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Effects of allergic diseases and age 
on the composition of serum IgG 
glycome in children
Marija Pezer1, Jerko Stambuk1, Marija Perica2, Genadij Razdorov3, Ivana Banic2, 
Frano Vuckovic1, Adrijana Miletic Gospic2, Ivo Ugrina1, Ana Vecenaj2, Maja Pucic Bakovic1, 
Sandra Bulat Lokas2, Jelena Zivkovic2, Davor Plavec2,4, Graham Devereux5, Mirjana Turkalj2,4,* 
& Gordan Lauc1,3,*

It is speculated that immunoglobulin G (IgG) plays a regulatory role in allergic reactions. The glycans 
on the Fc region are known to affect IgG effector functions, thereby possibly having a role in IgG 
modulation of allergic response. This is the first study investigating patients’ IgG glycosylation profile 
in allergic diseases. Subclass specific IgG glycosylation profile was analyzed in two cohorts of allergen 
sensitized and non-sensitized 3- to 11-year-old children (conducted at University of Aberdeen, UK 
and Children’s Hospital Srebrnjak, Zagreb, Croatia) with 893 subjects in total. IgG was isolated from 
serum/plasma by affinity chromatography on Protein G. IgG tryptic glycopeptides were analyzed by 
liquid chromatography electrospray ionization mass spectrometry. In the Zagreb cohort IgG glycome 
composition changed with age across all IgG subclasses. In both cohorts, IgG glycome composition did 
not differ in allergen sensitized subjects, nor children sensitized to individual allergens, single allergen 
mean wheal diameter or positive wheal sum values. In the Zagreb study the results were also replicated 
for high total serum IgE and in children with self-reported manifest allergic disease. In conclusion, our 
findings demonstrate no association between serum IgG glycome composition and allergic diseases in 
children.

Immunoglobulin G (IgG) is involved in a number of immune response pathways, for example physiologically 
protecting against invading pathogens or pathologically, inducing in�ammation and tissue destruction in autoim-
mune disorders. IgG molecules bind their antigen targets via the fragment antigen binding (Fab) domain, and exert 
their e�ector functions via the fragment crystallizable (Fc) domain. �is dual binding capacity makes IgG a link 
between innate and adaptive immunity. By binding to receptors speci�c for its Fc region, Fcγ  receptors (Fcγ Rs),  
expressed on the surface of innate immune cells (such as monocytes, macrophages, neutrophils and natural killer 
cells) and B cells, IgG is involved in the regulation of both, the innate and adaptive arms of the immune response. 
Intriguingly, IgG molecules can initiate both a pro-in�ammatory response by binding to activating Fcγ Rs on 
innate immune cells and the complement system, as well as an anti-in�ammatory response by binding to DC–
speci�c ICAM-3–grabbing non-integrin receptor (DC-SIGN)1.

Each IgG molecule contains two biantennary N-glycans covalently attached to conserved N-glycosylation sites 
at Asn-297 on each of its heavy chains. �e most complex glycan contains 13 monosaccharide units and repre-
sents a biantennary digalactosylated and disialylated complex glycan with a bisecting β (1,4) N-acetylglucosamine 
(GlcNAc) and an α (1,6) fucose attached to core GlcNAc (Fig. 1). �e remaining IgG glycans correspond to this 
tridecasaccharide with the lack of one or more sugar units. Polyclonal IgG glycosylation varies markedly in di�er-
ent physiological (age, sex, hormonal status) and pathological states (infectious, in�ammatory and autoimmune 
diseases; cancers)2–17.

Glycans and glycan binding molecules play a major role in immune system regulation18 as do IgG glycans. 
�ey are of key importance for structural stabilization of the Fc region as well as for the IgG e�ector functions, 
affecting IgG binding affinity for Fcγ Rs and other receptors19–23. Since activating and inhibiting Fcγ Rs can 
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modulate activation thresholds for immune e�ector cells24, IgG Fc glycans thus play an important role in immune 
response regulation in many conditions. For instance, variation in IgG Fc N-glycan are known to a�ect the activ-
ity of therapeutic antibodies and intravenous immunoglobulin preparations25,26.

