Journal for Research in Mathematics Education
2007, Vol. 38, No. 2, 136-163

Effects of a Preschool Mathematics
Curriculum:
Summative Research on the
Building Blocks Project

Douglas H. Clements and Julie Sarama
University of Buffalo, State University of New York

This study evaluated the efficacy of a preschool mathematics program based on a
comprehensive model of developing research-based software and print curricula.
Building Blocks, funded by the National Science Foundation, is a curriculum devel-
opment project focused on creating research-based, technology-enhanced mathe-
matics materialsfor pre-K through grade 2. Inthisarticle, we describe the underlying
principles, development, and initial summative evaluation of the first set of resulting
materiasasthey were used in classroomswith children at risk for later school failure.
Experimental and comparison classrooms included two principal types of public
preschool programs serving low-income families: state funded and Head Start
prekindergarten programs. The experimental treatment group score increased signif-
icantly more than the comparison group score; achievement gains of the experi-
mental group approached the sought-after 2-sigma effect of individual tutoring. This
study contributes to research showing that focused early mathematical interventions
hel p young children devel op afoundation of informal mathematics knowledge, espe-
cially for children at risk for later school failure.

Key words: Computers, Curriculum, Early childhood, Equity/diversity, Instructional
intervention, Instructiona technology, Preschool/primary, Program/project assessment

Curriculaare rarely developed or evaluated scientifically (Clements, 2007). Less
than 2% of research studiesin mathematics education have concerned the effects of
textbooks (Senk & Thompson, 2003). Thisstudy isoneof severa coordinated efforts
to assess the efficacy of a scientifically based curriculum; specifically, whether a
preschool mathematics curriculum was devel oping the mathematical knowledge of
disadvantaged 4-year-old children (Clements, 2002; Clements & Battista, 2000).

This material is based in part on work supported by the National Science
Foundation Research Grant ESI-9730804, “Building Blocks—Foundations for
Mathematical Thinking, Pre-Kindergarten to Grade 2: Research-based Materias
Development.” Any opinions, findings, and conclusions or recommendations
expressed in this article are those of the authors and do not necessarily reflect the
views of the National Science Foundation. The curriculum evaluated in this
research has since been published by the authors, who thus now have a vested
interest in theresults. An external auditor oversaw the research design, datacollec-
tion, and analysis, and five researchers confirmed the findings and procedures. The
authors, listed al phabetically, contributed equally to the research.
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Building Blocks is a NSF-funded pre-K to grade 2 mathematics curriculum
devel opment project designed to comprehensively addressrecent standardsfor early
mathematics education for al children (e.g., Clements, Sarama, & DiBiase, 2004;
NCTM, 2000). Previous articles describe the design principles behind a set of
research-based software microworlds included in the Building Blocks program
and the research-based design mode! that guided its devel opment (Clements, 2002;
Clements & Sarama, 2004a; Sarama & Clements, 2002). This article presents
initial summative research on the first set of resulting materials: aresearch-based,
technol ogy-enhanced preschool mathematics curriculum.

There have been few rigoroustests of the effects of preschool curricula. Although
some evidence indicates that curriculum can strengthen the devel opment of young
students’ knowledge of number or geometry (Clements, 1984; Griffin & Case, 1997,
Razel & Eylon, 1991), no studies of which we are aware have studied the effects
of acomplete preschool mathematics curriculum, especially on low-income chil-
dren, children who are at serious risk for later failure in mathematics (Bowman,
Donovan, & Burns, 2001; Campbell & Silver, 1999; Secada, 1992). These children
possess|essmathematical knowledge than higher-income children even beforefirst
grade (Denton & West, 2002; Ginsburg & Russell, 1981; Griffin, Case, &
Capodilupo, 1995; Jordan, Huttenlocher, & Levine, 1992; Klein & Starkey, 2004).
They also receiveless support for mathematicslearning in the home and school envi-
ronments, including preschool, than their higher-income peers (Blevins-Knabe &
Musun-Miller, 1996; Bryant, Burchinal, Lau, & Sparling, 1994; Farran, Silveri, &
Culp, 1991, Holloway, Rambaud, Fuller, & Eggers-Pierola, 1995; Saxe, Guberman,
& Gearhart, 1987; Starkey et ., 1999).

DESIGN OF THE BUILDING BLOCKSMATERIALS

Many curriculum and software publishers claim aresearch basisfor their mate-
rials, but the bases of these claims are often dubitable (Clements, 2002). The
Building Blocks project is based on the assumption that research-based curriculum
development efforts can contribute to (a) more effective curriculum materials, (b)
better understanding of students' mathematical thinking, and (c) research-based
change in mathematics curricula (Clements, Battista, Sarama, & Swaminathan,
1997; Schoenfeld, 1999). Indeed, along with our colleagues, we believe that educa
tionwill not improve substantially without a systemwide commitment to research-
based curriculum and software devel opment (Battista& Clements, 2000; Clements,
2007; Clements & Battista, 2000).

Our theoretical foundation for research-based curriculum devel opment and eval -
uation, the Curriculum Research Framework (CRF), comprises three categories
spanned by 10 phases, summarized in Table 1 (Clements, 2002; see especially
Clements, 2007). Given the comprehensive CRF, claimsthat acurriculumis based
on research should be questioned to reveal the exact nature between the curriculum
and the research used or generated. Unfortunately, there islittle documentation of
the phases used for most curricula. Often, thereisonly ahint of A Priori Foundations
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Tablel

Categories and Phases of Curriculum Research (adapted from Clements, 2007)
Categories Phases Description of knowledge gained

APriori Foundations. 1. Subject Matter A Description of specific subject matter

Extant researchisre- Priori Foundation  content, including the role it would

viewed, and implica- play in students’ development

tionsfor the nascent 2. Genera A Priori Relevant information from psychology,

curriculum devel- Foundation education, and systemic change

opment drawn. 3. Pedagogica A Instruction, including the effectiveness

Priori Foundation  of certain types of activities
Learning Model. Activ- 4. Structure Accord-  Children’s mathematical thinking and

ities are structured ing to Specific learning and correlated activities consti-
based on empirical Learning Models  tuting specific learning trajectories
models.

Evaluation. Empirical 5. Market Research  Marketability

evidenceiscollectedto 6. Formative Research: Meanings students and teachers give to
evaluate the appedl, Small Group the curriculum objects and activitiesin
usability, and effective- 7. Formative Research: progressively expanding social contexts,
ness of an instantiation Single Classroom  and the usability and effectiveness of

of the curriculum. 8. Formative Research: specific components and characteristics

Multiple Class- of the curriculum. The curriculum is
rooms altered based on empirical resullts,
including support for teachers.

