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Abstract

Random Boolean networks (RBNs) were first introduced and used to model regulatory gene networks by Kauffman in
1969 and since then have been frequently used to model networks at various levels of biological organization. The standard
model has a characteristic topology in which the network hasN genes with an average ofK input connections selected at
random. We have used RBNs to examine regulatory gene networks with four different topologies, which are characterized by
different rank distributions of output connections that vary from uniform to highly skewed. Among these is the topology of the
standard model, which is included for purposes of comparison, and a topology with a power-law rank distribution, which is
based on recent data for the regulatory gene network of the bacteriumEscherichia coli. We also examine effects of bias in the
distribution of Boolean functions for the network. The dynamical properties and mutual information of these networks depend
not only on their size but also on their topology and Boolean functions. Networks with the more uniform rank distributions
exhibit longer lengths of attractors, larger numbers of attractors, and less mutual information. Networks with the more skewed
rank distributions have complementary properties. When viewed as biological decision-making networks, those with either
the most uniform or the most skewed rank distributions have disadvantageous properties. The intermediate rank distribution
exhibited by the regulatory gene network ofE. coli avoids these disadvantages.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A striking property of regulatory gene networks in
cells is the ability to switch expression of specific
genes ON or OFF according to circumstances such as
developmental stage of the organism, stress response
to environment change, and so on. The resulting pat-
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terns of gene expression vary temporally and spatially,
and the individual pattern can be viewed as the out-
come of a set of decisions executed by the network.

Microbes such asEscherichia coli andSalmonella
typhimurium have been extensively used as model
organisms to study the mechanisms of gene regula-
tion [1]. These studies have determined molecular
details of the regulatory mechanisms and also have
revealed many global aspects of the regulatory gene
network [2]. For example, both global and specific
regulators have been found to activate or repress gene
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transcription by binding to particular sites on DNA
[3]. Global and specific regulators have many and few
binding sites in the genome, respectively. Further-
more, expression of each regulator is controlled by
the regulator itself and/or by other regulators. Hence,
gene expression is regulated as part of a complex,
interconnected network whose essential feature is the
set of regulatory genes and their interaction via the en-
coded regulators and their binding sites on the DNA.
This network manifests an abundance of simultaneous
communications among the genes in the genome.

Other proteins (enzymes, transporters, structural
elements, etc.) and RNAs (ribozymes, structural ele-
ments, etc.) are encoded in the genome and have their
expression modulated by the regulatory gene network.
The activities of these effector molecules in turn in-
fluence the level of numerous small molecular-weight
signaling molecules, many of which also can affect
gene expression at various levels directly or indirectly.
Nevertheless, regulation of gene expression in bacteria
appears to be controlled primarily at the level of tran-
scription, and transcriptional regulators play an essen-
tial role in determining the state of gene expression.

We shall assume for simplicity that the topological
structure of a regulatory gene network can be depicted
as a directed graph. Eachnode corresponds to a tran-
scriptional unit that includes a regulatory gene. Each
arc represents an interaction between transcriptional
units. The origin of an arc is the output of one tran-
scriptional unit and its destination is a target binding
site, which is the input of a second transcriptional
unit. Recent applications of DNA microarray tech-
nology have shown directly the dynamic changes in
levels of RNA expression under different physiologi-
cal conditions[4,5]. The results make it clear that the
regulatory gene network is a highly nonlinear dynamic
system. Therefore, we are interested in regulatory
gene networks that are depicted not only as directed
graphs but also as nonlinear dynamical systems.

The mathematical investigation of large nonlinear
dynamical systems is limited by numerical as well
as analytical difficulties. Some form of simplification
is required to even begin addressing this class of
problems. One of the most fruitful simplifications has
been random Boolean networks (RBNs)[6], which

provided a tractable model for such investigations.
In addition to the abundant numerical studies using
RBNs (e.g. [6–18]), there have been a number of
analytical studies (e.g.[19–22]). However, all these
have involved the standard model for the RBN with a
given distribution of topologies. The implications of
alternative distributions have yet to be examined. The
work described in this paper uses numerical methods
to address this issue.

There are two principal questions that we shall
address in this paper. (1) What type of topology
characterizes regulatory gene networks? (2) How
does topology affect the dynamics of regulatory gene
networks? In order to answer the first question, we
surveyed recent publications that show relationships
between regulators and their target binding sites in
the E. coli genome and found a power-law rank dis-
tribution (seeSection 2.2.3). The power-law rank
distribution means that a small number of regulatory
molecules have many target sites and a large number
have only a few target sites. To address the second
question, we modified the output connectivity of the
standard model for RBNs. The standard model[6] is
characterized as follows: (1) Transcriptional units are
randomly connected with a fixed number of inputs. (2)
Each unit is assigned a Boolean function selected at
random with equal probability. (3) The pattern of ex-
pression for a given gene is represented by a sequence
of binary states, each of which is determined by the
Boolean function and the previous state of the inputs
for the gene. We introduced four different rank distri-
butions for the output connections in the model and
investigated their effects on the dynamical properties
and mutual information of the network. Our results re-
veal statistical tendencies associated with the different
distributions.

