↑ 0.032

 Lachnospiraceae 32.303 (2.438) 27.771 (0.886) 16.718 (0.485) 21.909 (1.271) − 15.585 (1.99) − 5.862 (0.387) ↑ 0.009

 Alcaligenaceae 0.636 (0.088) 0.988 (0.262) 6.444 (0.569) 1.959 (0.612) + 5.807 (0.612) + 0.971 (0.848) ↓ 0.010

Genus

 Butyricimonas 0.072 (0.029) 0.187 (0.046) 0.288 (0.081) 0.079 (0.023) + 0.217 (0.094) − 0.109 (0.032) ↓ 0.030

 Parabacteroides 0.488 (0.152) 0.735 (0.11) 1.293 (0.35) 0.579 (0.11) + 0.805 (0.255) − 0.155 (0.084) ↓ 0.023

 Streptococcus 0.06 (0.041) 0.129 (0.045) 0.097 (0.056) 0.003 (0.003) + 0.037 (0.015) − 0.125 (0.043) ↓ 0.023

 Christensenella 0.058 (0.019) 0.041 (0.015) 0.094 (0.027) 0.033 (0.005) + 0.037 (0.009) − 0.007 (0.01) ↓ 0.033

 Clostridium XIII IS UC 0.012 (0.012) 0.008 (0.008) 0.023 (0.006) 0.212 (0.052) + 0.013 (0.016) + 0.204 (0.045) ↑ 0.016

 Flavonifractor 0.085 (0.017) 0.079 (0.004) 0.282 (0.032) 0.082 (0.006) + 0.197 (0.046) + 0.003 (0.008) ↓ 0.047

 Sutterella 0.451 (0.046) 0.832 (0.302) 5.304 (1.0) 1.569 (0.471) + 4.85 (0.989) + 0.737 (0.772) ↓ 0.030

 Cronobacter 0 (0) 0.003 (0.003) 0.116 (0.023) 0.02 (0.016) + 0.116 (0.023) + 0.017 (0.012) ↓ 0.019
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iso-valeric acid, nor total branched SCFA and between CE 

and cellulose at any time point.

When compared to FOS, CE fermentation produced sig-

nificantly lower levels of acetic acid after 5 (p = 0.013) and 

10 h (p = 0.021) of fermentation with no significant differ-

ence observed between CE and FOS after 24, 36 and 48 h 

of fermentation. Butyric acid concentrations were signifi-

cantly lower with CE fermentation after 5 (p = 0.002), 10 

(p = 0.017) and 24 (p = 0.042) hours compared to FOS, but 

no significant difference was noted after 36 and 48 h of fer-

mentation. Total SCFA concentrations were significantly 

lower after 5, 10, 24 and 36 h with CE compared to FOS, 

yet total SCFA concentrations were similar after 48 h of 

fermentation. Propionic acid, iso-butyric acid, valeric acid, 

iso-valeric acid and hexanoic acid concentrations with CE 

treatment were similar to FOS over all time points assessed, 

with no significant differences noted.

Depolymerized extract (DE) (Table 4)

Within 5 h of fermentation of the DE extract, the concen-

tration of propionic acid was significantly higher than in 

cellulose vessels (p = 0.004) and the concentration of pro-

pionic acid was significantly higher compared to cellulose 

for all the subsequent time points. Propionic acid concen-

trations were similar to FOS at all time points. The con-

centrations of acetic acid, propionic acid, butyric acid, and 

Table 4  Fatty acid 

concentrations produced during 

batch culture fermentations

A table listing the concentrations of short-chain fatty acids in the effluent of batch culture vessels after 

incubation with cellulose, FOS, CE and DE after 5, 10, 24. 36 and 48 h. Samples were taken at the vari-

ous time points, centrifuged, and the SCFA were quantified using a GC-FID. Significant differences in the 

individual SCFA, total SFCA and total BCFA between cellulose and each treatment (FOS, DE, CE) at each 

time point was determined using an independent t test. *p < 0.05 (n = 3)