9. Summative Experimental evaluation, includefidelity
Research: Small and sustainability of the curriculumwhen
Scde implemented onasmall, thenlarge, scale,

10. Summative and the critical contextual and imple-
Research: Large mentation variables that influence its
Scale effectiveness

phases, sometimes nonscientific market research, and minimal formative research
with small groups. For example, “beta testing” of educational software is often
merely polling of easily accessible peers, conducted late in the process, so that
changes are minimal, given the time and resources dedicated to the project already
and the limited budget and pressing deadlines that remain (Char, 1989; Clements
& Battista, 2000). In contrast, we designed the Building Blocks approach to incor-
porate as many of the phases as possible.

Previous publications provide detail ed descriptions of how we applied the CRF
in our design process model (Clements, 2002; Sarama, 2004; Sarama& Clements,
2002); here we provide an overview of our application of the CRF. A Priori
Foundation phases were used to determine the curriculum’ s goals and pedagogy .
Based on theory and research on early childhood learning and teaching (Bowman
et a., 2001; Clements & Sarama, in press), we determined that Building Blocks
basi c approach would be finding the mathematicsin, and devel oping mathematics
from, children’s activity. The materials are designed to help children extend and
mathematize their everyday activities, from building blocks (the first meaning of
the project’ s name) to art and stories to puzzles. Activities are designed based on
children’ s experiences and interests, with an emphasis on supporting the devel op-
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ment of mathematical activity. To do so, the materiasintegrate threetypes of media:
computers, manipulatives (and everyday objects), and print. Pedagogical founda-
tionsweresimilarly established; for example, wereviewed research using computer
softwarewith young children (Clements, Nastasi, & Swaminathan, 1993; Clements
& Swaminathan, 1995; Steffe & Wiegel, 1994). This research showed that
computers can be used effectively by children asyoung as 3 or 4 years of age and
that software can be made more motivating and educationally effective by, for
example, using animation and children’ svoicesand giving simple, clear feedback.

The phase of Subject Matter A Priori Foundation was used to determine subject
matter content by considering what mathematicsisculturally valued (e.g., NCTM,
2000) and empirical research on what constituted the core ideas and skill areas of
mathematics for young children (Baroody, 2004; Clements & Battista, 1992;
Fuson, 1997), with an emphasis on topics that were mathematical foundational,
generativefor, and interesting to young children (Clements, Sarama, et al., 2004).
One of the reasons underlying the name we gaveto our project was our desire that
the materials emphasize the development of basic mathematical building blocks
(the second meaning of the project’ s name)—ways of knowing the world mathe-
matically—organized into two areas: spatial and geometric competencies and
concepts, and numeric and quantitative concepts. Research shows that young
children are endowed with intuitive and informal capabilitiesin both these areas
(Baroody, 2004; Bransford, Brown, & Cocking, 1999; Clements, 1999; Clements,
Sarama, et al., 2004). Three mathematical themes are woven through both these
main areas. patterns, data, and sorting and sequencing. For example, challenging
number activities do not just develop children’'s number sense; they can also
develop children’s competencies in such logical competencies as sorting and
ordering (Clements, 1984).

Perhaps the most critical phase for Building Blocks was Structure According to
Foecific Learning Model. All components of the Building Blocks project are based
on learning trajectoriesfor each coretopic. First, empirically based models of chil-
dren’ sthinking and learning are synthesized to create adevel opmental progression
of levels of thinking in the goal domain (Clements & Sarama, 2004b; Clements,
Sarama, et a., 2004; Cobb & McClain, 2002; Gravemeijer, 1999; Simon, 1995).
Second, sets of activities are designed to engender those mental processes or
actions hypothesized to move children through a developmental progression. We
present two examples, one in each of the main domains of number and geometry.

The example for number involves addition. Many preschool curriculaand prac-
titioners consider addition an inappropriate topic before elementary school
(Clements& Sarama, in press; Heuvel-Panhuizen, 1990). However, research shows
that children asyoung astoddl ers can develop simpleideas of addition and subtrac-
tion (Aubrey, 1997; Clements, 1984; Fuson, 1992a; Groen & Resnick, 1977
Siegler, 1996). As long as the situation makes sense to them (Hughes, 1986),
young children can directly model different types of problems using concrete
objects, fingers, and other strategies (Carpenter, Ansell, Franke, Fennema, &
Weisbeck, 1993). Such early invention of strategies, usually involving concrete
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objects and based on subitizing and counting, plays acritical developmental role,
as the sophisticated counting and composition strategies that develop later are all
abbreviationsor curtailments of these early solution strategies (Carpenter & Moser,
1984; Fuson, 1992a).

Most important for our purpose, reviews of research provide a consistent devel-
opmental sequence of the types of problems and solutions in which children can
construct solutions (Carpenter & Moser, 1984; Clements & Sarama, in press; for
the syntheses most directly related to our work, see Clements, Sarama, et al.,
2004; Fuson, 1992a). Selected levels of the resulting addition learning trajectory
are presented in Figure 1. The left column briefly describes each level and the
research supporting it. The middle column providesabehaviora exampleillustrating
that level of thinking. Thelearning trajectory continues beyond thelast row in Figure
1 (details are in the Building Blocks curriculum and other sources, Clements &
Sarama, 2007; Clements, Sarama, et a., 2004).

The next step of building thelearning trajectory isto design materials and activ-
ities that embody actions on objectsin away that mirrors what research hasiden-
tified as critical mental concepts and processes—children’s cognitive building
blocks (the third meaning of the name). These cognitive building blocks areinstan-
tiated in on- and off-computer activity as actions (processes) on objects (concepts).
For example, children might create, copy, and combine discrete objects, numbers,
or shapes as representations of mathematical ideas. Offering students such objects
and actions is consistent with the Vygotskian theory that mediation by tools and
signs is critical in the development of human cognition (Steffe & Tzur, 1994).
Further, designs based on objects and actions force the developer to focus on
explicit actions or processes and what they will mean to the students. For example,
on- and off-computer activity sets such as “Party Time” have the advantage of
authenticity as well as serving as away for children to mathematize these activi-
ties. In one of the “Party Time” activitiesinvolving setting the table, children use
different mathematical actions such as establishing one-to-one correspondence,
counting, and using numeralsto represent and generate quantitiesto help get ready
for aparty. For these and other activities, the tasks themselves are often variations
of those commonin educational curriculum; what isuniquein these casesisthe more
detailed consideration of actions on objects, the placement of the tasks in the
research-guided learning trajectories, and the use of software.