2. Methods

The characterization of large and complex genetic
networks can only be achieved with the systematic
tools provided by mathematical modeling and com-
puter analysis. However, there are different approaches
that have been used for this purpose, each having its
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Table 1
Binary output and internal homogeneity for all types of Boolean functions with two binary inputsa

Inputs Type

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a Internal homogeneity equals 0.5 (for types 3, 5, 6, 9, 10, and 12), 0.75 (for types 1, 2, 4, 7, 8, 11, 13, and 14), or 1.0 (for types 0
and 15). See text for discussion.

distinct advantages and disadvantages[23]. In this
paper, we use RBNs to explore properties that are
likely to be present with high probability regardless
of mechanistic details. Simple discrete/deterministic
elements, whose behavior is easily computed, permit
the exploration of large populations of networks and
the application of the requisite statistical techniques;
with other more complex elements the computations
quickly become prohibitive. No one description can
efficiently and accurately represent phenomenon at
all hierarchical levels of organization and all scales
of time and space. We acknowledge that the ele-
ment description is only an approximation to that of
the real genetic elements, and instead we focus on
gross systemic properties that emerge through the
interaction of the elements. An analogy is the statis-
tical mechanical view of the ideal gas laws. Previous
analyses with RBNs have led to predictions that are
supported by experimental evidence (Section 2.2).
Further justification of this approach can only come
through additional evidence of this sort.

In this section, we briefly review: (1) the elements
of the standard model for RBNs; (2) the four different
rank distributions of output connections that are used
in our modified model; (3) the methods used to study
network dynamics; (4) the statistical measures used to
characterize the results.

2.1. Random Boolean networks

RBNs are an idealized discrete dynamical model
that have been used to represent the regulatory gene
network for a generic organism[6]. The standard

model for RBNs has the following characteristics:
(a) RBNs haveN nodes and directed connections be-
tween these nodes. (b) The state of each node is either
ON or OFF. (c) The input signals to each node come
directly from the outputs of exactlyK other nodes
chosen at random, whereK is called theinput con-
nectivity. (Self-inputs and duplicate inputs are usually
prohibited.) (d) There is an equiprobable choice to
fix the Boolean function by which the current input
signals to each node are combined to determine its
next state (Table 1). (e) The states of the nodes are
updated in a synchronous fashion. Networks with dif-
ferent numbers of nodes are often used to investigate
the dependence of dynamical properties on network
size, and many networks are generated and analyzed
under fixedK and N to identify the statistical regu-
larities [7]. Although we appreciate the limitations
of the RBN model as a representation of real gene
networks, we have retained most properties of the
standard model in order to facilitate comparisons with
the abundant literature devoted to the standard model.
The principal difference is our modification of the
method for generating the random connections. We
consider RBNs with four different topologies.

2.2. Alternative topologies

We define the topology of the network in terms of
the rank distribution of input and output connections.
The number of input connections per node is consid-
ered to be small. The original work of Kauffman[6]
suggested that a value ofK = 2 for the input connec-
tivity is relevant for the regulatory gene network of an
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organism. Average values greater thanK = 2 or 3 re-
sult in networks with complex erratic behaviors (the
term “chaotic” has been used to describe behavior in
which nearly all of the system’s variables are changing
and there are many patterns that are easily disturbed
by slight perturbations), whereas average values less
thanK = 2 result in networks with a very limited be-
havioral repertoire (the term “frozen” has been used to
describe behavior in which nearly all of the system’s
variables are unchanging and this pattern is not easily
changed by perturbations)[7]. Thus, the most biolog-
ically meaningful behaviors were predicted for values
of K = 2 or 3, and further studies have suggested that
the evolutionary potential of these networks is great-
est when they are operating in this range (which is de-
scribed as the “edge of chaos”)[8,9]. This predicted
input connectivity based on the behavior of RBNs is
supported by the more direct biological estimates of
input connectivity that come from the work of Thief-
fry et al.[24,25]. They examined the number, type and
location of regulatory binding sites in the promoter re-
gions ofE. coli and concluded that the average input
connectivity is low, between 1 and 2. On the basis of
these studies we have fixed the input connectivity for
all our models atK = 2.

The 16 possible Boolean functions withK = 2 are
shown inTable 1. For instance, expression of the mal-
tose operon requires the presence of both the global
regulator CRP and the specific regulator MalT. This
condition can be considered as the logical AND func-
tion. However, in most cases the Boolean function is
unknown, and so we have followed the procedure used
in the standard model and randomly assigned Boolean
functions to each node.