Cellulose FOS CE DE

Mean SEM Mean SEM P value Mean SEM P value Mean SEM P value

Acetic acid

 5 11.89 1.195 39.41 4.810 0.005 16.80 2.253 0.126 19.55 3.386 0.100

 10 16.10 1.068 45.95 4.080 0.002 30.35 1.183 0.001 42.10 5.413 0.036

 24 17.95 0.101 51.36 4.492 0.002 39.71 2.122 0.009 48.65 2.538 0.007

 36 19.48 0.581 53.70 4.762 0.002 45.49 1.929 0.000 57.62 8.973 0.013

 48 20.12 0.596 55.88 4.512 0.001 54.11 11.674 0.044 54.32 3.772 0.001

Propanoic acid

 5 2.75 0.196 11.06 2.632 0.035 4.53 0.177 0.003 6.06 0.509 0.004

 10 3.63 0.228 15.13 3.087 0.021 10.68 1.382 0.007 17.89 2.303 0.004

 24 4.49 0.317 17.25 2.970 0.013 15.49 1.852 0.004 20.69 1.984 0.001

 36 5.11 0.149 18.26 3.107 0.013 17.80 1.326 0.010 24.39 3.999 0.009

 48 5.42 0.287 19.33 3.525 0.017 21.59 5.527 0.043 23.02 2.104 0.001

Butyric acid

 5 3.37 0.109 13.09 0.565 0.000 5.43 0.829 0.070 5.09 0.755 0.089

 10 4.89 0.236 22.25 2.144 0.001 11.04 1.868 0.031 9.80 1.628 0.041

 24 6.65 0.148 26.44 2.867 0.002 16.01 2.090 0.011 12.42 1.467 0.017

 36 7.78 0.229 28.67 2.982 0.002 19.33 2.760 0.014 15.10 1.721 0.049

 48 8.50 0.195 30.69 3.036 0.002 22.92 0.702 0.000 15.18 1.851 0.023

Total SCFA

 5 18.98 1.515 63.92 2.837 0.000 27.84 3.692 0.091 32.62 5.960 0.091

 10 26.62 1.500 84.88 1.544 0.000 56.14 3.701 0.002 72.99 10.163 0.011

 24 32.76 1.118 98.69 0.873 0.000 75.76 1.271 0.000 88.18 8.139 0.009

 36 36.84 1.638 105.56 1.450 0.000 89.46 3.577 0.000 104.72 16.786 0.016

 48 39.13 1.366 112.04 2.861 0.000 107.79 17.710 0.018 99.98 6.970 0.001

BCFA

 5 0.99 0.347 0.44 0.239 0.260 0.96 0.505 0.967 1.53 1.022 0.645

 10 1.93 0.362 1.43 0.659 0.539 3.80 2.699 0.531 2.52 1.381 0.703

 24 3.31 0.754 2.98 0.840 0.781 3.64 0.745 0.774 5.05 2.785 0.602

 36 4.05 0.737 4.07 0.857 0.988 5.24 0.987 0.389 6.29 2.395 0.424

 48 4.65 0.596 5.14 0.765 0.639 7.37 0.951 0.072 6.32 1.464 0.350
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total SCFA were significantly higher with DE treatment 

compared to cellulose after 10 h and for all subsequent 

time points. The acetate:propionate ratio was shown to 

be significantly lower than the cellulose control following 

10, 24, 36 and 48 h (p < 0.05) (Fig. 5). There were no sig-

nificant differences in the concentration of total branched 

SCFA, the individual branched-chain SCFAs iso-butyric 

acid and iso-valeric acid or valeric acid and hexanoic 

acid SCFAs between CE and cellulose at any time point. 

Compared to FOS, acetic acid and total SCFA concentra-

tions were significantly lower after 5 h of fermentation 

(p = 0.028 and p = 0.009, respectively), but not after 10, 

24, 36 and 48 h of DE fermentation. Butyric acid concen-

trations were significantly lower compared to FOS for all 

the time points assessed.