Allergies are considered a harmful consequence of a misdirected immune response that evolved to protect us 
from macroparasites and non-infectious but harmful environmental factors27. In recent decades the prevalence 
of allergic diseases (allergic rhinoconjunctivitis, allergic asthma, atopic dermatitis, food allergies) has risen dra-
matically worldwide, particularly in developed countries, and in children28. �e key e�ector molecule for the 
initiation of allergic cascade is allergen speci�c IgE, the synthesis of which is induced by exposure to common 
environmental antigens in atopic individuals. Allergen speci�c IgE is the key e�ector molecule for the initiation 
of allergic cascade. It binds to IgE speci�c receptors on the surface of mast cells and basophils, inducing their acti-
vation upon subsequent allergen challenge29. �e sensitization phase, i.e. the presence of allergen speci�c IgE, is 
usually unnoticed, due to absence of clinical signs of allergy30, but is a prerequisite for later allergic response upon 
contact with the same allergen. In the clinical setting, sensitization is con�rmed by in vivo and in vitro immuno-
logical tests, such as allergen skin prick tests (SPT) and enzyme-linked immunosorbent assay based assays for 
serum total and allergen speci�c IgE.

IgG is thought to play an inhibitory role, negatively modulating or completely abrogating IgE mediated aller-
gic reactions31,32. �is is most likely to be mediated by IgG binding to Fcγ Rs expressed on the surface of tissue 
mast cells and peripheral blood basophils, the key e�ector cells in the immediate hypersensitivity reaction. Since 
IgG glycosylation is known to modulate IgG a�nity for Fcγ Rs on immune e�ector cells33, the question arose as 
to whether IgG glycans are involved in the modulation of allergic response. We speculated that IgG glycosylation 
might play a modulatory role in IgG-mediated control of allergic reaction during allergic sensitization and/or 
during allergic disease manifestation. If correct, one would expect to �nd a di�erence in IgG glycome composi-
tion associated with allergic sensitization and/or manifest allergic disease.

We conducted this study in order to test the hypothesis that IgG glycosylation plays a modulatory role in 
the IgG mediated control of allergic reaction during the sensitization phase. It is the �rst study exploring IgG 
glycosylation in allergic diseases – examining serum IgG glycopro�les in two sizeable pediatric populations: 284 
subjects at University of Aberdeen, UK and 609 subjects at Children’s Hospital Srebrnjak, Zagreb, Croatia. Since 
the vast majority of IgG glycosylation studies are performed on adult subjects, we used this study to additionally 
examine possible age-dependent IgG glycosylation patterns in children.

Results
Subclass specific IgG composition was examined in allergen sensitized and non-sensitized children in the 
Aberdeen and Zagreb cohorts. No di�erence in IgG glycosylation pattern (12 main glycan species and 6 derived 
traits, Fig. 2) was found between children sensitized to at least one allergen and non-sensitized children in either 
of the two cohorts (Figs 3 and 4, Supplemental Tables 1 and 2). Moreover, no association was found between IgG 
glycosylation pattern and sensitization to any single allergen, single allergen mean wheal diameter or positive 
wheal sum values (Supplemental Tables 1 and 2).

Two subsets of children were further established in the Zagreb study: sensitized children with high total serum 
IgE values, and non-sensitized children with normal total serum IgE values. In accordance with previous results, 
no di�erence in IgG glycosylation pattern (12 main glycan species and 6 derived traits) was found between the 
two groups of children (Figs 5 and 6, Supplemental Table 2). Moreover, in the Zagreb study no association was 
found between IgG glycosylation pattern and high level of total serum IgE (Supplemental Table 2).

In the Zagreb cohort no apparent di�erence in IgG glycosylation pattern (6 derived traits) was found in chil-
dren su�ering from allergic diseases (allergic asthma, allergic rhinitis, allergic rhinoconjunctivitis, atopic derma-
titis) in the last 12 months compared to healthy children. �e same result was obtained when high serum total IgE 
alone or high serum total IgE in the presence of positive SPT were used to con�rm present manifested disease in 
addition to the disease present in the last 12 months. (Supplemental Figs 1–15).

