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This study evaluated the efficacy of a preschool mathematics program based on a
comprehensive model of developing research-based software and print curricula.
Building Blocks, funded by the National Science Foundation, is a curriculum devel-
opment project focused on creating research-based, technology-enhanced mathe-
matics materials for pre-K through grade 2. In this article, we describe the underlying
principles, development, and initial summative evaluation of the first set of resulting
materials as they were used in classrooms with children at risk for later school failure.
Experimental and comparison classrooms included two principal types of public
preschool programs serving low-income families: state funded and Head Start
prekindergarten programs. The experimental treatment group score increased signif-
icantly more than the comparison group score; achievement gains of the experi-
mental group approached the sought-after 2-sigma effect of individual tutoring. This
study contributes to research showing that focused early mathematical interventions
help young children develop a foundation of informal mathematics knowledge, espe-
cially for children at risk for later school failure.

Key words: Computers, Curriculum, Early childhood, Equity/diversity, Instructional
intervention, Instructional technology, Preschool/primary, Program/project assessment

Curricula are rarely developed or evaluated scientifically (Clements, 2007). Less
than 2% of research studies in mathematics education have concerned the effects of
textbooks (Senk & Thompson, 2003). This study is one of several coordinated efforts
to assess the efficacy of a scientifically based curriculum; specifically, whether a
preschool mathematics curriculum was developing the mathematical knowledge of
disadvantaged 4-year-old children (Clements, 2002; Clements & Battista, 2000). 

This material is based in part on work supported by the National Science
Foundation Research Grant ESI-9730804, “Building Blocks—Foundations for
Mathematical Thinking, Pre-Kindergarten to Grade 2: Research-based Materials
Development.” Any opinions, findings, and conclusions or recommendations
expressed in this article are those of the authors and do not necessarily reflect the
views of the National Science Foundation. The curriculum evaluated in this
research has since been published by the authors, who thus now have a vested
interest in the results. An external auditor oversaw the research design, data collec-
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authors, listed alphabetically, contributed equally to the research.
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Building Blocks is a NSF-funded pre-K to grade 2 mathematics curriculum
development project designed to comprehensively address recent standards for early
mathematics education for all children (e.g., Clements, Sarama, & DiBiase, 2004;
NCTM, 2000). Previous articles describe the design principles behind a set of
research-based software microworlds included in the Building Blocks program
and the research-based design model that guided its development (Clements, 2002;
Clements & Sarama, 2004a; Sarama & Clements, 2002). This article presents
initial summative research on the first set of resulting materials: a research-based,
technology-enhanced preschool mathematics curriculum. 

There have been few rigorous tests of the effects of preschool curricula. Although
some evidence indicates that curriculum can strengthen the development of young
students’ knowledge of number or geometry (Clements, 1984; Griffin & Case, 1997;
Razel & Eylon, 1991), no studies of which we are aware have studied the effects
of a complete preschool mathematics curriculum, especially on low-income chil-
dren, children who are at serious risk for later failure in mathematics (Bowman,
Donovan, & Burns, 2001; Campbell & Silver, 1999; Secada, 1992). These children
possess less mathematical knowledge than higher-income children even before first
grade (Denton & West, 2002; Ginsburg & Russell, 1981; Griffin, Case, &
Capodilupo, 1995; Jordan, Huttenlocher, & Levine, 1992; Klein & Starkey, 2004).
They also receive less support for mathematics learning in the home and school envi-
ronments, including preschool, than their higher-income peers (Blevins-Knabe &
Musun-Miller, 1996; Bryant, Burchinal, Lau, & Sparling, 1994; Farran, Silveri, &
Culp, 1991; Holloway, Rambaud, Fuller, & Eggers-Pierola, 1995; Saxe, Guberman,
& Gearhart, 1987; Starkey et al., 1999).

DESIGN OF THE BUILDING BLOCKS MATERIALS

Many curriculum and software publishers claim a research basis for their mate-
rials, but the bases of these claims are often dubitable (Clements, 2002). The
Building Blocks project is based on the assumption that research-based curriculum
development efforts can contribute to (a) more effective curriculum materials, (b)
better understanding of students’ mathematical thinking, and (c) research-based
change in mathematics curricula (Clements, Battista, Sarama, & Swaminathan,
1997; Schoenfeld, 1999). Indeed, along with our colleagues, we believe that educa-
tion will not improve substantially without a systemwide commitment to research-
based curriculum and software development (Battista & Clements, 2000; Clements,
2007; Clements & Battista, 2000).

Our theoretical foundation for research-based curriculum development and eval-
uation, the Curriculum Research Framework (CRF), comprises three categories
spanned by 10 phases, summarized in Table 1 (Clements, 2002; see especially
Clements, 2007). Given the comprehensive CRF, claims that a curriculum is based
on research should be questioned to reveal the exact nature between the curriculum
and the research used or generated. Unfortunately, there is little documentation of
the phases used for most curricula. Often, there is only a hint of A Priori Foundations
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phases, sometimes nonscientific market research, and minimal formative research
with small groups. For example, “beta testing” of educational software is often
merely polling of easily accessible peers, conducted late in the process, so that
changes are minimal, given the time and resources dedicated to the project already
and the limited budget and pressing deadlines that remain (Char, 1989; Clements
& Battista, 2000). In contrast, we designed the Building Blocks approach to incor-
porate as many of the phases as possible. 

Previous publications provide detailed descriptions of how we applied the CRF
in our design process model (Clements, 2002; Sarama, 2004; Sarama & Clements,
2002); here we provide an overview of our application of the CRF. A Priori
Foundation phases were used to determine the curriculum’s goals and pedagogy.
Based on theory and research on early childhood learning and teaching (Bowman
et al., 2001; Clements & Sarama, in press), we determined that Building Blocks’
basic approach would be finding the mathematics in, and developing mathematics
from, children’s activity. The materials are designed to help children extend and
mathematize their everyday activities, from building blocks (the first meaning of
the project’s name) to art and stories to puzzles. Activities are designed based on
children’s experiences and interests, with an emphasis on supporting the develop-

Table 1
Categories and Phases of Curriculum Research (adapted from Clements, 2007)

Categories Phases Description of knowledge gained

A Priori Foundations. 01. Subject Matter A Description of specific subject matter 
Extant research is re- Priori Foundation content, including the role it would 
viewed, and implica- play in students’ development 
tions for the nascent 02. General A Priori Relevant information from psychology, 
curriculum devel- Foundation education, and systemic change 
opment drawn. 03. Pedagogical A Instruction, including the effectiveness 