For the addition trgjectory, at the Nonverbal Addition level, children work ona
software program in which they see three toppings on a pizza, then, after the top
of the box closes, one more being placed on the pizza. Children put the same
number of toppings on the other pizza (see the right column in the first row of
Figure 1). Theteacher conducts similar activitieswith children using colored paper
pizzas and manipulatives for toppings. Similarly, the Dinosaur Shop scenario is
used in several contexts. The teacher introduces a dinosaur shop in the sociodra-
matic play area and encourages children to count and add during their play. The
Small Number Addition row in Figure 1 illustrates atask in which children must
move dinosaurs in two boxes into athird and label the sum. Thus, the abjectsin
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these and other tasks for the levels described in Figure 1 are single items, groups
of items, and numerals. The actions include creating, duplicating, moving,
combining, separating, counting, and labeling these objects and groups to solve
tasks corresponding to the levels. The unique advantages of the software contexts
include making these actions explicit, linking representations (computer manip-
ulatives, spoken number words, and numerals), providing feedback, and guiding
children along the research-based learning trajectories (e.g., moving a level
forward or backward depending on a children’s performance).

An examplein geometry involves shape composition (other domainswere shapes
and their properties, transformati ons/congruence, and measurement, all determined
through consensus building, see Clements, Sarama, et a., 2004). The composition
of two-dimensional geometric figureswas determined to be significant for students
intwo ways. First, it isabasic geometric competence, growing from preschoolers
building with shapesto sophisticated interpretation and analysis of geometric situ-
ationsin high school mathematics and above. Second, the concepts and actions of
creating and then iterating units and higher-order unitsin the context of constructing
patterns, measuring, and computing are established bases for mathematical under-
standing and analysis (Clements et a., 1997; Reynolds & Whezatley, 1996; Steffe
& Cobb, 1988). The domain is significant to research and theory in that thereisa
paucity of research on thetrgjectories students might follow inlearning this content.

The developmental progression was born in observations of children’s explo-
rations (Sarama, Clements, & Vukelic, 1996) and refined through a series of clin-
ical interviews and focused observations (leading to the learning trajectory summa-
rized in Figure 2, adapted from Clements, Wilson, & Sarama, 2004). From alack
of competence in composing geometric shapes (Pre-Composer), children gain
abilities to combine shapes—initially through trial and error (e.g., Picture Maker)
and gradually by attributes—into pictures, and finally synthesi ze combinations of
shapes into new shapes (composite shapes). For example, consider the Picture
Maker level in Figure 2. Unlike earlier levels, children concatenate shapesto form
acomponent of apicture. Inthetop picturein that row, achild made armsand legs
from severa contiguous rhombi. However, children do not conceptualize their
creations (parallelograms) as geometric shapes. The puzzle task pictured at the
bottom of the middle column for that row illustrates a child incorrectly choosing a
square because the child isusing only one component of the shape, inthis case, side
length. The child eventually finds this does not work and compl etes the puzzle but
only by trial and error.

A main instructional task requires children to solve outline puzzles with shapes
off and on the computer, a motivating activity (Sales, 1994; Sarama et a., 1996).
The software activity “Piece Puzzler” isillustrated in the third column in Figure 2
(on pages 144-145). The objects are shapes and composite shapes and the actions
include creating, duplicating, positioning (with geometric motions), combining,
and decomposing both individual shapes (units) and composite shapes (unitsof units).
The characteristics of thetasksrequire actions on these objects corresponding to each
level inthelearning trajectory. Notethat tasksin thesetables areintended to support
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the devel oping of the subsequent level of thinking. That is, theinstructional task in
the Pre-Composer row is assigned to a child operating at the Pre-Composer level
and is intended to facilitate the child's devel opment of competencies at the Piece
Assambler level.

Ample opportunity for student-led, student designed, open-ended projects are
included in each set of activities. Problem posing on the part of students appears
to be an effective way for students to express their creativity and integrate their
learning (Brown & Walter, 1990; Kilpatrick, 1987; van Oers, 1994), although few
empirical studies have been conducted, especially onyoung children. The computer
can offer support for such projects (Clements, 2000). For “Piece Puzzler,” students
design their own puzzleswith the shapes; when they click ona*“Play” button, their
designistransformed into ashape puzzlethat either they or their friends can solve.
In the addition scenarios, children can make up their own problemswith pizzasand
toppings, or dinosaurs and boxes.

Our application of formative eval uation phases 5-8 isdescribed in previous publi-
cations (Sarama, 2004; Sarama& Clements, 2002). In brief, we tested components
of the curriculum and software using clinical interviews and observations of asmall
number of studentsto ascertain how children interpreted and understood the objects,
actions, and screen design. Next, we tested whether children’s actions on objects
substantiated the actions of the researchers’ model of children’s mathematical
activity, and we determined effective promptsto incorporate into each level of each
activity. Although teacherswereinvolved in all phasesof thedesign, in phases 7-8
we focused on the process of curricular enactment (Bal & Cohen, 1996), using class-
room-based teaching experiments and observing the entire class for information
concerning the usability and effectiveness of the software and curriculum. Finally,
acontent analyses and critical review of the materials at each stage of development
was conducted by the advisory board for the project.

In summary, we designed the Building Blocks materials in what we consider a
well-defined, rigorous, and complete fashion, following the CRF. We built on
previous curriculum efforts (Clements, 1984; Griffin & Case, 1997), but extended
them into topics other than number and sequenced activities based on well-defined
learning trajectories. The main purpose of this study wasto evaluate whether mate-
rials created according to that model are effective in developing the mathematical
knowledge of disadvantaged 4-year-old children and the size of that effect. A
secondary purpose was to describe the degree to which the materials devel oped
specific mathematics concepts and skills. To accomplish these two purposes, we
used phase 9, Summative Research: Small Scale.