A�er establishing that allergic sensitization and manifest allergic disease are not associated with the IgG gly-
come composition, we evaluated the e�ects of age on the combined dataset from the Zagreb cohort (Table 1, 
Supplemental Fig. 16). �e content of monogalactosylated structures was shown to increase with age across 
all IgG subclasses. �is was accompanied by a decrease in agalactosylated and an increase in digalactosylated 

Figure 1. �e most complex IgG Fc glycan. In heterogenous mixture of serum IgG N-glycans over 30 
di�erent glycan species are found. �e most complex glycan contains 13 monosaccharide units and represents 
a biantennary digalactosylated and disialylated complex glycan with bisecting β (1,4) GlcNAc and an α (1,6) 
fucose attached to core GlcNAc. �e remaining IgG glycans correspond to this tridecasaccharide with the lack 
of one or more sugar units.
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structures in IgG4 subclass only. �e level of sialylation decreased with age in IgG1 and IgG2. In addition, an 
increase in bisecting N-GlcNAc content accompanied by a decrease in core fucose content was found in IgG1 and 
the opposite e�ect (a decrease in bisecting N-GlcNAc content and an increase in core fucose content) in IgG4.

Discussion
We report here the �rst study comparing the immunoglobulin glycosylation pro�les of normal subjects with sub-
jects su�ering from allergic diseases. Our large scale study of 893 children was performed on two di�erent popu-
lations with comparable results. In the two cohorts IgG glycosylation pattern was not altered in allergen sensitized 
subjects, nor was it altered in respect to sensitization to any single allergen, single allergen mean wheal diameter 
or positive wheal sum values. A�er narrowing the de�nition of sensitization in one of the cohorts (Zagreb) by the 
inclusion of serum total IgE, no di�erences were found between sensitized and control children. �e same result, 
although not statistically con�rmed, was found in the same cohort when children su�ering from allergic diseases 
in the last 12 months and children likely su�ering from allergic disease were compared to control children.

Since the two studies were designed independently and opportunistically used for IgG glycome analysis, there 
are slight methodological di�erences between them. �e subject age ranges from 3 to 11 in the Zagreb study, com-
pared to 10 to 11 in the Aberdeen study. Following blood withdrawal plasma was separated in the Aberdeen and 
serum in the Zagreb study. Di�erent allergens and di�erent commercially available allergen extract preparations 
were used in each study, and in the Zagreb study the allergens used di�ered between regions. It should be noted 
that the allergens used in each study were those recognized as the most common allergens for the local popula-
tion. �e lack of perfect standardization between the two studies might diminish the signi�cance of comparative 
data we present here.

Given the limited number of allergens used to identify sensitized children, children sensitized to less common 
allergens would have been misclassi�ed as non-sensitized and allocated to the control group, i.e. false nega-
tives representing a null bias. To address this, in the Zagreb study, total serum IgE was also used to discriminate 
between sensitized and non-sensitized children. �e children with positive SPT and high IgE were then compared 
to children with negative SPT results and a normal total serum IgE level; the results of this analysis did not di�er 
from the main analysis.

Figure 2. �e most prominent glycan structures attached to the conserved N-glycosylation site on 
each of the two IgG heavy chains. �e legend, linkages and anomeric con�gurations are consistent with those 
depicted in Fig. 1 throughout all glycoforms. Derived properties were calculated as follows: G0 =  proportion of 
agalactosylated structures in total subclass glycans (G0 =  G0F +  G0FN). G1 =  proportion of monogalactosylated 
structures in total subclass glycans (G1 =  G1F +  G1FN). G2 =  proportion of digalactosylated structures in 
total subclass glycans (G2 =  G2F +  G2FN). S =  proportion of sialylated structures in total subclass glycans 
(S =  G1FS +  G1FNS +  G1S +  G1NS +  G2FS +  G2FNS). F =  proportion of fucosylated structures in total 
subclass glycans (F =  G0F +  G0FN +  G1F +  G1FN +  G1FS +  G1FNS +  G2F +  G2FN +  G2FS +  G2FNS). 
N =  proportion of structures with bisecting N-acetylglucosamine in total subclass glycans 
(N =  G0FN +  G1FN +  G1FNS +  G1NS +  G2FN +  G2FNS).
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�e two methods used to distinguish sensitized vs. non-sensitized children (SPT vs. total serum IgE measure-
ment) are somewhat di�erent regarding the information they provide. While the total serum IgE measurement 
only gives the information on serum IgE content, the SPT represents a simulation of in vivo reaction to allergen, 
including release of various mediators by mast cells.