Priori Foundation of certain types of activities
Learning Model. Activ- 04. Structure Accord- Children’s mathematical thinking and
ities are structured ing to Specific learning and correlated activities consti-
based on empirical Learning Models tuting specific learning trajectories 
models. 
Evaluation. Empirical 05. Market Research Marketability
evidence is collected to 06. Formative Research: Meanings students and teachers give to 
evaluate the appeal, Small Group the curriculum objects and activities in 
usability, and effective- 07. Formative Research: progressively expanding social contexts, 
ness of an instantiation Single Classroom and the usability and effectiveness of 
of the curriculum. 08. Formative Research: specific components and characteristics 

Multiple Class- of the curriculum. The curriculum is 
rooms altered based on empirical results, 

including support for teachers.
09. Summative Experimental evaluation, include fidelity 

Research: Small and sustainability of the curriculum when 
Scale implemented on a small, then large, scale, 

10. Summative and the critical contextual and imple-
Research: Large mentation variables that influence its 
Scale effectiveness 
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ment of mathematical activity. To do so, the materials integrate three types of media:
computers, manipulatives (and everyday objects), and print. Pedagogical founda-
tions were similarly established; for example, we reviewed research using computer
software with young children (Clements, Nastasi, & Swaminathan, 1993; Clements
& Swaminathan, 1995; Steffe & Wiegel, 1994). This research showed that
computers can be used effectively by children as young as 3 or 4 years of age and
that software can be made more motivating and educationally effective by, for
example, using animation and children’s voices and giving simple, clear feedback.

The phase of Subject Matter A Priori Foundation was used to determine subject
matter content by considering what mathematics is culturally valued (e.g., NCTM,
2000) and empirical research on what constituted the core ideas and skill areas of
mathematics for young children (Baroody, 2004; Clements & Battista, 1992;
Fuson, 1997), with an emphasis on topics that were mathematical foundational,
generative for, and interesting to young children (Clements, Sarama, et al., 2004).
One of the reasons underlying the name we gave to our project was our desire that
the materials emphasize the development of basic mathematical building blocks
(the second meaning of the project’s name)—ways of knowing the world mathe-
matically—organized into two areas: spatial and geometric competencies and
concepts, and numeric and quantitative concepts. Research shows that young
children are endowed with intuitive and informal capabilities in both these areas
(Baroody, 2004; Bransford, Brown, & Cocking, 1999; Clements, 1999; Clements,
Sarama, et al., 2004). Three mathematical themes are woven through both these
main areas: patterns, data, and sorting and sequencing. For example, challenging
number activities do not just develop children’s number sense; they can also
develop children’s competencies in such logical competencies as sorting and
ordering (Clements, 1984).

Perhaps the most critical phase for Building Blocks was Structure According to
Specific Learning Model. All components of the Building Blocks project are based
on learning trajectories for each core topic. First, empirically based models of chil-
dren’s thinking and learning are synthesized to create a developmental progression
of levels of thinking in the goal domain (Clements & Sarama, 2004b; Clements,
Sarama, et al., 2004; Cobb & McClain, 2002; Gravemeijer, 1999; Simon, 1995).
Second, sets of activities are designed to engender those mental processes or
actions hypothesized to move children through a developmental progression. We
present two examples, one in each of the main domains of number and geometry.

The example for number involves addition. Many preschool curricula and prac-
titioners consider addition an inappropriate topic before elementary school
(Clements & Sarama, in press; Heuvel-Panhuizen, 1990). However, research shows
that children as young as toddlers can develop simple ideas of addition and subtrac-
tion (Aubrey, 1997; Clements, 1984; Fuson, 1992a; Groen & Resnick, 1977;
Siegler, 1996). As long as the situation makes sense to them (Hughes, 1986),
young children can directly model different types of problems using concrete
objects, fingers, and other strategies (Carpenter, Ansell, Franke, Fennema, &
Weisbeck, 1993). Such early invention of strategies, usually involving concrete
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objects and based on subitizing and counting, plays a critical developmental role,
as the sophisticated counting and composition strategies that develop later are all
abbreviations or curtailments of these early solution strategies (Carpenter & Moser,
1984; Fuson, 1992a).

Most important for our purpose, reviews of research provide a consistent devel-
opmental sequence of the types of problems and solutions in which children can
construct solutions (Carpenter & Moser, 1984; Clements & Sarama, in press; for
the syntheses most directly related to our work, see Clements, Sarama, et al.,
2004; Fuson, 1992a). Selected levels of the resulting addition learning trajectory
are presented in Figure 1. The left column briefly describes each level and the
research supporting it. The middle column provides a behavioral example illustrating
that level of thinking. The learning trajectory continues beyond the last row in Figure
1 (details are in the Building Blocks curriculum and other sources, Clements &
Sarama, 2007; Clements, Sarama, et al., 2004).

The next step of building the learning trajectory is to design materials and activ-
ities that embody actions on objects in a way that mirrors what research has iden-
tified as critical mental concepts and processes—children’s cognitive building
blocks (the third meaning of the name). These cognitive building blocks are instan-
tiated in on- and off-computer activity as actions (processes) on objects (concepts).
For example, children might create, copy, and combine discrete objects, numbers,
or shapes as representations of mathematical ideas. Offering students such objects
and actions is consistent with the Vygotskian theory that mediation by tools and
signs is critical in the development of human cognition (Steffe & Tzur, 1994).
Further, designs based on objects and actions force the developer to focus on
explicit actions or processes and what they will mean to the students. For example,
on- and off-computer activity sets such as “Party Time” have the advantage of
authenticity as well as serving as a way for children to mathematize these activi-
ties. In one of the “Party Time” activities involving setting the table, children use
different mathematical actions such as establishing one-to-one correspondence,
counting, and using numerals to represent and generate quantities to help get ready
for a party. For these and other activities, the tasks themselves are often variations
of those common in educational curriculum; what is unique in these cases is the more
detailed consideration of actions on objects, the placement of the tasks in the
research-guided learning trajectories, and the use of software.