METHOD

Participants

Summative research was conducted at two sites, involving the two principal types
of public preschool programs serving low-incomefamilies: state funded (site 1) and
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Head Start (site 2) prekindergarten programs. State funded programs are urban
programs in which most children receive free (63%) or reduced lunch (11%) and
are 58% African American, 11% Hispanic, 28% White non-Hispanic, and 3%
other. Head Start programs are urban programs in which virtually all children are
qualified to receive free (97%) or reduced lunch (2%) and are 47% African
American, 13% Hispanic, 30% White non-Hispanic, and 10% other. At each site,
one classroom was assigned as experimental, one comparison. Both site 1 teachers
had worked with us on the early devel opment of the materialsand were considered
excellent teachers by their principal and peers. They agreed to have one selected
to teach the Building Blocks materials and the other to continue using the school’ s
curriculum until the following year. The experimental teacher at site 2 was inex-
perienced (2 years teaching), but she had an experienced aide; the comparison
teacher had taught 8 yearsin the Head Start program. Neither of the site 2 teachers
had worked with us previoudly. The two experimental teachers spent ahalf day with
us viewing and discussing the materials.

All childrenin al four classes returned human subjects review forms. However,
atotal of 9 children moved out of the school during the year, 1 from the site 1 and
8 from site 2, leaving the following breakdown of children who participated in the
pretest and completed at least one full section of the posttest: experimental—site
1, 6 boys, 11 girls, site 2, 7 boys, 6 girls, comparison—site 1, 9 boys, 7 girls, site
2,13 boys, 9 girls. The average age of the 68 children at thetime of pretesting was
49.9 months (SD = 6.2; range 34.8 to 57.8).

Design

We assessed the mathematics knowledge of al participating children at the
beginning and again at the end of the school year. The experimental teachers
implemented the Building Blocks preschool curriculum following the pretesting.
This study is a component of the larger evaluation, which includes case studies of
two studentsin each experimental classroom and observations of the teacher. This
impliesacaveat concerning atypical classroom, given the presence of research staff
(present on 60% of the days), although all classrooms often had adult helpers
coming in and out, and the teacher said that children quickly adapted to al the
study’ s components (e.g., hote taking and videotaping). On the other hand, obser-
vations of the class assured a close evaluation of, and a moderate (site 2) or high
(site 1) degreeof, implementation fidelity. That is, one or more staff memberswere
easily available and the teacher occasionally asked them questions about the
curriculum; also, if any aspect of theimplementation wasfaulty, staff discussed the
aspect with the teacher. The moderateimplementation at site 2 was dueto the avail-
ability of about 3 days per week for mathematics and the resulting use of most, but
not all, of the curriculum’ s components. That is, therewaslittle use of “every day”
mathematics, such as discussion of mathematics during play. However, thiswasan
optional component and, because al required activitieswere conducted, the overall
implementation was judged to be adequate.
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Instrument

The Building Blocks Assessment of Early Mathematics, PreK—K (Sarama &
Clements, in press) uses an individua interview format, with explicit protocol,
coding, and scoring procedures. It assesses children’ s thinking and learning along
research-based developmental progressions for topics of mathematics considered
significant for preschoolers, as determined by a consensus of participants in a
national conference on early childhood mathematics standards (Clements, Sarama,
et a., 2004), rather than mirroring the experimental curriculum’ s objectivesor activ-
ities. The assessment wasrefined in three pilot tests. Content validity was assessed
viaan expert panel review; concurrent validity was established with a.86 correla-
tion with another instrument (Klein, Starkey, & Wakeley, 2000). The assessment
isadministered in two sections, each of which takes 20 to 30 minutes per child to
complete. Theinterviewswere conducted by doctoral studentswho had been previ-
ously trained and evaluated until they achieved a perfect eval uation on three consec-
utive administrations. All assessmentswere videotaped and subsequently coded by
independent coders, also previously trained and evaluated. Codes included
correct/incorrect evaluations and separate codes for children’s strategiesin cases
wherethose strategieswereintrinsically related to the level of thinking that theitem
was designed to measure. Coderswere naive asto the treatment group. Resultswere
accumulated and analyzed by an independent professor of educational psychology
who is expert in research design and statistics.

The number section measures eight topics, summarized in Table 2. The assess-
ment proceeds along research-based developmental progressions (Clements,
Sarama, et al., 2004; see dso Figures 1 and 2) for each of thesetopicsuntil the child
makes three consecutive errors. The final items measure skills typically achieved
at 7 years of age (Griffin et al., 1995). The maximum score is 97; for this sample,
children reached items associated with 6.5 years of age (i.e., al children missed three
in arow before reaching items for ages 7-8); therefore, the maximum that these
preschoolers could have reached was 72 (coefficient alpha reliability, r = .89;
interrater reliability of data coders, 98%).

The geometry test measures seven topics, including measurement and patterning
(seeTable 2). Aswith the number section, difficultiesfor someitemson the geom-
etry assessment were designed to measure abilities at 8 years of age. Children
complete all 17 items (with severa having multiple parts), for a maximum score
of 30 (coefficient aphardiability, r =.71; interrater reliability of datacoders, 97%).

Curricula

The Building Blocks curriculum has gone through several iterations, thefinal one
(Clements& Sarama, 2007) includes ateacher’ sedition, including daily whole- and
small-group activities and games, free-choice learning centers, and ideas for inte-
grating mathematics throughout the school day; computer software; and books, game
sheets, and manipulatives. The Building Blocks Pre-K softwareincludes 11 activity
sets or scenarios, each including between two and six activities. For example, the
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Table2

Content of the Building Blocks Assessment of Early Mathematics, PreK—K

Topic No. Subtopics Selected examples
Number

Verbal Counting 7 Forward “How high can you count? Start at 1
Backward and show me.”
Up from anumber
Before/after/between
Identifying mistakes

Object Counting 15 Arraysand scattered  “Here are our penniesto pay for food”
arrangements [8 in ascrambled arrangement]. “ Show
Producing groups me how you can count the pennies

Number Recognition 7
and Subitizing

Number Comparison 19

Number Sequencing 3
Numerals 5

Number Composition 6

Adding and 23
Subtracting
Place Value 4

Identifying mistakes
Recognizing small
groups, untimed
Subitizing

Nonverbal comparison

Verbal comparison
Sequencing

Matching written num-
eralsto quantities
Number composition
and decomposition

Concrete situations
Verba story problems
Mental arithmetic
Relative size of
numbers

and tell me how many there are.”
Name the number for agroup of 2.

“1’m going to show you some cards,
just for a quick moment! [2 seconds]
Try to tell me how many dots on each
one.”

[Show cardswith ees and .*,]: “Do
these cards have the same number of
dots?’

“Whichisbigger: 7 or 97’

Order cards with 1-5 dots.

Match numeral and dot cards, 1-5.

“1 am putting 5 blocks on this paper?
Now, I’'m going to hide some.”
Secretly hide 3. “How many am |
hiding?’

“Pretend | give you 3 candies and then
| give you 2 more. How many will you
have altogether?’