�e lack of association between IgG glycopro�le and sensitization is only pertinent to the early stages of atopic 
disease before the development of allergic in�ammation and manifest clinical allergic disease. Our initial analysis 
did not exclude the possibility that the total serum IgG glycome might be associated with later stages of atopic 
disease when clinical evident allergic disease is manifest, indeed it has been reported that total serum IgG gly-
come composition is associated with some diseases with an in�ammatory component13,15,16,34. Although not part 
of our original study design, and therefore not statistically tested, a�er obtaining the results on IgG glycosylation 
with respect to allergic sensitization status, we compared the IgG glycosylation patterns in children su�ering from 
allergic diseases in the last 12 months (self-reported by parents via ISAAC questionnaire) and sensitized children 
su�ering from allergic disease (self-reported allergic disease in the last 12 months +  allergen sensitization, as 
con�rmed by elevated total serum IgE level alone or in addition to a positive SPT result) with control children in 
one of the cohorts (Zagreb). We again found no di�erence in IgG glycome composition in either of these groups 
when compared to control children suggesting that the IgG glycome is not associated with the early sensitization 
stage of atopic disease not the or later stages of clinical allergic disease.

Since 1985, when changes in IgG glycome composition were reported in rheumatoid arthritis (RA)14 IgG 
glycome alterations have been observed in many various diseases, particularly in in�ammatory and autoim-
mune diseases35–40. We have reported signi�cant di�erences in IgG glycosylation patterns in numerous large scale 
studies including patients su�ering from acute systemic in�ammation13, in�ammatory bowel disease (ulcera-
tive colitis and Crohn’s disease)16, systemic lupus erythematosus15, RA (unpublished data) and type II diabetes 
(unpublished data), all diseases of a severely activated and/or skewed immune response. We have also found sig-
ni�cant di�erences in IgG glycopro�les in patients with renal dysfunction and colorectal cancer17,41. Since allergic 
diseases also result from an imbalance in the immune response, it came as a surprise that no changes in IgG gly-
come in any of its subclasses were found in the allergen sensitized population and population of children su�ering 
from allergic diseases. An obvious possible contributory factor to the absence of association in the current study 
and the positive associations in our previous studies could be that the current study was based on two populations 
studies of children whereas our previous work were case-control investigations of adults. Our results suggest that 

Figure 3. No di�erence in subclass speci�c abundance of speci�c IgG glycoforms in sensitized and non-
sensitized children. Percentages of glycoforms in total subclass glycans are shown. Data are shown as box and 
whiskers plots. Each box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. 
‘+ ’s inside the boxes represent the mean. �e whiskers represent the lowest and highest values. Analysis of 
associations between sensitization status and glycopeptide traits were performed using a regression model with 
age and sex included as additional covariates. (A) Aberdeen population (B) Zagreb population.
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total serum IgG glycans do not have a signi�cant role in the development and progression of allergic diseases 
however further epidemiological as well as functional studies are required to con�rm or refute our �ndings.