For the addition trajectory, at the Nonverbal Addition level, children work on a
software program in which they see three toppings on a pizza, then, after the top
of the box closes, one more being placed on the pizza. Children put the same
number of toppings on the other pizza (see the right column in the first row of
Figure 1). The teacher conducts similar activities with children using colored paper
pizzas and manipulatives for toppings. Similarly, the Dinosaur Shop scenario is
used in several contexts. The teacher introduces a dinosaur shop in the sociodra-
matic play area and encourages children to count and add during their play. The
Small Number Addition row in Figure 1 illustrates a task in which children must
move dinosaurs in two boxes into a third and label the sum. Thus, the objects in
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these and other tasks for the levels described in Figure 1 are single items, groups
of items, and numerals. The actions include creating, duplicating, moving,
combining, separating, counting, and labeling these objects and groups to solve
tasks corresponding to the levels. The unique advantages of the software contexts
include making these actions explicit, linking representations (computer manip-
ulatives, spoken number words, and numerals), providing feedback, and guiding
children along the research-based learning trajectories (e.g., moving a level
forward or backward depending on a children’s performance).

An example in geometry involves shape composition (other domains were shapes
and their properties, transformations/congruence, and measurement, all determined
through consensus building, see Clements, Sarama, et al., 2004). The composition
of two-dimensional geometric figures was determined to be significant for students
in two ways. First, it is a basic geometric competence, growing from preschoolers’
building with shapes to sophisticated interpretation and analysis of geometric situ-
ations in high school mathematics and above. Second, the concepts and actions of
creating and then iterating units and higher-order units in the context of constructing
patterns, measuring, and computing are established bases for mathematical under-
standing and analysis (Clements et al., 1997; Reynolds & Wheatley, 1996; Steffe
& Cobb, 1988). The domain is significant to research and theory in that there is a
paucity of research on the trajectories students might follow in learning this content.

The developmental progression was born in observations of children’s explo-
rations (Sarama, Clements, & Vukelic, 1996) and refined through a series of clin-
ical interviews and focused observations (leading to the learning trajectory summa-
rized in Figure 2, adapted from Clements, Wilson, & Sarama, 2004). From a lack
of competence in composing geometric shapes (Pre-Composer), children gain
abilities to combine shapes—initially through trial and error (e.g., Picture Maker)
and gradually by attributes—into pictures, and finally synthesize combinations of
shapes into new shapes (composite shapes). For example, consider the Picture
Maker level in Figure 2. Unlike earlier levels, children concatenate shapes to form
a component of a picture. In the top picture in that row, a child made arms and legs
from several contiguous rhombi. However, children do not conceptualize their
creations (parallelograms) as geometric shapes. The puzzle task pictured at the
bottom of the middle column for that row illustrates a child incorrectly choosing a
square because the child is using only one component of the shape, in this case, side
length. The child eventually finds this does not work and completes the puzzle but
only by trial and error.

A main instructional task requires children to solve outline puzzles with shapes
off and on the computer, a motivating activity (Sales, 1994; Sarama et al., 1996).
The software activity “Piece Puzzler” is illustrated in the third column in Figure 2
(on pages 144–145). The objects are shapes and composite shapes and the actions
include creating, duplicating, positioning (with geometric motions), combining,
and decomposing both individual shapes (units) and composite shapes (units of units).
The characteristics of the tasks require actions on these objects corresponding to each
level in the learning trajectory. Note that tasks in these tables are intended to support
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the developing of the subsequent level of thinking. That is, the instructional task in
the Pre-Composer row is assigned to a child operating at the Pre-Composer level
and is intended to facilitate the child’s development of competencies at the Piece
Assembler level.

Ample opportunity for student-led, student designed, open-ended projects are
included in each set of activities. Problem posing on the part of students appears
to be an effective way for students to express their creativity and integrate their
learning (Brown & Walter, 1990; Kilpatrick, 1987; van Oers, 1994), although few
empirical studies have been conducted, especially on young children. The computer
can offer support for such projects (Clements, 2000). For “Piece Puzzler,” students
design their own puzzles with the shapes; when they click on a “Play” button, their
design is transformed into a shape puzzle that either they or their friends can solve.
In the addition scenarios, children can make up their own problems with pizzas and
toppings, or dinosaurs and boxes.

Our application of formative evaluation phases 5–8 is described in previous publi-
cations (Sarama, 2004; Sarama & Clements, 2002). In brief, we tested components
of the curriculum and software using clinical interviews and observations of a small
number of students to ascertain how children interpreted and understood the objects,
actions, and screen design. Next, we tested whether children’s actions on objects
substantiated the actions of the researchers’ model of children’s mathematical
activity, and we determined effective prompts to incorporate into each level of each
activity. Although teachers were involved in all phases of the design, in phases 7–8
we focused on the process of curricular enactment (Ball & Cohen, 1996), using class-
room-based teaching experiments and observing the entire class for information
concerning the usability and effectiveness of the software and curriculum. Finally,
a content analyses and critical review of the materials at each stage of development
was conducted by the advisory board for the project.

In summary, we designed the Building Blocks materials in what we consider a
well-defined, rigorous, and complete fashion, following the CRF. We built on
previous curriculum efforts (Clements, 1984; Griffin & Case, 1997), but extended
them into topics other than number and sequenced activities based on well-defined
learning trajectories. The main purpose of this study was to evaluate whether mate-
rials created according to that model are effective in developing the mathematical
knowledge of disadvantaged 4-year-old children and the size of that effect. A
secondary purpose was to describe the degree to which the materials developed
specific mathematics concepts and skills. To accomplish these two purposes, we
used phase 9, Summative Research: Small Scale.

METHOD

Participants

Summative research was conducted at two sites, involving the two principal types
of public preschool programs serving low-income families: state funded (site 1) and
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Head Start (site 2) prekindergarten programs. State funded programs are urban
programs in which most children receive free (63%) or reduced lunch (11%) and
are 58% African American, 11% Hispanic, 28% White non-Hispanic, and 3%
other. Head Start programs are urban programs in which virtually all children are
qualified to receive free (97%) or reduced lunch (2%) and are 47% African
American, 13% Hispanic, 30% White non-Hispanic, and 10% other. At each site,
one classroom was assigned as experimental, one comparison. Both site 1 teachers
had worked with us on the early development of the materials and were considered
excellent teachers by their principal and peers. They agreed to have one selected
to teach the Building Blocks materials and the other to continue using the school’s
curriculum until the following year. The experimental teacher at site 2 was inex-
perienced (2 years teaching), but she had an experienced aide; the comparison
teacher had taught 8 years in the Head Start program. Neither of the site 2 teachers
had worked with us previously. The two experimental teachers spent a half day with
us viewing and discussing the materials.