We have considered four different network topolo-
gies that, given the fixed input connectivity described
above, are characterized by their output connectivity.
Once the input connectivityK is determined, the total
number of connections in a network is also fixed au-
tomatically. If a network containsN nodes and each
node has exactlyK input connections, the total num-
ber of connections in the network becomesKN. These
connections are assigned by different methods to the
output of each node and the resulting topologies are
termed Uniform, Exponential,E. coli and Extreme.

2.2.1. Uniform topology
For this topology all nodes have exactly two output

connections. Hence, the rank distribution for the num-
ber of output connections is uniform. The network in
this case is constructed by selecting an unoccupied
input at random and connecting it to an unoccupied
output selected at random. This procedure is followed
until all 2N connections have been assigned. In this
topology, there is no central regulator; each individual
regulator has equal potential to influence the network
(Fig. 1).

2.2.2. Exponential topology
This is the topology of the original RBN, as de-

scribed in the previous section. The rank distribution
of output connections is exponential-like. The network
in this case is constructed by selecting an unoccupied
input at random and connecting it to an output selected
at random. This procedure is followed until all 2N con-
nections have been assigned. In some cases there will
be nodes with no output connections. Also the rank
distribution for the number of output connections can
be different for each network. The average rank distri-
bution among 1000 networks (seeSection 2.4) appears
to be exponential-like and dependent upon network
size (Fig. 2A). The initial slopes of these rank distri-
butions decrease with increasing network size. Thus,
the rank distribution characteristic of the Exponential
topology approaches that of the Uniform topology for
large networks (Fig. 1).

2.2.3. E. coli topology
We have determined theE. coli topology from data

in three recent publications[26–28]. We tabulated
the number of regulated operons with known binding
sites for each known regulator and rank ordered the
regulators according to the number of operons with
the corresponding target site. The results when plotted
give a power-law rank distribution.Fig. 2Bshows the
normalized power-law rank distribution, with global
regulators such as CRP and FNR having a large num-
ber of binding sites and specific regulators such as
LacI and MalT having a small number. Although the
three curves inFig. 2B are based upon data that were
available at different times, and hence the total number
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Fig. 1. Rank distribution of output connections in RBNs of increasing size with four different topologies. The numbers of output connections
per node are represented in the left-hand panels: (A)N = 16; (B) N = 64; (C) N = 256. These distributions are normalized with respect
to their maximum, rank 1 number, and represented in the right-hand panels: (D)N = 16; (E) N = 64; (F) N = 256. The four different
topologies are chosen to span a full range of distributions from uniform to highly skewed; this is most easily seen in panel F. Error bars
are shown for the Exponential topology based on 1000 randomly constructed networks. See text for discussion.
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Fig. 2. Rank distribution of output connections based on the standard model for RBNs and on data fromEscherichia coli. (A) Normalized
rank distributions for networks of increasing size fromN = 16 to 256 according to the standard model[6]. Note that the data are
represented in a semi-logarithmic plot, and that they approach an exponential-like distribution with increasing network size. (B) Normalized
rank distributions according to three data sets taken fromE. coli: (�) Collado-Vides et al.[26]; (�) Otsuka et al.[27]; (�) Huerta et al.
[28]. Note that these data are represented in a log–log plot, and that they approximate a power-law distribution with an exponent of−0.8.

of cases is greater in the more recent publications,
the results are very similar. This suggests that the
experimental data in each case is an unbiased sam-
pling from the actual distribution. The exponential
parameter determined for these rank distributions is
approximately equal to−0.8. This value was used for
all the network sizes we examined (seeFig. 1). The
network in this case is constructed in two stages. First,
the E. coli rank distribution of output connections
is determined with the minimum number of outputs
being one. Each node is allotted a number of outputs
at random according to this distribution. Second, the
connections are made by selecting an unoccupied
input at random and connecting it to an unoccupied
output selected at random. This procedure is followed
until all 2N connections have been assigned.

2.2.4. Extreme topology
The opposite of the Uniform rank distribution, for

which no node has more connections than another, is
the Extreme rank distribution, for which one node has
connections to all other nodes in the network and the
remaining nodes have only one or a few connections.
More specifically, one node has (N − 1) output con-

nections, another has three and the rest have only one
(Fig. 1). Among our four topologies, this one is called
Extreme because its rank distribution exhibits the max-
imum skewness. In this case, the skewness increases
with increasing network size (Fig. 1). The network in
this case also is constructed in two stages. First, the
Extreme rank distribution of output connections is de-
termined with the minimum number of outputs being
one. Each node is allotted a number of outputs at ran-
dom according to this distribution. Second, the con-
nections are made by selecting an unoccupied input
at random and connecting it to an unoccupied output
selected at random. This procedure is followed until
all 2N connections have been assigned.