To our knowledge this is the one of very few studies examining IgG glycosylation pro�le of a children’s pop-
ulation in any disease. �e direction of IgG glycome changes in healthy subjects di�ers in adults and in children, 
which makes independent age group analyses a necessity. In general, the IgG glycoform distribution found in 
this study is consistent with our previous reports of the IgG glycopro�le of healthy children. With increasing age 
there was a decrease of agalactosylated and core fucosylated structures, accompanied by an increase of digalacto-
sylated structures and structures bearing a bisecting GlcNAc. It should be noted however that our previous work 
investigated an older pediatric population and used a di�erent methodology that resulted in total IgG glycans 
(Fab and Fc combined, all subclasses)42. In a healthy adult, 10–15% of total serum IgG contain terminal sialic 
on one or both of its antennae43. Fc terminal sialylation is established as a possible switch between IgG pro- and 
anti-in�ammatory activity44,45. Unfortunately, due to methodological constraints we could not examine the con-
tent of disialylated IgG in our two cohorts46.

�e existence of inherent di�erences in IgG subclass speci�c glycosylation has already been con�rmed5. �e 
di�erent subclass glycosylation pro�les found in our study, particularly in IgG4 compared to the other subclasses, 
probably underline their di�erent biological role. However, for IgG4 it might be relevant that the observed dif-
ferences could have been a consequence of decreased analytical precision due to the low concentrations of IgG4 
compared to other IgG subclasses. More work is required, particularly on antigen speci�c IgG subclasses, to 
improve our understanding of the role of IgG glycosylation in allergic diseases.

Allergen speci�c IgG is present in serum of allergic patients, mostly of IgG1 and IgG4 subclass47,48. Allergen 
speci�c IgG4 is thought to have a protective role in allergic diseases, and is also one of mechanisms of action of 
allergen speci�c immunotherapy, the only curative approach to the treatment of allergies. Allergen speci�c IgG4 
is believed to have multiple protective roles in IgE mediated allergic diseases: blocking the allergen and/or mod-
ulating the allergic response via inhibitory Fcγ RIIB on the surface of mast cells and B cells. It would therefore 

Figure 4. No di�erence in subclass speci�c IgG glycosylation pattern in sensitized and non-sensitized 
children. G0 =  proportion of agalactosylated structures in total subclass glycans. G1 =  proportion of 
monogalactosylated structures in total subclass glycans. G2 =  proportion of digalactosylated structures in total 
subclass glycans. S =  proportion of sialylated structures in total subclass glycans. F =  proportion of fucosylated 
structures in total subclass glycans. N =  proportion of structures with bisecting N-acetylglucosamine in total 
subclass glycans. Data are shown as box and whiskers plots. Each box represents the 25th to 75th percentiles. 
Lines inside the boxes represent the median. ‘+ ’s inside the boxes represent the mean. �e whiskers represent 
the lowest and highest values. Analysis of associations between sensitization status and glycopeptide traits 
were performed using a regression model with age and sex included as additional covariates. (A) Aberdeen 
population (B) Zagreb population.
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be of particular interest to analyze the glycome composition of allergen speci�c IgG, and particularly of allergen 
speci�c IgG4 in allergic patients.

Methods
Subjects. 101 sensitized (54 male, median age 10.3 years, range 10.0–10.9 and 47 female, median age 10.3 
years, range 9.9–11.1) and 183 non-sensitized (80 male, median age 10.3 years, range 9.9–10.8 and 103 female, 
median age 10.3, range 9.9–11.0) children who had participated in the detailed assessment phase of the 10 year 
follow up of the population based SEATON cohort study in Aberdeen, UK (described in detail elsewhere49–51) 
were included in this study. �e study was approved by the North of Scotland Research Ethics Committee, and 
written informed parental consent and written assent of the child was obtained. All the methods were carried out 
in accordance with the approved guidelines.