All children in all four classes returned human subjects review forms. However,
a total of 9 children moved out of the school during the year, 1 from the site 1 and
8 from site 2, leaving the following breakdown of children who participated in the
pretest and completed at least one full section of the posttest: experimental—site
1, 6 boys, 11 girls, site 2, 7 boys, 6 girls; comparison—site 1, 9 boys, 7 girls, site
2, 13 boys, 9 girls. The average age of the 68 children at the time of pretesting was
49.9 months (SD = 6.2; range 34.8 to 57.8).

Design

We assessed the mathematics knowledge of all participating children at the
beginning and again at the end of the school year. The experimental teachers
implemented the Building Blocks preschool curriculum following the pretesting.
This study is a component of the larger evaluation, which includes case studies of
two students in each experimental classroom and observations of the teacher. This
implies a caveat concerning a typical classroom, given the presence of research staff
(present on 60% of the days), although all classrooms often had adult helpers
coming in and out, and the teacher said that children quickly adapted to all the
study’s components (e.g., note taking and videotaping). On the other hand, obser-
vations of the class assured a close evaluation of, and a moderate (site 2) or high
(site 1) degree of, implementation fidelity. That is, one or more staff members were
easily available and the teacher occasionally asked them questions about the
curriculum; also, if any aspect of the implementation was faulty, staff discussed the
aspect with the teacher. The moderate implementation at site 2 was due to the avail-
ability of about 3 days per week for mathematics and the resulting use of most, but
not all, of the curriculum’s components. That is, there was little use of “every day”
mathematics, such as discussion of mathematics during play. However, this was an
optional component and, because all required activities were conducted, the overall
implementation was judged to be adequate.
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Instrument

The Building Blocks Assessment of Early Mathematics, PreK–K (Sarama &
Clements, in press) uses an individual interview format, with explicit protocol,
coding, and scoring procedures. It assesses children’s thinking and learning along
research-based developmental progressions for topics of mathematics considered
significant for preschoolers, as determined by a consensus of participants in a
national conference on early childhood mathematics standards (Clements, Sarama,
et al., 2004), rather than mirroring the experimental curriculum’s objectives or activ-
ities. The assessment was refined in three pilot tests. Content validity was assessed
via an expert panel review; concurrent validity was established with a .86 correla-
tion with another instrument (Klein, Starkey, & Wakeley, 2000). The assessment
is administered in two sections, each of which takes 20 to 30 minutes per child to
complete. The interviews were conducted by doctoral students who had been previ-
ously trained and evaluated until they achieved a perfect evaluation on three consec-
utive administrations. All assessments were videotaped and subsequently coded by
independent coders, also previously trained and evaluated. Codes included
correct/incorrect evaluations and separate codes for children’s strategies in cases
where those strategies were intrinsically related to the level of thinking that the item
was designed to measure. Coders were naïve as to the treatment group. Results were
accumulated and analyzed by an independent professor of educational psychology
who is expert in research design and statistics.

The number section measures eight topics, summarized in Table 2. The assess-
ment proceeds along research-based developmental progressions (Clements,
Sarama, et al., 2004; see also Figures 1 and 2) for each of these topics until the child
makes three consecutive errors. The final items measure skills typically achieved
at 7 years of age (Griffin et al., 1995). The maximum score is 97; for this sample,
children reached items associated with 6.5 years of age (i.e., all children missed three
in a row before reaching items for ages 7–8); therefore, the maximum that these
preschoolers could have reached was 72 (coefficient alpha reliability, r = .89;
interrater reliability of data coders, 98%). 

The geometry test measures seven topics, including measurement and patterning
(see Table 2). As with the number section, difficulties for some items on the geom-
etry assessment were designed to measure abilities at 8 years of age. Children
complete all 17 items (with several having multiple parts), for a maximum score
of 30 (coefficient alpha reliability, r = .71; interrater reliability of data coders, 97%).

Curricula

The Building Blocks curriculum has gone through several iterations, the final one
(Clements & Sarama, 2007) includes a teacher’s edition, including daily whole- and
small-group activities and games, free-choice learning centers, and ideas for inte-
grating mathematics throughout the school day; computer software; and books, game
sheets, and manipulatives. The Building Blocks Pre-K software includes 11 activity
sets or scenarios, each including between two and six activities. For example, the
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Table 2
Content of the Building Blocks Assessment of Early Mathematics, PreK–K

Topic No. Subtopics Selected examples

Number

Verbal Counting 7 Forward “How high can you count? Start at 1 
Backward and show me.”
Up from a number
Before/after/between
Identifying mistakes 

Object Counting 15 Arrays and scattered “Here are our pennies to pay for food” 
arrangements [8 in a scrambled arrangement]. “Show 
Producing groups me how you can count the pennies 
Identifying mistakes and tell me how many there are.”

Number Recognition 7 Recognizing small Name the number for a group of 2. 
and Subitizing groups, untimed

Subitizing “I’m going to show you some cards, 
just for a quick moment! [2 seconds] 
Try to tell me how many dots on each 
one.”

Number Comparison 19 Nonverbal comparison [Show cards with ••• and •
•
•]: “Do 

these cards have the same number of 
dots?”

Verbal comparison “Which is bigger: 7 or 9?”
Number Sequencing 3 Sequencing Order cards with 1–5 dots.
Numerals 5 Matching written num- Match numeral and dot cards, 1–5.

erals to quantities
Number Composition 6 Number composition “I am putting 5 blocks on this paper? 

and decomposition Now, I’m going to hide some.” 
Secretly hide 3. “How many am I 
hiding?”

Adding and 23 Concrete situations “Pretend I give you 3 candies and then 
Subtracting Verbal story problems I give you 2 more. How many will you 

Mental arithmetic have altogether?”
Place Value 4 Relative size of Which is closer to 45, 30 or 50?

numbers

Geometry

Shape Identification 4 Identifying squares, Given a large array of manipulatable 
rectangles, triangles, figures (see Figure 3a), choose all 
and rhombuses exemplars of the stated shape.