2.2.5. Effects of network size
Fig. 1D–Fshow normalized rank distributions for

N equal to 16, 64 and 256, respectively, demonstrate
clear differences among the four topologies. The
Uniform andE. coli topologies retain their same nor-
malized rank distributions independent of network
size, whereas the Exponential and Extreme topologies
have rank distributions that change with network size.
The differences between theE. coli and Exponential
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topologies increase with network size, as the normal-
ized rank distribution of the Exponential topology
approaches that of the Uniform topology. The differ-
ences between theE. coli and Extreme topologies also
increase with network size, because of changes in the
skewness of the normalized rank distribution for the
Extreme topology as mentioned above (seeFig. 1).

2.3. Dynamics of Boolean networks

Dynamics of the RBN described above are deter-
mined by the following equation:

Xi(t + 1) = Bi(X(t)), i = 1, 2, . . . , N, (1)

whereXi(t) is the binary state, either 0 or 1, of nodei
at timet, Bi(·) is the Boolean function used to update
the state of nodei, and X(t) is a binary vector that
gives the states of theN nodes in the network. An
initial vectorX(0) is assigned and successive states of
the nodes are updated synchronously.

The dynamical behavior of these random networks
is represented by the time series of states, which corre-
sponds to the time course of gene expression. The time
course of gene expression follows a transient phase
from an initial state until a periodic pattern, called an
attractor, is eventually established. The length of the
transient phase and the length of the attractor are de-
termined by the number of time steps before and af-
ter entering the attractor respectively. Different initial
states for the same network may lead to the same or
different attractors. A large number of different initial
states are explored in an effort to estimate the number
of distinct attractors for a given network. By compar-
ing the dynamics of networks with different topolo-
gies, we can expect to identify distinctive properties
associated with each topology.

2.4. Statistical considerations

2.4.1. Ensembles of networks
We examined 20 different ensembles of networks

corresponding to five different sizes (N = 16, 32,
64, 128 and 256) and four different topologies. Each
ensemble consisted of 1000 networks randomly con-
structed as described above. The dynamic behavior of

each network was followed from 2000 different initial
states.

2.4.2. Sampling of Boolean functions and
initial states

Internal homogeneity[9,10], which is a measure
that reflects the tendency for a node with a given
Boolean function to give the same output (seeTable 1),
can be used to characterize the distribution of Boolean
functions in a RBN. Because we selected Boolean
functions at random from an uniform distribution in
our studies, the average internal homogeneity for net-
works of different sizes and topologies was 0.6875, as
expected. This was also confirmed by direct examina-
tion of the frequencies for all Boolean functions in the
networks (data not shown).

Initial states were sampled uniformly from among
the 2N possible states in a network withN nodes. The
number of different initial states, 2000, was selected
so that we might easily compare our results with those
in the literature. As far as we are aware, this is the
largest number that has been used in previous numeri-
cal experiments, e.g., see[11]. Given the large number
of possible states, the number 2000 can only be con-
sidered a sampling used to estimate relative numbers
of attractors.

2.4.3. Types of averages
Dynamical properties such as number of attractors

in a network, length of attractor and transient length,
have been used to characterize networks under differ-
ent conditions. The values of these properties in theory
can be astronomical (up to 2N ). Because of this fact,
median values have been used to provide representa-
tive results. For instance, Kauffman[6] conjectured
that both the median length of attractors and the me-
dian number of attractors increase as the square-root
of N. Bhattacharjya and Liang[11] demonstrated that
the distribution of attractor lengths is noisy with a very
long tail that exhibits a power-law distribution. Bagley
and Glass[12] showed slow convergence of mean val-
ues in attractor lengths. They also showed long tails
in distributions for the number of attractors. Values of
the arithmetic mean are usually sensitive to the large
values found in distributions with very long tails.
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For the above reasons, we have used medians as
representative values to characterize the distributions
for numbers of attractors, attractor lengths, and tran-
sient lengths. In order to characterize the effects of
network topology on the distributions of dynamical
behaviors, we also have used the mode and quartiles
of these distributions.

2.4.4. Overall activity
RBNs with averageK = 2 exhibit behaviors in

which a large fraction of nodes, typically 60–80%,
fall into fixed 1 or 0 states and maintain the same
state in all attractors[13,9]. The large fraction of
nodes with fixed state implies a high degree of sim-
ilarity in the expression patterns (as represented by
the temporal sequence of the binary state vector) for
the different attractors. As the averageK increases,
the RBNs show increasingly disordered behaviors and
eventually most nodes change their state in all attrac-
tors [7].

We define theactive ratio for each attractor as

1 − Number of nodes with fixed state in the attractor

N
.

(2)

This provides a rough measure for the overall activity
of each attractor.

Networks may have multiple attractors that are re-
vealed by following the dynamics from 2000 different
initial states, and some nodes of these networks may
remain unchanged with state 0 or 1 in all of the attrac-
tors. Accordingly, we define theactive ratio for each
network as

1 − Number of nodes with fixed state inall attractors

N
.

(3)

This represents the overall activity of each network.