Glycopeptide 
trait E�ect SE p p adjusted

IgG1 G1 ↑  0.2386 0.020488 1.55E-28 2.79E-27

IgG2 G1 ↑  0.2131 0.020948 1.23E-22 1.11E-21

IgG4 G1 ↑  0.1957 0.021228 4.17E-19 2.50E-18

IgG1 S ↓  − 0.1379 0.021968 6.12E-10 2.75E-09

IgG1 F ↓  − 0.1294 0.022053 6.79E-09 2.44E-08

IgG4 G0 ↓  − 0.1097 0.022228 9.77E-07 2.93E-06

IgG4 N ↓  − 0.1060 0.022259 2.31E-06 5.94E-06

IgG4 G2 ↑  0.0942 0.022346 2.75E-05 6.19E-05

IgG2 S ↓  − 0.0730 0.022477 1.19E-03 2.38E-03

IgG4 F ↑  0.0590 0.022545 8.90E-03 1.60E-02

IgG1 N ↑  0.0541 0.022565 1.66E-02 2.72E-02

IgG2 G0 − 0.0473 0.022591 3.61E-02 5.42E-02

IgG1 G2 − 0.0403 0.022613 7.46E-02 1.03E-01

IgG2 F 0.0293 0.022641 1.95E-01 2.51E-01

IgG1 G0 − 0.0134 0.022666 5.54E-01 6.55E-01

IgG2 G2 0.0124 0.022667 5.83E-01 6.55E-01

IgG2 N − 0.0094 0.022669 6.78E-01 7.18E-01

IgG4 S 0.0059 0.022671 7.93E-01 7.93E-01

Table 1.  E�ect of age on IgG glycome composition in the Zagreb population (see also Supplemental 
Fig. 16). SE =  standard error, G0 =  proportion of agalactosylated structures in total subclass glycans. 
G1 =  proportion of monogalactosylated structures in total subclass glycans. G2 =  proportion of digalactosylated 
structures in total subclass glycans. S =  proportion of sialylated structures in total subclass glycans. 
F =  proportion of fucosylated structures in total subclass glycans. N =  proportion of structures with bisecting 
N-acetylglucosamine in total subclass glycans. Glycopeptide traits that are a�ected by age are shown in bold. 
Associations between age and glycan measurements were examined using a regression model.

Figure 5. No di�erence in subclass speci�c abundance of speci�c IgG glycoforms in sensitized (SPT 
positive and high total serum IgE) and non-sensitized children in Zagreb population. Percentages of 
glycoforms in total subclass glycans are shown. Data are shown as box and whiskers plots. Each box represents 
the 25th to 75th percentiles. Lines inside the boxes represent the median. ‘+ ’s inside the boxes represent the 
mean. �e whiskers represent the lowest and highest values. Analysis of associations between sensitization 
status and glycopeptide traits were performed using a regression model with age and sex included as additional 
covariates.
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In addition, 237 sensitized (149 male, median age 8 years, range 4–11 and 88 female median age 8 years, 
range 4–11) and 372 non-sensitized children (172 male, median age 8 years, range 4–11; 200 female, median 
age 8 years, range 3–11) from Children’s Hospital Srebrnjak (CHS), Zagreb, Croatia were included in this study. 
Children were recruited in Croatian kindergartens (ages 3–6) and primary schools (ages 7–10) with institutional 
consent and informed parental consent. Clinical data were collected from parents of all children using a stand-
ardized International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire52. �e questionnaire 
is self-reported by parents to evaluate allergic asthma, allergic rhinitis, allergic rhinoconjunctivitis and atopic 
dermatitis in childhood. �e study was approved by the CHS Ethics Committee. All the methods were carried out 
in accordance with the approved guidelines.

Skin prick test. Within the scope of both studies, skin prick testing was performed to determine allergic sen-
sitization to most common local allergens. SPT was performed on the volar surface of the non-dominant forearm 
with the most common local allergen extracts.

In the Aberdeen study skin prick reactivity to the dog, cat, timothy grass, egg, peanut, and house dust mite 
(Dermatophagoides pteronysinnus) allergens was determined using commercially available Soluprick QC prepara-
tions (ALK Abello, UK) containing standardized allergen extracts. In the Zagreb study skin prick reactivity to the 
grasses mix (cocksfoot, sweet vernal-grass, rye-grass, meadow grass, and timothy), ragweed (Ambrosia), dog hair, 
cat fur, house dust mite (Dermatophagoides pteronysinnus), Cladosporium mix (Cladosporium cladosporioides and 
C. herbarum), pine, olive, Parietaria, trees mix (maple, horse-chestnut, plane tree and lime tree), birch and hazel 
allergens was determined by widely used Alyostal preparations (Stallergenes Greer, France) containing standard-
ized allergen extracts. Depending on the region’s vegetation, pine, olive, birch, hazel and trees mix were omitted 
from the panel to avoid unnecessary testing. 0.9% saline was used as the negative and 10 mg/mL histamine as the 
positive control in both studies.