Shape  5 Composing and de- Choose the shapes that would result if 
Composition composing shapes a shape were cut (see Figure 3b).
Congruence 2 Matching congruent Given 8 shapes, identify pairs that are 

shapes “the same shape and same size.”
Construction of 2 Building a shape from “Can you make a triangle using some 
Shape its components of the straws?”
Turns 1 Recognizing rotation Analogy (A:B::C:?) with objects 

rotated 90°.
Measurement 1 Measuring length “Which of these strings is about the 

same length as 4 cubes?”
Patterning 1 Copying and Copy, then extend, an ABAB shape 

extending pattern.
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“Pizza Pizzazz” scenario includes activities on recognizing and comparing number,
counting, and arithmetic. In the first three activities, children match pizzas with the
same number of toppings (early number recognition and comparing), create a
pizza with the same number of toppings as a given pizza (counting to produce a
set), and create a pizza that has a given number of toppings given only a numeral
(counting to produce a set that matches a numeral). Later activities in that setting
involve addition (see the third column for Nonverbal Addition and Find Change in
Figure 1). The software’s management system presents tasks, contingent on success,
along research-based learning trajectories. Activities within various scenarios are
introduced according to the trajectory’s sequences. Figure 1 illustrates, for example,
how two activities from the “Dinosaur Shop” scenario are sequenced between two
illustrated activities from the “Pizza Pizzazz” scenario. Off-computer activities, such
as learning center activities, involve corresponding activities. For example, corre-
sponding to the first “Pizza Pizzazz” activity, the teacher sets out a learning center
by hiding paper “pizzas” with different numbers of toppings under several opaque

(a)

(b)

Figure 3. Sample geometry items from the Building Blocks Assessment of Early
Mathematics, PreK–K (Sarama & Clements, in press). (a) Given the illustrated cut-out
shapes, the child is asked to “Put only the triangles on this paper.” (b) The child is asked,
“Pretend you cut this pentagon from one corner to the other. Which shows the two cut pieces?”
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containers and placing one such pizza with three toppings in plain view. Children
lift each container and count the toppings until they find the matching pizza. They
then show the teacher or other adult.

All participating teachers maintained their typical schedule, including circle
(whole-group) time, work at centers, snack, outdoor play, and so forth for the 25
school weeks between pretesting and posttesting. The experimental teachers merely
inserted the Building Blocks activities at the appropriate point of the day. For
example, circle time might include a finger play that involved counting and a brief
introduction to a new center or game. Center time would include individual work
at the curriculum’s software or learning centers, guided by the teacher or aide as
they circulated throughout the room (specific suggestions for guidance are speci-
fied in the curriculum). As a specific example, children might be introduced to new
puzzles such as those at the level of the Picture Maker level of Figure 2, then engage
in physical puzzles with pattern blocks and tangrams in a learning center, or similar
puzzles in the “Piece Puzzler” software activity. Teachers guided children by
discussing the task, eliciting children’s strategies, and, when necessary, modeling
successful strategies. Table 3 summarizes the number of activities in which the
Building Blocks classes engaged, classified by their major goal (many activities
addressed multiple goals; activities that were conducted on and off the computer
are counted once). The site 1 comparison teacher agreed to continue using her
school’s mathematics activities, which included number sense (counting with
correspondence, numerals, ordinality), operations (uniting sets, counting on, sharing
equally), modeling/representing (showing spatial relationships, making charts and
graphics, representing number), measurement (comparing, nonstandard measure-
ment, choosing tool, estimation), data (collect and display in graphics and charts)
and reasoning (patterns, sorting and classifying, and explaining their actions), and
uncertainty (estimation, using spinners, discussing un/certainty). The site 2 compar-

Table 3
Number of Topics Taught in Building Blocks Classrooms by Site

Topic Site 1 Site 2

Number
Counting 32 49
Number Recognition and Subitizing 6 6
Number Comparison 9 7
Number Sequencing 4 6
Numerals 8 6
Number Composition 4 4
Adding and Subtracting 13 11

Geometry
Shape Identification 18 14
Shape Composition 9 9
Congruence 2 2
Construction of Shape 2 1
Turns 1 1
Measurement 1 1
Patterning 4 6



151Douglas H. Clements and Julie Sarama

ison teacher used Creative Curriculum (Teaching Strategies Inc., 2001) as well as
some “home-grown” curricular activities for mathematics. Visits to those classrooms
indicated that each was following the curricula as written.

Analyses

To assess the effectiveness of the curriculum, we conducted factorial repeated
measures analyses, with time as the within-group factor, and two between-group
factors, school and treatment, evaluating differences in achievement from pre- to
posttest on both tests (children did work in the same class, but the software and center
activities were engaged in individually, so the child was used as the unit of analysis).
In addition, two effect sizes were computed for each test. We compared experimental
posttest (E2) to the comparison posttest (C2) scores as an estimate of differential
treatment effect. We also compared experimental posttest to experimental pretest
(E2 to E1) scores as an estimate of the achievement gain within the experimental
curriculum. Effect sizes were computed using adjusted pooled standard deviations
(Rosnow & Rosenthal, 1996). We used the accepted benchmarks of .25 or greater
as an effect size that has practical significance (i.e., is educationally meaningful),
.5 for an effect size of moderate strength, and .8 as a large effect size (Cohen, 1977).

RESULTS

Table 4 presents the raw data for the number and geometry tests. We computed
factorial repeated measures analyses, originally including gender; as no main effects
or interactions were significant, we present here only the more parsimonious model.

Table 4
Means and Standard Deviations for Number and Geometry Tests by Site and Group

Building Blocks

Site 1 Site 2 Total

Test Pre Post Pre Post Pre Post

Number 12.38 36.55 6.13 20.17 9.67 29.46
(10.94) (11.12) (6.61) (13.29) (9.70) (14.47)

Geometry 9.53 17.69 7.53 12.87 8.79 15.91
(2.31) (2.64) (1.86) (3.64) (2.26) (3.81)

Comparison

Site 1 Site 2 Total

Test Pre Post Pre Post Pre Post

Number 14.07 26.86 3.17 9.56 8.44 17.93
(9.39) (8.64) (2.72) (9.34) (8.69) (12.48)

Geometry 9.56 12.12 7.37 8.62 8.63 10.64
(1.48) (2.10) (1.40) (3.76) (1.89) (3.35)

Note. These were the data used for the factorial analyses, so they represent data on those children who
took all subtests at both the pretest and posttest.
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Number

For the number test, there were significant main effects for time (pre-post),
F(1, 57) = 183.19, MSE = 33.95 p < .0005; treatment, F(1, 57) = 6.02, MSE =
145.67, p < .05; and site F(1, 57) = 33.48, MSE = 145.67, p < .0005; as well as
significant interactions for time by treatment, F(1, 57) = 20.10, MSE = 33.95, p
< .0005; and time by site, F(1, 57) = 15.19, MSE = 33.95, p < .0005. Inspection
of the means indicates that all groups made significant gains from pretest to
posttest; the site 1 scores increased more than those of site 2, and the experimental
treatment group score increased more than the comparison group score. The
effect size comparing E2 to C2 was .85, and the effect size comparing E2 to E1
was 1.61.