Fructooligosaccharides (FOS) (Table 4)

Within 5 h of incubation, FOS was observed to significantly 

increase the concentration of acetic acid (p = 0.005), pro-

pionic acid (p = 0.035), butyric acid (p < 0.001), and total 

SCFA (p < 0.001) compared to cellulose. The concentra-

tions were significantly higher for all subsequent time points. 

There was no difference in branched-chain SCFA with FOS 

fermentation compared to cellulose.

Discussion

This study has provided clear indications that crude and 

depolymerized non-digestible components of L. digi-

tata (CE and DE) are fermented by human fecal bacterial 

Fig. 5  The effects of 1% (w/v) cellulose (Cell), fructooligosaccha-

rides (FOS), crude polysaccharide-rich extract (CE); and depolymer-

ized crude polysaccharide-rich extract (DE), on the acetate to propi-

onate ratio of batch culture fermentate after 5 (a), 10 (b), 24 (c), 36 

(d) and 48 (e) h of incubation under anaerobic conditions at 37 °C. 

SCFA concentrations of each supernatant were assessed using a GC-

FID. Significant differences in the acetate to propionate ratio between 

cellulose and each treatment (FOS, DE, CE) at each time point were 

determined using an independent t test. *p < 0.05 (n = 3)
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populations. This was evidenced by significant increases in 

acetate, butyrate and total short-chain fatty acids after 10-h 

fermentation with CE, as well as DE compared to cellulose 

(Table 4), and was shown to continue for the majority of the 

remaining incubation time in the experiment. The culture-

dependent microbial analysis showed that neither CE nor DE 

stimulated Lactobacilli or Bifidobacteria populations. The 

culture-independent sequencing of the 16S region revealed 

a number of changes at the family and genus level when 

compared to cellulose, including the stimulation of Parabac-

teroides, Dialister and Lachnospiraceae populations, each 

of which have been shown to be reduced in IBD-associated 

dysbiosis, with Lachnospiraceae also suggested to be protec-

tive against colon cancer [40–42].

The ability of the microbiota to utilize the seaweed fiber 

components as an energy source is primarily dictated by 

the presence of enzymes which can hydrolyze the various 

glycosidic bonds throughout the fiber structure [43]. There 

are numerous in vitro human fecal batch culture experi-

ments previously carried out on each individual seaweed 

fiber (alginate/laminarin/fucoidan), and these studies have 

demonstrated that both alginate and laminarin fibers can 

be efficiently fermented by the human microbiota [24, 25, 

31–35, 44, 45]. These observations are supported by previ-

ous reports that Bacteroides species from the human micro-

biota possess the hydrolytic enzymes, β-glucanase and algi-

nate lyase, which are able to breakdown the linkages that 

make up laminarin and alginate, respectively, and have been 

noted in both Asian and Western populations [31, 46–48]. 

There is evidence from a murine study to show that fucoidan 

can also modulate the composition and metabolic activity 

of the gut microbiota. Dietary supplementation of a 50-kDa 

fucoidan fraction in combination with the chemotherapeutic 

drug associated with gut mucosal damage, cyclophospha-

mide was found to increase Coprococcus, Rikenella, and 

Butyricicoccus species and increase total SCFA, propionate 

and butyrate concentrations in feces. Whether the effects 

on gut microbiota composition and metabolic activity are 

through fucoidan fermentation or through protection against 

mucosal damage from cyclophosphamide supplementation 

remains to be elucidated. The degradation of polysaccha-

rides by the microbiota can ultimately lead to metabolism/

cross metabolism of the released monomers to produce a 

range of microbial products, including short-chain fatty 

acids amongst others [49]. The failure to degrade fucoidan 

may limit its potential impact on the microbiota and thus 

any noted changes would be independent of its catabolism 

and fermentation.

The current study undertaken did not characterize the 

polysaccharide structural composition of either CE or DE; 

however, the increasing SCFA production following incu-

bation with the human fecal matter in the fermenter would 

suggest that bacteria present in the human microbiota 

possess the enzymes capable of degrading at least some of 

the complex polysaccharides present in the seaweed extract. 