For both studies a positive SPT response for any given allergen was de�ned as a mean wheal diameter (the 
mean of the longest diameter and the diameter perpendicular to it at its mid-point) of at least 3 mm 15 minutes 
a�er inoculation. Positive wheal sum was calculated as the sum of all mean wheal diameters equal to or greater 
than 3 mm in a given patient.

Peripheral blood collection and serum/plasma separation. Peripheral blood was collected by 
venepuncture. In the Aberdeen study blood was collected into EDTA coated vacutainers. Plasma was separated by 
centrifugation (5000 g, 10 min) and stored at − 80 C until further analysis. In the Zagreb study blood was collected 
into vacutainers with clot activator and gel for serum separation. Serum was separated by centrifugation (3000 g, 
10 min) and stored at − 20 C until further analysis.

Total IgE measurement. In addition to SPT, in Zagreb study the concentration of total IgE in serum was 
determined in all subjects by a sandwich �uorescent enzyme immunoassay - ImmunoCAP53. In house established 
age dependent cut-o� values were used to determinate elevated serum total IgE level54. 169 children (110 male, 
median age 9, range 4–11 and 59 female, median age 8, range 4–11) were characterized as sensitized based on 
elevated total IgE value and a positive SPT, and 371 (172 male, median age 8, range 4–11 and 199 female, median 
age 8, range 3–11) as non-sensitized based on normal total IgE value and a negative SPT.

Figure 6. No di�erence in subclass speci�c IgG glycosylation pattern in sensitized (SPT positive and high 
total serum IgE) and non-sensitized children in Zagreb population. G0 =  proportion of agalactosylated 
structures in total subclass glycans. G1 =  proportion of monogalactosylated structures in total subclass glycans. 
G2 =  proportion of digalactosylated structures in total subclass glycans. S =  proportion of sialylated structures 
in total subclass glycans. F =  proportion of fucosylated structures in total subclass glycans. N =  proportion of 
structures with bisecting N-acetylglucosamine in total subclass glycans. Data are shown as box and whiskers 
plots. Each box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. ‘+ ’s inside 
the boxes represent the mean. �e whiskers represent the lowest and highest values. Analysis of associations 
between sensitization status and glycopeptide traits were performed using a regression model with age and sex 
included as additional covariates.
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IgG isolation. A�er defrosting and centrifugation (12100 g, 3 min or 5000 g, 10 min) lipid-free serum/plasma 
fraction was pipetted into 96-well plates. In the Aberdeen study all samples were randomized across the plates 
using block randomization and in the Zagreb study cases and controls were evenly distributed among the plates. 
All plates included standard and blank samples for quality control and batch correction. IgG was isolated from 
plasma by a�nity chromatography on protein G monolithic plates (BIA Separations, Slovenia) as described pre-
viously55. Brie�y, 100 µ L serum/plasma was diluted 1:7 with 1 × PBS, pH 7.4, applied to the protein G plate and 
instantly washed with 1xPBS, pH 7.4, to remove unbound proteins. IgG was eluted with 1 mL 0.1 M formic acid 
(Merck, Germany) and neutralized with 170 µ L 1 M ammonium bicarbonate (Merck, Germany).

IgG tryptic digestion and purification. 25 µ g IgG was digested with 200 ng of trypsin at 37 °C 
(Worthington, USA) overnight. Resulting tryptic glycopeptides were puri�ed by reverse phase solid phase extrac-
tion using Chromabond C18ec beads (Marcherey-Nagel, German). C18 beads were activated with 80% ACN con-
taining 0.1% tri�uoroacetic acid (TFA) (Sigma-Aldrich, USA) and conditioned with 0.1% TFA. Tryptic digests 
were diluted 10X with 0.1% TFA, loaded onto C18 beads, washed with 0.1% TFA and �nally eluted with 20% 
ACN containing 0.1% TFA. Eluates containing tryptic glycopeptides were dried by vacuum centrifugation and 
dissolved with 20 µ L of ultrapure water.