Geometry, Measurement, and Patterns

Likewise for geometry, there were significant main effects for time, F(1, 49) =
139.08, MSE = 3.40, p < .0005; treatment, F(1, 49) = 17.623, MSE = 4.44, p <
.0005; and site F(1, 49) = 27.94, MSE = 4.44, p < .0005; as well as significant inter-
actions for time by treatment, F(1, 49) = 43.57, MSE = 3.40, p < .0005; and time
by site, F(1, 49) = 7.95, MSE = 3.40, p < .01. Inspection of the means indicates
that all groups made significant gains, site 1 scores increased more than those of
site 2, and the experimental treatment group score increased more than the compar-
ison group score. The effect size comparing E2 to C2 was 1.47, and the effect size
comparing E2 to E1 was 2.26. 

Specific Topics

To illuminate which specific topics were affected by the curriculum, Table 5
presents means and standard deviations for the number and geometry subtests.
Because we did not wish to increase alpha error and some subtests had a small
number of items, we did not perform additional interferential statistics; however,
an inspection of the means indicates that the effects were more pronounced on some
topics, although positive effects were found for every topic except one. In the realm
of number, the smallest relative effects were on object counting and comparing
number; for both topics, the experimental group gained more points, but both
groups nearly doubled their pretest scores. Both groups made large gains in verbal
counting and connecting numerals to groups, with the experimental group’s gain
the larger. The experimental group’s gains were even larger, relative to the compar-
ison group, for the related topics of adding/subtracting and composing number.
The largest relative gains in number were achieved in subitizing (tell how many
dots are on a card with 5 to 10 dots, shown for 2 seconds) and sequencing (e.g.,
placing cards with groups of 1 to 5 dots in order from fewest to most).

In geometry, the relative effect on the turn item was small (and higher for the
comparison group) and the effect on congruence was positive, but small. Effects
on construction of shapes and spatial orientation were large. The largest relative
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Table 5
Means and Standard Deviations for Number and Geometry Subtests by Treatment Group

Building Blocks Comparison

Subtest Pre Post Pre Post Maximum

Number
Verbal 1.13 2.88 0.84 1.78 6
Counting (1.10) (1.51) (.93) (1.39)

Object 5.53 10.97 4.66 8.16 16
Counting (4.71) (4.20) (3.89) (4.71)

Comparing 1.10 2.13 0.89 1.58 5
(0.99) (0.90) (0.85) (0.96)

Numerals 0.60 3.90 0.32 2.48 5
(1.59) (1.86) (1.16) (2.38)

Sequencing 0.07 1.20 0.05 0.39 3
(0.25) (1.24) (0.23) (0.72)

Subitizing 0.18 2.81 0.23 1.00 10
(0.35) (2.63) (0.72) (1.27)

Adding/ 0.93 4.20 0.68 2.23 12
Subtracting (1.68) (2.80) (1.38) (2.57)

Composing 0.13 1.37 0.16 0.32 15
(0.51) (2.31) (0.72) (0.91)

Total 9.67 29.46 7.83 17.93 72
(9.70) (17.95) (8.28) (12.48)

Geometry, Measurement, Patterning

Shape 5.42 7.34 5.66 5.89 10
Identification (0.92) (1.16) (0.93) (1.42)

Composition 1.07 4.47 1.23 2.01 11
(1.10) (1.92) (1.36) (1.65)

Congruence 1.02 1.32 1.05 1.20 2
(0.38) (0.35) (0.39) (0.52)

Construction 0.09 0.61 0.09 0.38 2
(0.23) (0.56) (0.29) (0.48)

Orientation 0.15 0.31 0.08 0.08 1
(0.21) (0.28) (0.15) (0.14)

Turns 0.38 0.41 0.21 0.27 1
(0.49) (0.50) (0.42) (0.45)

Measurement 0.10 0.19 0.08 0.08 1
(0.31) (0.40) (0.18) (0.23)

Patterning 0.50 1.26 0.23 0.73 2
(0.55) (0.78) (0.42) (0.67)

Total 8.79 15.91 8.63 10.64 30
(2.26) (3.81) (1.89) (3.35)

Note. These data are from all 68 children; 7 children missed some subtests. Therefore, the average totals
differ slightly from those in Table 4 in some cases.
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gains in geometry were achieved on shape identification and composition of
shapes. Effects on measurement and patterning were moderate. 

Children’s Strategies

Several items for which the research indicated that a level of sophistication in solu-
tion strategies was intrinsically related to the development of each subsequent level
of the trajectory (Clements & Sarama, 2004c; Clements, Sarama, et al., 2004;
Clements, Wilson, et al., 2004) were coded to describe children’s strategies (see
Table 6). Results on strategies support the scored results and provide additional

Table 6
Percentage of Children Using Strategies by Treatment Group

Experimental Comparison

Pre Post Pre Post

Number
[Show 2 cubes and ask] “How many?”

Reproduced the set but could not give the 13.3 0.0 5.3 16.1
number name
Gave the number 66.7 100.0 65.8 61.3
No response 36.8 0.0 28.9 22.6

[Set out 4 cubes and 5 marbles, cubes physically 
larger and ask] “Are there more blocks or more 
marbles or are they the same?”