2.4.5. Mutual information
Mutual information[29], which can be considered

a measure of dependence similar to a correlation
function [30], is widely used to characterize discrete
dynamical systems[14]. Mutual information can be
calculated directly from the expression patterns for

any attractor of finite length. The mutual information
function, MI, between two binary sequences, is given
by

MI (IN; OUT) = H(IN) + H(OUT) − H(IN; OUT),

(4)

where H(IN) and H(OUT) are the individual Shan-
non entropies of the IN and OUT sequences and
H(IN; OUT) is the joint entropy of the IN and OUT
sequences (seeAppendix A for further details). The
Shannon entropy is a measure of randomness in the
expression patterns. If a binary sequence has equal
numbers of ones and zeroes, then the entropy of the
sequence has a maximum value of one. If a binary se-
quence has only ones or only zeros, then the entropy
has a minimum value of zero. The mutual information
between two sequences has a value of zero if they
are uncorrelated, e.g., because one or both sequences
is unchanged throughout the length of an attractor;
it has a positive value (up to one) if they are corre-
lated. (Note that an input sequence INi for the node
i is the same as the output sequence of an up-stream
node OUTj and that the output sequence OUTi for
the nodei is the same as the input sequence of a
down-stream node INk.)

In our case, each network nodei responds to two
binary input sequences or patterns, IN1i and IN2i ,
and produces a single binary output sequence or pat-
tern, OUTi . We define the mutual information, MIi ,
between the input and output of each nodei as

MI i = [
MI (IN1i; OUTi )

∗ MI (IN2i; OUTi )
]1/2

,

i = 1, 2, . . . , N. (5)

The node functions as an integrative device when the
output reflects mutual information from both inputs.
The geometric mean yields positive mutual informa-
tion for the node only when the mutual information
contributed by each of the inputs is positive. The
arithmetic mean provides a higher estimate for the
mutual information of the node, but there is no change
in the relative order of the mutual information for
the different topologies (data not shown). From this
perspective, the alternative definition for the means
does not affect our conclusions.
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We define the entropy and mutual information for
each attractor as sums of the entropy and mutual in-
formation for the individual nodes of the network:

H(attractor) =
N∑

i=1

H(OUTi ), (6)

MI (attractor) =
N∑

i=1

MI i . (7)

We also define the entropy and mutual information
for each network as arithmetic averages of the entropy
and mutual information for the individual attractors of
the network. Every network has at least one attractor,
and we expect to identify a reasonable sampling of all
attractors, since we uniformly sample the state space
with 2000 different initial states. Thus, these network
averages are representative values.

3. Results

3.1. Number of attractors vs. topology

3.1.1. Distribution
The number of attractors in networks with 64 nodes

and the Exponential topology has a distribution with
a broad dispersion (Fig. 3A). The distributions for
networks with other sizes and topologies are similar
in that their mode is always one attractor; they differ
with regard to the maximum probability and the shape
of decay.Fig. 3Bshows the maximum probability (the
probability of having a single attractor) as a function
of network size and topology. Approximately 50%
of networks with the Extreme topology have only
one attractor, regardless of network size. Networks
with the other topologies manifest a lower probabil-
ity of having a single attractor, and this probability
decreases as network size increases. In addition, this
figure illustrates the typical tendencies found in many
of our results. (1) The differences between pairs of
networks with alternative topologies tend to increase
with network size. The Exponential topology is an
exception. (2) The differences between networks with
Exponential and Uniform topologies tend to decrease
with network size. This occurs because the rank dis-
tribution of output connections in networks with the

Exponential topology tends to converge towards that
in networks with the Uniform topology as network
size increases, as noted earlier (Fig. 1).

3.1.2. Averages
As mentioned inSection 2, it is difficult to char-

acterize the average number of attractors in RBNs
with a single measure because of the long dispersed
tails in the distributions. InFig. 3C and Dwe show
two measures for the average number of attractors:
the 2nd quartile (median) and the 3rd quartile. The
square-root relationship between network size and
median number of attractors in networks with the
Exponential topology[6,12] is confirmed inFig. 3C.
This relationship also appears to hold for the Uni-
form topology and for theE. coli topology, at least
with the larger network sizes. The square-root re-
lationship is evident inFig. 3D for networks with
the E. coli topology, but not for the others. In the
case of larger network sizes, the 3rd quartile for the
number of attractors (Fig. 3D) tends to be less than
the arithmetic mean (data not shown). The steeper
relationship exhibited by networks with the Uniform
and Exponential topologies is a manifestation of the
long highly dispersed tails in the distributions associ-
ated with these topologies; conversely, the shallower
relationship exhibited by networks with the Extreme
topology is a consequence of the very narrow, highly
skewed distribution characteristic of this topology.