The fermentation of both the extracts resulted in significant 

increases in propionic acid compared to cellulose and both 

the extracts were similar to the prebiotic FOS with respect 

to propionic acid production after 5 h of fermentation and 

for all subsequent time points. Acetic acid, butyric acid, and 

total SCFA concentrations were significantly higher with 

both CE and DE compared to cellulose after 10 h of fer-

mentation. CE fermentation resulted in similar amounts of 

acetic acid and butyric acid as FOS after 24 and 36 h of 

fermentation, respectively, and for subsequent time points. 

DE fermentation resulted in increases in acetic acid and total 

SCFA which were comparable with those produced by FOS 

after 10 h of fermentation and for all subsequent time points. 

Both extracts were shown to significantly reduce the acetate 

to propionate ratio after 24 h, which persisted for the remain-

der of the experiment. This could hold significance in light 

of recent research that has implicated a reduced acetate to 

propionate ratio with lipogenesis [50, 51], as well as emerg-

ing evidence to implicate a role for colonic propionate in the 

prevention of weight gain in overweight adult humans [52].

The fermentation patterns noted in the current study are 

comparable to previous studies that have investigated the 

fermentability of individual seaweed polysaccharides in both 

in vitro human fecal fermentation experiments and in vivo 

animal models [24, 25, 31–35, 44] and demonstrated that 

brown seaweed-derived polysaccharides increased the pro-

duction of acetic acid, propionic acid, butyric acid as well 

as total SCFA. The crude polysaccharide extracts (CE, DE) 

used in the current study exhibited a lag effect, with the 

production of most of the SCFA occurring after 10 h and 

not 5 h. This lag effect has previously been reported with 

alginate [44], which is known to be a major polysaccha-

ride component present in L. digitata [53]. This lag effect 

of fermentation may be attributed to the adaption of the 

fecal bacterial species to a novel carbon source [54]. The 

higher production of propionate noted during DE fermenta-

tion compared to CE after 5 h is likely owing to the lower 

molecular weight polysaccharides (> 1 kDa), with alginate 

a probable candidate [31, 34, 44]. The CE treatment had 

significantly higher concentrations of butyrate after 48 h 

of fermentation compared to DE, suggesting a more sus-

tained, slower fermentation profile which would be expected 

with more complex, higher molecular weight polysaccha-

rides [55]. Previous batch fermentation studies have dem-

onstrated that laminarin and alginate individually increase 

SCFA concentrations during batch culture fermentations 

whilst fucoidan would appear to have limited impact [24, 

44]. Furthermore, the fermentation properties of the com-

plete fiber component of late-season-harvested L. digitata 

have been assessed with human fecal fermentation experi-

ments [24, 25]. The first study [24] found that L. digitata 
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fiber fermentation appeared to alter individual SCFA ratios 

as well as increase total SCFA concentrations with a similar 

lag period noted in this study. While the second study [25] 

did not assess effects on SCFA, the authors observed that 

laminarin was fermented after a 24-h incubation. Collec-

tively, it is likely that the fermentation of both alginate and 

laminarin is contributing to the potential prebiotic effect of 

increasing both butyrate and propionate production observed 

in the current study.

Neither the CE nor DE extract stimulated cultivable Lac-

tobacillus or Bifidobacteria species, and this lack of effect 

was also reported in a study by Deville et al. [25]. In con-

trast, others have found a stimulating effect with alginate 

oligosaccharides on Lactobacillus and Bifidobacteria, both 

with in vitro human fecal fermentations and when fed to 

rats [56]. The size-exclusion filtration carried out on the 

extract used in this study may have removed these oligosac-

charides (< 1 kDa) and thus could explain the lack of effect 

seen in this study. In the current study, FOS treatment was 

observed to significantly increase cultivable Bifidobacteria 

but not Lactobacillus, whereas another study has reported 

that Lactobacillus and not Bifidobacteria populations were 

increased with FOS [25]. The lack of consistency in the 

effects of certain fibers to stimulate specific bacterial genera 

from in vitro studies may be attributable, in part, to the lim-

ited study power owing to variability of the fecal microbial 

composition of the donors and highlights the problematic 

issues of using such models to investigate dietary-mediated 

changes to GM structure and composition.