Whichis closer to 45, 30 or 50?

Geometry

Shape |dentification 4

Shape 5
Composition
Congruence 2
Construction of 2
Shape

Turns 1
M easurement 1
Patterning 1

Identifying squares,
rectangles, triangles,
and rhombuses
Composing and de-
composing shapes
Matching congruent
shapes

Building a shape from
its components
Recognizing rotation

Measuring length

Copying and
extending

Given alarge array of manipulatable
figures (see Figure 3a), choose all
exemplars of the stated shape.
Choose the shapes that would result if
a shape were cut (see Figure 3b).
Given 8 shapes, identify pairsthat are
“the same shape and same size.”

“Can you make atriangle using some
of the straws?’

Anaogy (A:B::C:?) with objects
rotated 90°.

“Which of these strings is about the
same length as 4 cubes?’

Copy, then extend, an ABAB shape
pattern.
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Figure 3. Sample geometry items from the Building Blocks Assessment of Early
Mathematics, PreK—K (Sarama & Clements, in press). () Given the illustrated cut-out
shapes, the child is asked to “Put only the triangles on this paper.” (b) The child is asked,
“Pretend you cut this pentagon from one corner to the other. Which showsthe two cut pieces?’

o

o

“PizzaPizzazz" scenario includes activities on recognizing and comparing number,
counting, and arithmetic. In thefirst three activities, children match pizzaswith the
same number of toppings (early number recognition and comparing), create a
pizza with the same number of toppings as a given pizza (counting to produce a
set), and create a pizzathat has a given number of toppings given only a numeral
(counting to produce a set that matches a numeral). Later activitiesin that setting
involve addition (see the third column for Nonverbal Addition and Find Changein
Figure 1). The software’ smanagement system presentstasks, contingent on success,
along research-based learning trajectories. Activities within various scenarios are
introduced according to thetrajectory’ s sequences. Figure 1 illustrates, for example,
how two activities from the “ Dinosaur Shop” scenario are sequenced between two
illustrated activitiesfrom the“ Pizza Pizzazz” scenario. Off-computer activities, such
aslearning center activities, involve corresponding activities. For example, corre-
sponding to thefirst “ Pizza Pizzazz” activity, the teacher setsout alearning center
by hiding paper “pizzas’ with different numbers of toppings under several opague
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containers and placing one such pizzawith three toppingsin plain view. Children
lift each container and count the toppings until they find the matching pizza. They
then show the teacher or other adult.

All participating teachers maintained their typical schedule, including circle
(whole-group) time, work at centers, snack, outdoor play, and so forth for the 25
school weeks between pretesting and posttesting. The experimental teachersmerely
inserted the Building Blocks activities at the appropriate point of the day. For
example, circletime might include afinger play that involved counting and a brief
introduction to a new center or game. Center time would include individua work
at the curriculum’ s software or learning centers, guided by the teacher or aide as
they circulated throughout the room (specific suggestions for guidance are speci-
fiedinthecurriculum). Asaspecific example, children might beintroduced to new
puzzlessuch asthose at the level of the Picture Maker level of Figure 2, then engage
inphysical puzzleswith pattern blocks and tangramsin alearning center, or similar
puzzles in the “Piece Puzzler” software activity. Teachers guided children by
discussing the task, eliciting children’ s strategies, and, when necessary, modeling
successful strategies. Table 3 summarizes the number of activities in which the
Building Blocks classes engaged, classified by their major goal (many activities
addressed multiple goals; activities that were conducted on and off the computer
are counted once). The site 1 comparison teacher agreed to continue using her
school’s mathematics activities, which included number sense (counting with
correspondence, numerals, ordinality), operations (uniting sets, counting on, sharing
equally), modeling/representing (showing spatial relationships, making chartsand
graphics, representing number), measurement (comparing, nonstandard measure-
ment, choosing tool, estimation), data (collect and display in graphics and charts)
and reasoning (patterns, sorting and classifying, and explaining their actions), and
uncertainty (estimation, using spinners, discussing un/certainty). The site 2 compar-

Table3
Number of Topics Taught in Building Blocks Classrooms by Site

Topic Sitel Site2

Number
Counting
Number Recognition and Subitizing
Number Comparison
Number Sequencing
Numerals
Number Composition
Adding and Subtracting
Geometry
Shape | dentification
Shape Composition
Congruence
Construction of Shape
Turns
M easurement
Patterning
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ison teacher used Creative Curriculum (Teaching Strategies Inc., 2001) aswell as
some*home-grown” curricular activitiesfor mathematics. Visitsto those classrooms
indicated that each was following the curricula as written.

Analyses

To assess the effectiveness of the curriculum, we conducted factorial repeated
measures analyses, with time as the within-group factor, and two between-group
factors, school and treatment, evaluating differences in achievement from pre- to
posttest on both tests (children did work in the same class, but the software and center
activitieswere engaged in individually, so the child was used asthe unit of analysis).
In addition, two effect sizeswere computed for each test. We compared experimental
posttest (E2) to the comparison posttest (C2) scores as an estimate of differential
treatment effect. We also compared experimental posttest to experimental pretest
(E2 to E1) scores as an estimate of the achievement gain within the experimental
curriculum. Effect sizeswere computed using adjusted pooled standard deviations
(Rosnow & Rosenthal, 1996). We used the accepted benchmarks of .25 or greater
as an effect size that has practical significance (i.e., is educationally meaningful),
b5 for an effect size of moderate strength, and .8 asalarge effect size (Cohen, 1977).

RESULTS

Table 4 presents the raw data for the number and geometry tests. We computed
factorial repeated measuresanalyses, originally including gender; asno main effects
or interactionswere significant, we present here only the more parsimonious model.