A sample size of 2000 initial states is the largest
that has been used in previous studies to estimate the
number of attractors for a given network. We also have
used this sample size so that we might compare our
results with those of other investigators. Nevertheless,
in an effort to determine the effectiveness of this sam-
ple size, we constructed 1000 RBNs of each topol-
ogy and sizeN = 256, varied the number of different
initial states, and determined the average number of
different attractors. The results are shown inFig. 4.
The number of attractors appears to reach a limit in
the case of the Extreme distribution. However, for the
other distributions, the numbers show a diminishing
tendency to limit as the distributions become more uni-
form. Indeed, the percentage difference between any
two curves increases monotonically with the number
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Fig. 3. Statistics for the number of attractors in RBNs with four different topologies ((�) Uniform; (�) Exponential; (�) E. coli; (�)
Extreme) and various network sizes. (A) Probability distribution for the number of attractors in a network of sizeN = 64 and an
Exponential topology. (B) Modal probability of the distribution for each topology. (C) Median number of attractors. (D) 3rd quartile
number of attractors. An open symbol in this panel indicates that the arithmetic mean is larger than the corresponding 3rd quartile value.
The dashed line shows a square-root relationship.

of initial states. Thus, it appears that the differences
between topologies observed inFig. 3are actually un-
derestimates.

3.2. Length of attractors vs. topology

3.2.1. Distribution
The length of attractors has a distribution similar to

that in Fig. 3A in that the mode is always length one

(data not shown).Fig. 5A shows the maximum proba-
bility (the probability of having an attractor of length
one) as a function of network size and topology.
Approximately 50% of networks with the Extreme
topology have attractors of length one, regardless
of network size. Networks with the other topologies
manifest a lower probability of having attractors of
length one, and this probability decreases as network
size increases.
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Fig. 4. Median number of attractors in RBNs with four different
topologies ((�) Uniform; (�) Exponential; (�) E. coli; (�) Ex-
treme) determined from various sample sizes of initial states. See
text for discussion.

3.2.2. Averages
In Fig. 5B and Cwe show values for the 2nd

quartile (median) and the 3rd quartile of attractor
lengths. The median values (Fig. 5B) for networks
with the Exponential topology follow approximately
the square-root relationship as previously observed
[7,12,15]. The same is true of networks with the
Uniform topology. The shallower relationship ex-
hibited by networks with theE. coli topology is a
consequence of the narrower and more skewed rank
distribution characteristic of this topology. The same
is true of networks with the Extreme topology, but in
this case the tendency is more exaggerated because
the skewness of the rank distribution increases with
network size unlike the case with the other topologies
(seeFig. 1). Similar tendencies are apparent in the
values for the 3rd quartile (Fig. 5C), except for the
increase at larger network sizes exhibited by networks
with theE. coli topology.

3.3. Length of transients vs. topology

3.3.1. Distribution
The length of transients has a very different dis-

tribution from that inFig. 3A. The modal value is

Fig. 5. Statistics for attractor length in RBNs with four different
topologies ((�) Uniform; (�) Exponential; (�) E. coli; (�) Ex-
treme) and various network sizes. (A) Modal probability of the
distribution for each topology. (B) Median attractor length. (C)
3rd quartile of attractor length. An open symbol in this panel indi-
cates that the arithmetic mean is larger than the corresponding 3rd
quartile value. The dashed line shows a square-root relationship.
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not at an extreme but has a more central location in
the distribution (Fig. 6A), and both the modal value
and the probability of the modal value vary with net-
work size. The modal value of transient length in-
creases with network size for all topologies (Fig. 6B),
whereas the probability of the modal value decreases
(Fig. 6C).

3.3.2. Averages
Fig. 6D and E show the 2nd quartile (median) and

3rd quartile values for transient length, respectively.
Transient length increases with network size in a sim-
ilar fashion for both quartile values and all topologies,
unlike the case for attractor number and the case for
attractor length. Thus, differences in transient length
between topologies are less pronounced.

3.4. Other intermediate topologies and lower
internal homogeneity

Figs. 3, 5 and 6show large differences between
networks with theE. coli and Extreme topologies.
In order to investigate these tendencies further, we
have examined networks with topologies that are
intermediate between these two. Networks that have
a rank distribution of output connections governed
by a power-law with exponent equal to−2.0 exhibit
behavior that is intermediate between that of networks
with the E. coli and Extreme topologies (data not
shown). Thus, topology has a graded effect on net-
work behavior as the skewness of the rank distribution
varies from Uniform to Extreme.