LC-ESI-MS/MS analysis of IgG tryptic glycopeptides. Tryptic digests were analyzed on nanoACQUITY 
UPLC system (Waters, USA) coupled to Compact mass spectrometer (Bruker Daltonics, Bremen, Germany).  
9 µ L eluates containing IgG tryptic glycopeptides was loaded into Acclaim PepMap100 C8 (5 mm ×  300 µ m i.d.) 
trap column and washed 1 min with 0,1% TFA (solvent A) at a �ow rate of 40 µ L/min. Separation was achieved on 
a Halo C18 nano-LC column (150 mm ×  75 µ m i.d., 2.7 µ m HALO fused core particles) (Advanced Materials tech-
nology, USA) using a 3,5 min gradient at a �ow rate of 1 µ L/min from 18% to 25% solvent B (80% ACN). Column 
temperature was 30 °C. Mass spectra were recorded from m/z 200 to 1900 with 2 averages at a frequency of 0,5 Hz. 
Quadrupole ion energy and collision energy of the MS were set at 4 eV. NanoACQUITY UPLC system and the 
Bruker micrOTOF-Q were operated under HyStar so�ware version 3.2 so�ware. In Caucasian populations, IgG2 
and IgG3 tryptic Fc glycopeptides have identical peptide moieties and are therefore not distinguishable by this 
pro�ling method56,57. Data were extracted using an in-house python script. Brie�y, data were m/z recalibrated 
using a subset of hand-picked analytes having a high signal-to-noise ratio and the expected isotopic distribution. 
A�er recalibration, intensities for top four isotopologues were extracted using 10 ppm m/z window. Based on top 
signals, retention times were aligned towards the cohort median. A�er de�ning retention time bins for analytes of 
interest, all of the signals belonging to a single analyte for every sample were summed up. �e most prominent 12 
glycopeptides that were present in each subclass were used for statistical analysis.

Statistical analysis. In order to remove experimental variation from measurements, normalization and batch 
correction were performed on the LC-MS glycopeptide data. To make measurements across samples comparable, 
IgG-isoform speci�c normalization by total area was performed. Prior to batch correction, normalized glycopep-
tide measurements were log-transformed due to right skewness of their distributions and the multiplicative nature 
of batch e�ects. Batch correction was performed on log-transformed measurements using the ComBat method, 
in which the technical source of variation (which sample was analyzed on which plate) was modeled as a batch 
covariate. To get measurements corrected for experimental noise, estimated batch e�ects were subtracted from 
log-transformed measurements. For each isoform, in addition to 12 directly measured glycopeptide structures, 6 
derived traits were calculated from the directly measured glycopeptides. �ese derived traits average particular gly-
cosylation features (galactosylation, fucosylation, sialylation) across di�erent individual glycan structures, and con-
sequently they are more closely related to individual enzymatic activities and underlying genetic polymorphisms.

Analyses of associations between sensitization status and glycopeptide traits were performed using a regres-
sion model with age and sex included as additional covariates. In addition, a regression model adjusted for age 
and sex was used to examine associations between glycopeptide levels and other clinical traits (sensitization to a 
particular allergen, single allergen mean wheal diameter, positive wheal sum values and total serum IgE level in 
the Zagreb study). Additionally, associations between age and glycopeptide measurements were examined in the 
Zagreb cohort using a regression model.

Glycopeptide traits were described as dependent variable. Prior to analyses, glycopeptide variables were all 
transformed to a standard normal distribution (mean =  0, SD =  1) by inverse transformation of ranks to normal-
ity. Using rank-transformed variables in analyses makes estimated e�ects of di�erent glycopeptides comparable, 
as transformed glycopeptide variables have the same standardized variance. �e false discovery rate (FDR) for 
both analyses was controlled using the Benjamini-Hochberg procedure, and p values corrected for multiple test-
ing (with FDR set at 0.05) are shown throughout.
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