Table4
Means and Standard Deviations for Number and Geometry Tests by Ste and Group

Building Blocks

Sitel Site2 Total
Test Pre Post Pre Post Pre Post
Number 12.38 36.55 6.13 20.17 9.67 29.46
(10.94) (11.12) (6.61) (13.29) (9.70) (14.47)
Geometry 9.53 17.69 7.53 12.87 8.79 15.91
(2.31) (2.64) (1.86) (3.64) (2.26) (3.81)
Comparison
Sitel Site 2 Total
Test Pre Post Pre Post Pre Post
Number 14.07 26.86 3.17 9.56 8.44 17.93
(9.39) (8.64) (2.72) (9.34) (8.69) (12.48)
Geometry 9.56 12.12 7.37 8.62 8.63 10.64
(1.48) (2.10) (1.40) (3.76) (1.89) (3.35)

Note. These were the data used for the factorial analyses, so they represent data on those children who
took all subtests at both the pretest and posttest.
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Number

For the number test, there were significant main effects for time (pre-post),
F(1, 57) = 183.19, MSE = 33.95 p < .0005; treatment, F(1, 57) = 6.02, MSE =
145.67, p < .05; and site F(1, 57) = 33.48, MSE = 145.67, p < .0005; as well as
significant interactions for time by treatment, F(1, 57) = 20.10, MSE = 33.95, p
< .0005; and time by site, F(1, 57) = 15.19, MSE = 33.95, p < .0005. I nspection
of the means indicates that all groups made significant gains from pretest to
posttest; the site 1 scoresincreased more than those of site 2, and the experimental
treatment group score increased more than the comparison group score. The
effect size comparing E2 to C2 was .85, and the effect size comparing E2 to E1
was 1.61.

Geometry, Measurement, and Patterns

Likewise for geometry, there were significant main effectsfor time, F(1, 49) =
139.08, MSE = 3.40, p < .0005; treatment, F(1, 49) = 17.623, MSE = 4.44, p <
.0005; and site F(1, 49) = 27.94, MSE = 4.44, p < .0005; aswell assignificant inter-
actionsfor time by treatment, F(1, 49) = 43.57, MSE = 3.40, p < .0005; and time
by site, F(1, 49) = 7.95, MSE = 3.40, p < .01. Inspection of the means indicates
that all groups made significant gains, site 1 scores increased more than those of
site 2, and the experimental treatment group score increased more than the compar-
ison group score. The effect size comparing E2 to C2 was 1.47, and the effect size
comparing E2 to E1 was 2.26.

Soecific Topics

To illuminate which specific topics were affected by the curriculum, Table 5
presents means and standard deviations for the number and geometry subtests.
Because we did not wish to increase alpha error and some subtests had a small
number of items, we did not perform additional interferential statistics; however,
an inspection of the meansindicates that the effects were more pronounced on some
topics, athough positive effectswere found for every topic except one. Intherealm
of number, the smallest relative effects were on object counting and comparing
number; for both topics, the experimental group gained more points, but both
groups nearly doubled their pretest scores. Both groups made large gainsin verbal
counting and connecting numerals to groups, with the experimental group’sgain
thelarger. The experimental group’ sgainswere even larger, relative to the compar-
ison group, for the related topics of adding/subtracting and composing number.
The largest relative gains in number were achieved in subitizing (tell how many
dots are on a card with 5 to 10 dots, shown for 2 seconds) and sequencing (e.g.,
placing cards with groups of 1 to 5 dotsin order from fewest to most).

In geometry, the relative effect on the turn item was small (and higher for the
comparison group) and the effect on congruence was positive, but small. Effects
on construction of shapes and spatial orientation werelarge. The largest relative
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Table5
Means and Sandard Deviations for Number and Geometry Subtests by Treatment Group
Building Blocks Comparison
Subtest Pre Post Pre Post Maximum
Number

Verbal 1.13 2.88 0.84 1.78 6

Counting (1.10) (1.51) (.93) (1.39)

Object 553 10.97 4.66 8.16 16

Counting (4.71) (4.20) (3.89) (4.71)

Comparing 1.10 2.13 0.89 1.58 5
(0.99) (0.90) (0.85) (0.96)

Numerals 0.60 3.90 0.32 2.48 5
(1.59) (1.86) (1.16) (2.38)

Sequencing 0.07 1.20 0.05 0.39 3
(0.25) (1.24) (0.23) (0.72)

Subitizing 0.18 281 0.23 1.00 10
(0.35) (2.63) (0.72) (1.27)

Adding/ 0.93 4.20 0.68 2.23 12

Subtracting (1.68) (2.80) (1.38) (2.57)

Composing 0.13 1.37 0.16 0.32 15
(0.51) (2.31) (0.72) (0.91)

Total 9.67 29.46 7.83 17.93 72
(9.70) (17.95) (8.28) (12.48)

Geometry, Measurement, Patterning

Shape 5.42 7.34 5.66 5.89 10

Identification ~ (0.92) (1.16) (0.93) (1.42)

Composition 1.07 4.47 1.23 2.01 11
(1.10) (1.92) (1.36) (1.65)

Congruence 1.02 1.32 1.05 1.20 2
(0.38) (0.35) (0.39) (0.52)

Construction 0.09 0.61 0.09 0.38 2
(0.23) (0.56) (0.29) (0.48)

Orientation 0.15 0.31 0.08 0.08 1
(0.22) (0.28) (0.15) (0.14)

Turns 0.38 0.41 0.21 0.27 1
(0.49) (0.50) (0.42) (0.45)

M easurement 0.10 0.19 0.08 0.08 1
(0.31) (0.40) (0.18) (0.23)

Patterning 0.50 1.26 0.23 0.73 2
(0.55) (0.78) (0.42) (0.67)

Total 8.79 15.91 8.63 10.64 30
(2.26) (3.81) (1.89) (3.35)

Note. Thesedataarefrom al 68 children; 7 children missed some subtests. Therefore, theaveragetotals
differ dightly from those in Table 4 in some cases.
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gains in geometry were achieved on shape identification and composition of
shapes. Effects on measurement and patterning were moderate.

Children’s Srategies

Severd itemsfor which theresearch indicated that alevel of sophisticationin solu-
tion strategieswasintrinsically related to the devel opment of each subsequent level
of the trgectory (Clements & Sarama, 2004c; Clements, Sarama, et a., 2004;
Clements, Wilson, et a., 2004) were coded to describe children’s strategies (see
Table 6). Results on strategies support the scored results and provide additional

Table6
Percentage of Children Using Strategies by Treatment Group

Experimental  Comparison
Pre  Post Pre  Post

Number
[Show 2 cubes and ask] “How many?”
Reproduced the set but could not give the 133 0.0 53 161
number name
Gave the number 66.7 100.0 658 613
No response 36.8 00 289 226

[Set out 4 cubes and 5 marbles, cubes physically
larger and ask] “Are there more blocks or more
marbles or are they the same?’