Does not match or count (in a reliability 16.7 36.6 10.5 22.6
observable manner)
Uses matching 0.0 3.3 0.0 3.2
Counts 6.7 36.7 0.0 16.1
No response 76.7 23.3 89.5 58.1

Counting scrambled arrangements of objects
Reading order—left to right, top to bottom 3.3 10.0 2.6 16.1
Similar strategy but different directions 0.0 40.0 2.6 12.9
(e.g., top to bottom)
Around the perimeter, then moving in to the 0.0 10.0 0.0 3.2
middle
Other path through the objects 0.0 3.3 2.6 3.2
No response 96.7 36.7 92.1 64.5

Adding 5 + 3 with objects suggested
Uses objects 3.3 33.3 2.6 19.4
No objects; solves with verbal counting strategy 3.3 23.3 0.0 6.5
No response 93.3 43.3 97.4 74.2

Solving 3 + 2 with objects nearby but not suggested
Uses objects 0.0 23.3 0.0 9.7
No objects; solves with verbal counting strategy 0.0 13.3 2.6 6.5
No response 100.0 63.3 97.4 83.9

Solving: 6 dogs and 4 bones, how many dogs 
wouldn’t get a bone? with objects suggested

Uses objects 3.3 30.0 0.0 12.9
No objects; solves with verbal counting strategy 0.0 3.3 2.6 3.2
No response 96.7 66.7 97.4 83.9
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description of the different abilities of the two groups. For the first object counting
item, about 66% of both experimental and comparison children could provide a
verbal response at pretest. At posttest, 100% of experimental children did so,
however 16% of the comparison children reproduced the set but could not give the
verbal responses and 23% gave no response. On a number comparison item, exper-
imental children increased their use of a counting strategy more than comparison
children, over half of whom did not respond. On items in which children counted
scrambled arrangements of objects, the experimental group increased their use of
strategies more than the comparison group, especially systematic strategies such
as progressing top to bottom, left to right. On the arithmetic items, more children
used objects, and fewer used verbal strategies (a small minority on the comparison
item, “how many dogs wouldn’t get a bone?”). 

Examining the addition learning trajectory reveals the curriculum’s positive
effects in more detail. Increases in percentage correct from pretest to posttest for
four illustrative items were as follows: 2 + 1 (increase of 37 for experimental vs.
23 for comparison), 3 + 2 (47 vs. 13) 5 + 3 (23 vs. 16), 6 – 4 (how many dogs
wouldn’t get a bone?—23 vs. 10). The curriculum follows the learning trajectory
described in Figure 1. On average, children worked on Nonverbal Addition activ-
ities 4 times, half on computer (see Figure 1) and half off computer. Teachers

Table 6—Continued

Experimental Comparison

Pre Post Pre Post

Geometry
Using pattern blocks to fill a puzzle (outline)

Placing pieces randomly on puzzle that are not 79.3 11.1 90.9 76.9
connected
Putting shapes together without leaving gaps 20.7 88.9 9.1 23.1
No response 0.0 0.0 0.0 0.0

Turning shapes after placing them on the puzzle in an 6.9 22.2 6.1 23.1
attempt to get them to fit
Turning them into correct orientation prior to 13.8 66.7 3.0 0.0
placing them
No response 79.3 11.1 90.9 76.9

Trying out shapes by picking them seemingly at 6.9 22.2 6.1 15.4
random, then putting them back if they do not look 
right, so seemingly trial and error
Appearing to search for “just the right shape” that they 13.8 66.7 3.0 7.7
“know will fit” and then finding and placing it
No response 79.3 11.1 90.9 76.9

Hesitant and not systematic 13.8 33.3 6.1 15.4
Overall, solving the puzzle immediately, systemati- 6.9 55.6 3.0 7.7
cally and confidently
No response 79.3 11.1 90.9 76.9

Note. Experimental Ns: pretest, 29; posttest, 27. Comparison Ns: pretest, 33; posttest 26.



156 Preschool Mathematics Curriculum

modeled nonverbal strategies but also encouraged post hoc verbal reflection.
Children worked on Small Number Addition activities 6 times, 2 on and 4 off
computer (Figure 1). Teachers focused on the meaning of addition as combining
two disjoint sets, expressed informally. Children worked on Find Result activities
6 times, 2 on and 2 off computer. Use of a child’s invented counting strategies to
solve join, result unknown problems was emphasized. Finally, children worked on
Find Change problems 2 times, half on and half off computer. Both on- and off-
computer activities emphasized counting on from a given number. The results of
these activities is shown in the greater than double increase in correctness by the
experimental group, as well as their greater use of solution strategies overall and
greater use of more sophisticated strategies, such as verbal counting strategies, for
most tasks. For example, on 5 + 3, 33% of the experimental children, compared to
19% of the comparison children, used objects, and 23% of the experimental chil-
dren, compared to less than 7% of the comparison children, used verbal counting
strategies. These results are particularly striking when considering that such tasks
are normally part of the first grade curriculum.

Table 6 shows four codes describing children’s strategies on a shape composi-
tion task. By posttest, experimental children were far more likely to combine
shapes without leaving gaps; turn shapes into correct orientation prior to placing
them on the puzzle; search for a correct shape; and solve the puzzle immediately,
systematically, and confidently. This increased use of more sophisticated shape
composition strategies suggests the development of mental imagery. 

This development of more sophisticated strategies in the experimental group,
along with the large relative gains on the subtest score, more than four times as large
as those made by the comparison group (Table 5), substantiate the curriculum’s posi-
tive effect on geometric composition. The curriculum engages children in several
activities to develop this competence, including creating free-form pictures with a
variety of shape sets, such as pattern blocks and tangrams, and solving outline
puzzles with those same shape sets. Informal work with three-piece foam puzzles
and clay cutouts were conducted for several weeks during mid fall. In April, the
outline puzzles, which provided the most guidance along the learning trajectories,
were introduced. Most children in the present classrooms worked about 2 days on
the puzzles designed for children at the Pre-Composer level (see the third column
in Figure 2), 3 days at the Piece Assembler level, and 2 days at the Picture Maker
level. Only about a third of the children completed all those puzzles, and thus could
be confidently classified as operating at the Shape Composer level or above. Four
children appeared to operate at best at the Piece Assembler level. Based on evidence
that the developmental sequence of this learning trajectory is valid (Clements,
Wilson, et al., 2004), we guided individual children to work on puzzles at the level
they had not mastered on the off-computer puzzles. The computer automatically
monitored their progress on the “Piece Puzzler” software. The combination of off-
and on-computer activities at an appropriate, progressive developmental level
appeared to facilitate children’s development of the mental actions on objects that
engendered thinking at each subsequent level. This is shown in the strategies they
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employed (Table 6). Almost 90% of the children placed shapes together without
leaving gaps, an indication of thinking at the Picture Maker level or above. About
67% of the children turned shapes into the correct orientation prior to physically
placing them within the puzzle outline. The same percentage appeared to search for
“just the right shape” that they “knew would fit.” These behaviors are criteria for
the Shape Composer level. Only about 56% however, showed immediate, confi-
dent, systematic completion of puzzles. Children’s strategies therefore suggest
that on the assessment roughly 10% were at the Piece Assembler level, 23% were
operating at the Picture Maker level, 11% were in transition to the Shape Composer
level, and 56% were at the Shape Composer level (or above; subsequent levels were
not assessed). In contrast, the comparison group had roughly 77% at the Pre-
Composer or Piece Assembler levels, 15% at the Picture Maker level, and 8% in
transition to the Shape Composer level, consistent with developmental averages for
this age group (Clements, Wilson, et al., 2004).