RBNs with Exponential topology, Boolean func-
tions chosen at random, and input connectivityK =
2 show ordered behavior, whereas the same networks
with higher input connectivity show disordered be-
havior [9]. Disordered behavior also is manifested in
RBNs with Exponential topology and input connec-
tivity K = 2, but with a frequency of XOR functions
greater than expected if all Boolean functions were
chosen at random[16]. In order to investigate the ef-
fects of alternative topologies on networks with more
disordered dynamics we have examined RBNs with
only XOR functions rather than higher input connec-
tivity. (It is physically more difficult to generate highly

Table 2
Dynamical properties of RBNs with different topologies and only
XOR functionsa

Property Statistic Topology

Uniform Extreme

Number of attractors Median 8 4
3rd quartile 29b 6b

Attractor lengths Median 105 7
3rd quartile 511b 24b

Transient lengths Median 3 4
3rd quartile 4 5

a Data for networks of sizeN = 16.
b The arithmetic mean is larger than the 3rd quartile.

skewed distributions in networks with high input con-
nectivity.) We find that RBNs with only XOR func-
tions show disordered behavior with a larger number of
attractors and attractors of longer length, and that the
alternative topologies influence these properties in the
manner described above for networks with all Boolean
functions chosen at random (Table 2). Thus, the effect
of topology on the dynamical properties of the network
is independent of internal homogeneity as defined by
Walker and Ashby[10] and Kauffman[9] and shown
in Table 1. These results suggest, but do not prove,
that the influence of the alternative topologies might
also be significant in networks with higher input con-
nectivity, although the biological significance of such
higher input connectivity remains to be established.

3.5. Analysis of expression patterns

In this section, we examine various measures of
information to ascertain the degree of correlation or
randomness within the expression patterns of RBNs
and to see if these measures have any relationship to
the topology of the network.

3.5.1. Overall activity
Fig. 7A and Bshow the relationship between net-

work size and the average active ratio for attractors
and networks, respectively. The differences between
networks with the different topologies increase with
network size. Networks with the more Uniform
topologies exhibit the least activity for large networks.
The average active ratios for networks with Uniform
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Fig. 6. Statistics for transient length in RBNs with four different topologies ((�) Uniform; (�) Exponential; (�) E. coli; (�) Extreme)
and various network sizes. (A) Probability distribution for transient lengths in a network of sizeN = 64 and an Exponential topology. (B)
Modal transient length. (C) Modal probability of the distribution for each topology. (D) Median transient length. (E) 3rd quartile transient
length. An open symbol in this panel indicates that the arithmetic mean is larger than the corresponding 3rd quartile value. The dashed
line shows a square-root relationship.
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Fig. 7. Active ratio for each topology ((�) Uniform; (�) Expo-
nential; (�) E. coli; (�) Extreme) as a function of network size.
Each point represents the average for 1000 networks. (A) Average
for all attractors in 1000 networks. (B) Average for 1000 networks.
Note that the active ratio for a given network is always greater
than or equal to the average active ratio for the attractors of that
network. Note that the data are represented in a semi-logarithmic
plot. See text for further discussion.

and Extreme topologies that utilize all Boolean func-
tions (Fig. 7A) are smaller than those that utilize
only XOR functions (Table 3). This shows that the
dynamical properties of XOR networks (with either
Extreme or Uniform topologies) are more disordered
than those of the corresponding networks that utilize
all of the Boolean functions. The average active ra-
tios for networks that utilize only XOR functions are
smaller for the Extreme topology than for the Uni-
form topology (Table 3).

Table 3
Arithmetic mean for measures of overall activity in RBNs with
different topologies and only XOR functionsa

Property Topology

Uniform Extreme

Active ratio for attractorsb 0.929 0.818
Active ratio for networksc 0.962 0.907
Entropy 14.65 12.81
Mutual information 0.440 1.317

a Averages for 1000 randomly constructed networks of size
N = 16 and 2000 initial binary states for each network.

b Average active ratio for all attractors in all networks. See
Eq. (2) in the text.

c Average active ratio for all networks. SeeEq. (3) in the text.

Fig. 8. Entropy and mutual information calculated from the ex-
pression patterns for each topology ((�) Uniform; (�) Exponen-
tial; (�) E. coli; (�) Extreme) as a function of network size.
Each point represents the average for 1000 randomly constructed
networks. (A) Entropy; (B) Mutual information.
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3.5.2. Entropy and mutual information in
expression patterns

The average entropy of networks with the full range
of Boolean functions increases with network size re-
gardless of topology (Fig. 8A). Those topologies with
a more uniform rank distribution of output connections
exhibit the lowest entropy, which means less random-
ness in their expression patterns. The opposite rela-
tionship can be seen in networks that have only XOR
Boolean functions. The XOR networks with the Ex-
treme topology have lower entropy than those with the
Uniform topology. The dynamical properties of XOR
networks (with either Extreme or Uniform topologies)
are more disordered than those of the corresponding
networks with the full range of Boolean functions
(compare results inTable 3with those inFig. 8A).

The mutual information for networks increases with
network size regardless of topology (Fig. 8B). Those
topologies with a more uniform rank distribution of
output connections exhibit the lowest mutual informa-
tion (Fig. 8B andTable 3), which means less correla-
tion in their expression patterns.