Does not match or count (in areliability 167 366 105 226

observable manner)

Uses matching 0.0 33 0.0 32

Counts 6.7 367 00 161

No response 76.7 233 895 581
Counting scrambled arrangements of objects

Reading order—Ieft to right, top to bottom 33 100 26 161

Similar strategy but different directions 0.0 400 26 129

(e.g., top to bottom)

Around the perimeter, then moving in to the 00 100 0.0 3.2

middle

Other path through the objects 0.0 33 26 32

No response 96.7 36.7 921 645
Adding 5 + 3 with objects suggested

Uses objects 33 333 26 194

No objects; solves with verbal counting strategy 33 233 0.0 6.5

No response 933 433 974 742
Solving 3 + 2 with objects nearby but not suggested

Uses objects 00 233 0.0 9.7

No objects; solveswith verbal counting strategy 00 133 26 6.5

No response 1000 633 974 839

Solving: 6 dogs and 4 bones, how many dogs

wouldn’t get a bone? with objects suggested
Uses objects 33 300 00 129
No objects; solveswith verbal counting strategy 0.0 33 2.6 32
No response 96.7 66.7 974 839
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Table 6—Continued
Experimental Comparison
Pre Post Pre Post
Geometry
Using pattern blocksto fill apuzzle (outline)
Placing pieces randomly on puzzle that are not 793 111 909 76.9
connected
Putting shapes together without leaving gaps 20.7 889 91 231
No response 0.0 0.0 0.0 0.0

Turning shapes after placing them onthepuzzleinan 6.9 222 6.1 231
attempt to get them to fit

Turning them into correct orientation prior to 13.8 66.7 3.0 0.0
placing them

No response 793 111 909 769
Trying out shapes by picking them seemingly at 69 222 6.1 154

random, then putting them back if they do not look

right, so seemingly trial and error

Appearing to search for “just the right shape” that they 13.8  66.7 30 7.7
“know will fit” and then finding and placing it

No response 793 111 909 769
Hesitant and not systematic 138 333 6.1 154
Overall, solving the puzzle immediately, systemati- 69 556 3.0 7.7
cally and confidently

No response 793 111 909 769

Note. Experimental Ns: pretest, 29; posttest, 27. Comparison Ns: pretest, 33; posttest 26.

description of the different abilities of the two groups. For thefirst object counting
item, about 66% of both experimental and comparison children could provide a
verbal response at pretest. At posttest, 100% of experimental children did so,
however 16% of the comparison children reproduced the set but could not givethe
verbal responses and 23% gave no response. On anumber comparison item, exper-
imental children increased their use of a counting strategy more than comparison
children, over half of whom did not respond. On items in which children counted
scrambled arrangements of objects, the experimental group increased their use of
strategies more than the comparison group, especially systematic strategies such
as progressing top to bottom, left to right. On the arithmetic items, more children
used objects, and fewer used verbal strategies (asmall minority on the comparison
item, “how many dogs wouldn’t get a bone?’).

Examining the addition learning trajectory reveals the curriculum’s positive
effects in more detail. Increases in percentage correct from pretest to posttest for
four illustrative items were as follows: 2 + 1 (increase of 37 for experimental vs.
23 for comparison), 3 + 2 (47 vs. 13) 5 + 3 (23 vs. 16), 6 — 4 (how many dogs
wouldn’t get a bone?—23 vs. 10). The curriculum follows the learning trajectory
described in Figure 1. On average, children worked on Nonverbal Addition activ-
ities 4 times, half on computer (see Figure 1) and half off computer. Teachers
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modeled nonverbal strategies but also encouraged post hoc verbal reflection.
Children worked on Small Number Addition activities 6 times, 2 on and 4 off
computer (Figure 1). Teachers focused on the meaning of addition as combining
two digoint sets, expressed informally. Children worked on Find Result activities
6 times, 2 on and 2 off computer. Use of a child’ s invented counting strategies to
solvejoin, result unknown problemswas emphasized. Finally, children worked on
Find Change problems 2 times, half on and half off computer. Both on- and off-
computer activities emphasized counting on from a given number. The results of
these activitiesis shown in the greater than double increase in correctness by the
experimental group, as well astheir greater use of solution strategies overall and
greater use of more sophisticated strategies, such asverbal counting strategies, for
most tasks. For example, on 5 + 3, 33% of the experimental children, compared to
19% of the comparison children, used objects, and 23% of the experimental chil-
dren, compared to less than 7% of the comparison children, used verbal counting
strategies. These results are particularly striking when considering that such tasks
are normally part of the first grade curriculum.

Table 6 shows four codes describing children’s strategies on a shape composi-
tion task. By posttest, experimental children were far more likely to combine
shapes without leaving gaps; turn shapes into correct orientation prior to placing
them on the puzzle; search for a correct shape; and solve the puzzle immediately,
systematically, and confidently. This increased use of more sophisticated shape
composition strategies suggests the development of mental imagery.

This development of more sophisticated strategies in the experimental group,
along with the large rel ative gains on the subtest score, morethan four timesaslarge
asthose made by the comparison group (Table 5), substantiate the curriculum’ s posi-
tive effect on geometric composition. The curriculum engages children in several
activitiesto devel op this competence, including creating free-form pictureswith a
variety of shape sets, such as pattern blocks and tangrams, and solving outline
puzzles with those same shape sets. Informal work with three-piece foam puzzles
and clay cutouts were conducted for several weeks during mid fall. In April, the
outline puzzles, which provided the most guidance along the learning trajectories,
wereintroduced. Most children in the present classrooms worked about 2 days on
the puzzles designed for children at the Pre-Composer level (seethe third column
in Figure 2), 3 days at the Piece Assembler level, and 2 days at the Picture Maker
level. Only about athird of the children completed all those puzzles, and thus could
be confidently classified as operating at the Shape Composer level or above. Four
children appeared to operate at best at the Piece Assembler level. Based on evidence
that the developmental sequence of this learning trajectory is valid (Clements,
Wilson, et al., 2004), we guided individual childrentowork on puzzlesat thelevel
they had not mastered on the off-computer puzzles. The computer automatically
monitored their progress on the “ Piece Puzzler” software. The combination of off-
and on-computer activities at an appropriate, progressive developmental level
appeared to facilitate children’ s development of the mental actions on objects that
engendered thinking at each subsequent level. Thisis shown in the strategies they
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employed (Table 6). AlImost 90% of the children placed shapes together without
leaving gaps, an indication of thinking at the Picture Maker level or above. About
67% of the children turned shapes into the correct orientation prior to physically
placing them within the puzzle outline. The same percentage appeared to search for
“just the right shape” that they “knew would fit.” These behaviors are criteriafor
the Shape Composer level. Only about 56% however, showed immediate, confi-
dent, systematic completion of puzzles. Children’s strategies therefore suggest
that on the assessment roughly 10% were at the Piece Assembler level, 23% were
operating at the Picture Maker level, 11% werein transition to the Shape Composer
level, and 56% were at the Shape Composer level (or above; subsequent levelswere
not assessed). In contrast, the comparison group had roughly 77% at the Pre-
Composer or Piece Assembler levels, 15% at the Picture Maker level, and 8% in
transition to the Shape Composer level, consistent with developmental averagesfor
this age group (Clements, Wilson, et al., 2004).