Results from the 16S rRNA pyrosequencing identified 

that both the CE and DE extracts impacted mainly within 

the two dominant phyla, Bacteroidetes and Firmicutes. As 

previously discussed, the Bacteroidetes species have con-

siderable metabolic plasticity owing to an extensive array 

of Carbohydrate-Active Enzymes (CAZymes) including sea-

weed-glycan-degrading enzymes [31, 57], which allow them 

to catabolize the wide range of polysaccharides present in 

the human diet. Therefore, it is not surprising that the poly-

saccharide-rich seaweed extracts were found to significantly 

increase genera belonging to this phylum. The ability of both 

extracts to significantly increase the relative abundance of 

bacteria from the genus Parabacteroides was also observed 

in another study in which laminarin was fed to rats [30]. The 

authors noted that the species Parabacteroides distasonis 

was only detected in the laminarin-supplemented rats and 

not alginate-supplemented or control-fed rats. This finding 

would strongly suggest that the Parabacteroides stimulat-

ing effect noted in the current study is likely to be attribut-

able to laminarin. A recent study highlighted the potential 

immunomodulatory effect of Parabacteroides distasonis in 

DSS-induced colitis in mice [58], albeit more evidence to 

support its possible impact on health in humans is required. 

Lachnospiraceae were also found to be stimulated with both 

CE and DE extracts. Lachnospiraceae are well represented 

in the human gut microbiome and are known to degrade non-

digestible plant polysaccharides from the diet into SCFAs 

such as acetate, propionate and butyrate [59, 60]. The 

increase in SCFA production observed with the extracts in 

this study could, in part, be attributed to bacteria belonging 

to this family. The observed depletion of Lachnospiraceae 

members in colon cancer has led to speculation that some 

of its members may confer protection against colon cancer 

through the production of butyrate, which is known to exert 

a range of anticancer activities [61]. The stimulating effect 

of DE on bacteria from the Dialister genus was also found 

to be inversely associated with IL-6 in humans who were 

fed a fiber-rich diet from whole grains [62]; however, some 

reductions in Dialister species have been reported in colon 

cancer and Crohn’s disease [63, 64].

The extracts in the current study were subjected to a 

simulated in vitro digestion followed by size-exclusion 

chromatography with a molecular weight cutoff of 1 kDa 

prior to use in the colon model. The simulated digestion 

used in the current study provided indications that diges-

tion-resistant polysaccharides present within the CE and 

DE extract had the potential to be extensively fermented 

by the human microbiota, which corroborates previous 

studies which have demonstrated that isolated laminarin, 

fucoidan and alginate are resistant to simulated gastroin-

testinal digestion [45]. However, whilst the dialysis step 

in the simulated digestion removes contents unlikely to be 

available in the colon, it may also remove colon-available 

non-digestible low molecular weight oligosaccharides 

such as those derived from alginate and laminarin. This 

presents an additional limitation to this in vitro study.

Conclusions

In conclusion, this study provides evidence that polysac-

charide-rich extracts from L. digitata are both resistant to 

human digestive enzymes and are fermentable by human 

fecal bacterial populations. The demonstration that both 

extracts altered the metabolic activity of human fecal micro-

bial populations in a way which might confer health benefits 

illustrates the potential of this seaweed extract to improve 

health and well-being. Further work is warranted to assess 

whether these changes in both bacterial composition and 

metabolic activity occur in vivo, and critically, whether such 

changes can confer health benefits to the host to clarify the 

potential of L. digitata as a source material for the crude 

extraction of fermentable polysaccharide fibers as a func-

tional food ingredient.
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