DISCUSSION AND IMPLICATIONS

The main purpose of this research was to measure the efficacy of a preschool
mathematics program based on a comprehensive model of developing research-
based software and print curricula, on a small scale under well-supervised condi-
tions (Summative Research: Small Scale). Scores at site 1, the state-funded
preschool, increased more than those of site 2, the Head Start school. Site 1 teachers
were more experienced than those at site 2. Site 2 children had lower mathematics
scores at the start; qualitative observations confirm that site 2 children entered
preschool with fewer cognitive resources (attention, metacognition, disposition to
learn mathematics, etc.; research reports are under preparation). This is a concern
for those involved with Head Start. However, there was no evidence that the
curriculum was differentially effective at the two sites. Average achievement gains
of the experimental group about doubled those considered large (Cohen, 1977) and
approached the sought-after 2-sigma effect of individual tutoring (Bloom, 1984). 

Inspection of means for individual topics (subtests) substantiates our conver-
sations with the comparison teachers that they emphasized object counting,
comparing numbers, and, to a lesser extent, shapes. The Building Blocks curriculum
seems to have made a special contribution, with quite large relative gains, to chil-
dren’s learning of the topics of subitizing, sequencing, shape identification, and
composition of shapes. Thus, even a moderate number of experiences (e.g., 4 to
6 for sequencing and subitizing) was sufficient to enhance children’s learning of
certain oft-ignored topics. In addition, the experimental group showed a greater
increase in the use of more sophisticated numerical strategies and the development
of spatial imagery.

Many have called for more research on the effects of curriculum materials
(e.g., Senk & Thompson, 2003), especially because such materials have a large
influence on teaching practices (Goodlad, 1984; Grouws & Cebulla, 2000;
Woodward & Elliot, 1990). Results of this study indicate strong positive effects
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of the Building Blocks materials, with achievement gains near or approximately
equal to those recorded for individual tutoring. This provides support for the effi-
cacy of curricula built on comprehensive research-based principles. The Building
Blocks materials include research-based computer tools that stand at the base,
providing computer analogs to critical mathematical ideas and processes. These
are used, or implemented, with activities that guide children through research-based
learning trajectories (developed over years of synthesizing our own and others’
empirical work). These activities-through-trajectories connect children’s informal
knowledge to more formal school mathematics. The result is a package that is moti-
vating for children but, unlike “edu-tainment,” results in significant assessed
learning gains. We believe these features lead to Building Blocks’ substantial
impact, although the present design does not allow attributing the effect to any
particular feature or set of features (we are analyzing the qualitative data from these
same classrooms that will provide insights relevant to this issue). One practical
implication is that, when implemented with at least a moderate degree of fidelity,
such materials are highly efficacious in helping preschoolers learn fundamental
mathematics concepts and skills.

The results also provide initial, “proof of concept” support for the CRF (Clements,
2007), which extends and particularizes theories of curriculum research (Walker,
1992). Our own use of the CRF emphasizes the actions on objects that should mirror
the hypothesized mathematical activity of students and how that activity develops
along learning trajectories (Clements, 2002; Clements & Battista, 2000). Such
synthesis of curriculum/technology development as a scientific enterprise and
mathematics education research may help reduce the separation of research and prac-
tice in mathematics and technology education and produce results that are imme-
diately applicable by practitioners (parents, teachers, and teacher educators), admin-
istrators and policymakers, and curriculum and software developers. Of course,
multiple studies, including comparisons, would need to be conducted to support any
claims about the efficacy of the model per se.

Even a small number of experiences for certain topics, such as sequencing
number and subitizing, were sufficient to produce large relative learning gains. We
believe these topics may often be ignored in most early childhood classrooms. The
experimental activities assessed here were efficacious, but other approaches to these
topics might also be studied. In contrast, results on such topics as congruence, turn,
and measurement indicate that future research should ascertain whether the small
number of experiences (1–2) or the nature of the activities dedicated to these topics
accounted for the small gains and whether changes to either or both could increase
children’s achievement.

This study is consistent with extant research showing that organized experiences
result in greater mathematics knowledge upon entry into kindergarten (Bowman
et al., 2001; Shonkoff & Phillips, 2000) and that focused early mathematical inter-
ventions help young children develop a foundation of informal mathematics knowl-
edge (Clements, 1984), especially for children living in poverty (Campbell &
Silver, 1999; Fuson, Smith, & Lo Cicero, 1997; Griffin, 2004; Griffin et al., 1995;
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Ramey & Ramey, 1998). It extends this research by suggesting that a comprehen-
sive mathematics curriculum following NCTM’s standards (2000) can increase
knowledge of multiple essential mathematical concepts and skills (beyond number).
Unfortunately, most American children are not in high-quality programs (Hinkle,
2000). We recommend that preschool programs adopt research-based curricula (e.g.,
Clements, 2007). With its emphasis on low-income children, this study also extends
the research on standards-based mathematics curricula, most of which does not
address social class or cultural influences (cf. Senk & Thompson, 2003).

An overarching caveat is that this study represents phase 9, Summative Research:
Small Scale (Clements, 2007). As stated, this was justified because it provides an
estimate of effect size under close supervision that ensured fidelity of treatment.
However, the small number of classrooms, the use of the child as the unit of
analysis inside classrooms, the presence of project staff, and our resultant ability
to guarantee at least moderate fidelity limits generalizability and internal validity.
Further, although teachers at both comparison sites taught their respective mathe-
matics curricula, the emphasis in the programs was clearly on literacy (i.e., time
on mathematics activities was not controlled). The results justify the subsequent use
of phase 10, Summative Research: Large Scale, which we implemented in the
2003–2005 school years. Finally, the quantitative results reported here will be
complemented and extended in corresponding studies of the same classrooms
involving qualitative case studies of children learning in the context of the
curriculum. The focus of these analyses was on the children’s development through
the learning trajectories for the various mathematical topics.
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