DISCUSSION AND IMPLICATIONS

The main purpose of this research was to measure the efficacy of a preschool
mathematics program based on a comprehensive model of developing research-
based software and print curricula, on a small scale under well-supervised condi-
tions (Summative Research: Small Scale). Scores at site 1, the state-funded
preschool, increased morethan those of site 2, the Head Start school. Site 1 teachers
were more experienced than those at site 2. Site 2 children had lower mathematics
scores at the start; qualitative observations confirm that site 2 children entered
preschool with fewer cognitive resources (attention, metacognition, disposition to
learn mathematics, etc.; research reports are under preparation). Thisis aconcern
for those involved with Head Start. However, there was no evidence that the
curriculumwasdifferentialy effective at thetwo sites. Average achievement gains
of the experimental group about doubled those considered large (Cohen, 1977) and
approached the sought-after 2-sigma effect of individual tutoring (Bloom, 1984).

Inspection of means for individual topics (subtests) substantiates our conver-
sations with the comparison teachers that they emphasized object counting,
comparing numbers, and, to alesser extent, shapes. The Building Blocks curriculum
seemsto have made aspecial contribution, with quitelargerelative gains, to chil-
dren’s learning of the topics of subitizing, sequencing, shape identification, and
composition of shapes. Thus, even a moderate number of experiences (e.g., 4 to
6 for sequencing and subitizing) was sufficient to enhance children’s learning of
certain oft-ignored topics. In addition, the experimental group showed a greater
increase in the use of more sophisticated numerical strategies and the devel opment
of spatial imagery.

Many have caled for more research on the effects of curriculum materials
(e.g., Senk & Thompson, 2003), especially because such materials have a large
influence on teaching practices (Goodlad, 1984; Grouws & Cebulla, 2000;
Woodward & Elliot, 1990). Results of this study indicate strong positive effects
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of the Building Blocks materials, with achievement gains near or approximately
equal to those recorded for individual tutoring. This provides support for the effi-
cacy of curriculabuilt on comprehensive research-based principles. The Building
Blocks materials include research-based computer tools that stand at the base,
providing computer analogs to critical mathematical ideas and processes. These
are used, or implemented, with activitiesthat guide children through research-based
learning trajectories (developed over years of synthesizing our own and others
empirical work). These activities-through-trajectories connect children’ sinformal
knowledge to moreformal school mathematics. Theresult isapackagethat ismoti-
vating for children but, unlike “edu-tainment,” results in significant assessed
learning gains. We believe these features lead to Building Blocks substantial
impact, although the present design does not alow attributing the effect to any
particular feature or set of features (we are analyzing the qualitative datafrom these
same classrooms that will provide insights relevant to this issue). One practical
implication isthat, when implemented with at |east a moderate degree of fidelity,
such materials are highly efficacious in helping preschoolers learn fundamental
mathematics concepts and skills.

Theresultsalso provideinitial, “ proof of concept” support for the CRF (Clements,
2007), which extends and particularizes theories of curriculum research (Walker,
1992). Our own use of the CRF emphasi zes the actions on objectsthat should mirror
the hypothesized mathematical activity of studentsand how that activity develops
along learning trajectories (Clements, 2002; Clements & Battista, 2000). Such
synthesis of curriculum/technology development as a scientific enterprise and
mathemati cs education research may hel p reduce the separation of research and prac-
tice in mathematics and technology education and produce results that are imme-
diately applicable by practitioners (parents, teachers, and teacher educators), admin-
istrators and policymakers, and curriculum and software developers. Of course,
multiple studies, including comparisons, would need to be conducted to support any
claims about the efficacy of the model per se.

Even a small number of experiences for certain topics, such as sequencing
number and subitizing, were sufficient to produce large rel ative learning gains. We
believe these topics may often beignored in most early childhood classrooms. The
experimental activities assessed here were efficacious, but other approachesto these
topics might also be studied. In contrast, results on such topics as congruence, turn,
and measurement indicate that future research should ascertain whether the small
number of experiences (1-2) or the nature of the activities dedicated to these topics
accounted for the small gains and whether changesto either or both could increase
children’s achievement.

Thisstudy is consistent with extant research showing that organized experiences
result in greater mathematics knowledge upon entry into kindergarten (Bowman
et al., 2001; Shonkoff & Phillips, 2000) and that focused early mathematical inter-
ventions help young children devel op afoundation of informal mathematics knowl-
edge (Clements, 1984), especialy for children living in poverty (Campbell &
Silver, 1999; Fuson, Smith, & Lo Cicero, 1997; Griffin, 2004; Griffin et al., 1995;
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Ramey & Ramey, 1998). It extends this research by suggesting that a comprehen-
sive mathematics curriculum following NCTM's standards (2000) can increase
knowledge of multiple essential mathematical concepts and skills (beyond number).
Unfortunately, most American children are not in high-quality programs (Hinkle,
2000). Werecommend that preschool programs adopt research-based curricula(e.g.,
Clements, 2007). With itsemphasis on low-income children, this study also extends
the research on standards-based mathematics curricula, most of which does not
address socia class or cultural influences (cf. Senk & Thompson, 2003).

An overarching caveat isthat this study represents phase 9, Summative Resear ch:
Small Scale (Clements, 2007). As stated, this was justified because it provides an
estimate of effect size under close supervision that ensured fidelity of treatment.
However, the small number of classrooms, the use of the child as the unit of
analysis inside classrooms, the presence of project staff, and our resultant ability
to guarantee at least moderate fidelity limits generalizability and internal validity.
Further, although teachers at both comparison sites taught their respective mathe-
matics curricula, the emphasis in the programs was clearly on literacy (i.e., time
on mathematics activitieswas not controlled). Theresultsjustify the subsequent use
of phase 10, Summative Research: Large Scale, which we implemented in the
2003-2005 school years. Finally, the quantitative results reported here will be
complemented and extended in corresponding studies of the same classrooms
involving qualitative case studies of children learning in the context of the
curriculum. Thefocus of these analyseswas on the children’ s devel opment through
the learning trajectories for the various mathematical topics.
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