4. Discussion

A number of large complex networks such as the
World Wide Web, electrical power grids, and actors
networks have been treated as abstract graphs to char-
acterize properties associated with their connectivity
[31]. Barabási and Albert[32] have demonstrated
that real networks of large size have nodes with a
power-law distribution of connections. They showed
that networks with the power-law distribution display
a high degree of tolerance against the random removal
of a node[33], however, these same networks are
vulnerable to the removal of a highly connected node.
These studies have concentrated on the relationship
between static structural properties of networks and
their tolerance to removal of a node. The dynamic
properties of these networks have not been addressed
specifically.

Previous studies, which pioneered the use of RBNs
to represent the dynamics of regulatory gene networks
[9], have shown how numbers of attractors and attrac-

tor lengths are affected by the input connectivity, the
types of Boolean functions used, and the size of the
network. The topology of the networks used in these
studies is characterized by a limited number of input
connections (K ∼ 2) and an exponential-like rank dis-
tribution of output connections.

In this paper, we have examined how dynamics
are influenced by connectivity in RBNs that model
regulatory gene networks. We have explored a wide
range of network topologies, as manifested in the rank
distribution of output connections, and related our
results to the topology of the regulatory gene network
for the bacteriumE. coli. Our approach, which takes
this class of models one step closer to an accurate
representation of the real regulatory gene network,
may provide information not only for regulatory gene
networks but also for other complex networks with
similar topologies. The significance of our results and
areas for further development are discussed below.

4.1. Regulatory genetic networks as
decision-making networks

The regulatory gene network of an organism must
be capable of making “decisions” that produce ap-
propriate patterns of gene expression in response to
different inputs from the external environment. The
regulatory gene network of an organism can be viewed
as making decisions that correspond to different at-
tractors. For example, the regulatory gene network of
bacteriophage lambda makes decisions corresponding
to at least two attractors, one for lytic growth and one
for lysogenic growth. The decision-making process is
based on interactions among regulatory elements of
the phage and the external environment provided by
its host[34,35]. If an organism is to survive in many
different environmental conditions, then its regulatory
gene network must be capable of making a large num-
ber of decisions that correspond to a large number of
appropriate attractors. Moreover, these decisions must
be made quickly in order to successfully establish the
organism’s response to stresses such as heat, radia-
tion and starvation. Thus, we might expect organisms
to evolve toward large numbers of attractors with
short attractor lengths. This appears to be the case



158 C. Oosawa, M.A. Savageau / Physica D 170 (2002) 143–161

for the E. coli topology, which has more patterns of
decisions (more different attractors) than the Extreme
topology and shorter times to establish the patterns
(shorter attractor lengths) than the Uniform topology.
It would be instructive to make a direct comparison
of the numbers of attractors in our RBN and in real
E. coli, but this is not possible because the actual
number of attractors for the organism is currently
unknown.

It should be emphasized that there is no exact cor-
respondence between the number of distinct behav-
ioral patterns in Boolean and in continuous models
of real networks. For example, it is well known that
a continuous model of an unbranched pathway with
three dependent variables and end-product inhibition
can in principle exhibit a wide range of dynamic be-
havior. This includes stable and unstable fixed points,
foci, and limit cycles. These models also exhibit a
wide spectrum of relaxation times, depending on the
specific parameter values. The same system modeled
as a Boolean network can exhibit two distinct attrac-
tors with lengths 2 and 6, and the transient lengths
in these cases are zero. The longer attractor exhibits
a wave-like pattern of activity around the negative
feedback loop that is similar to the limit cycle be-
havior of the continuous model. The shorter attractor,
while still showing an oscillatory pattern, is more like
the fixed point of the continuous model. (Indeed, if
one projects the unit cube onto a plane such that the
two vertices of the shorter attractor have overlapping
images, then the shorter attractor appears as a fixed
point and the longer attractor appears as a limit cycle
surrounding the fixed point.) This simple example
also shows that a perturbation can switch the Boolean
network from one attractor to the other without a
positive feedback loop in the network. Thus, the
“decisions” corresponding to such a switch in a RBN
model are different from the “decisions” correspond-
ing to a switch in a continuous model that involves
positive feedback and a cusp catastrophe[36].

4.2. RBNs as discrete dynamical systems

Previous work has demonstrated two critical fac-
tors that influence the dynamical behavior of RBNs,

input connectivity and bias in the choice of Boolean
functions. Here we have confirmed these findings and
provide evidence for another critical factor; namely,
network topology as manifested in the rank distribu-
tion of output connections. We have examined the
standard topology of RBNs (Exponential) and three
alternatives (Uniform,E. coli, and Extreme) designed
to sample the full range of rank distributions from
uniform to extremely skewed. Our results for the
standard (Exponential) topology are consistent with
those of Bagley and Glass[12] and Bhattacharjya and
Liang [15]. Our results for the alternative topologies
show that smaller numbers of attractors and shorter
attractor lengths are characteristic of the more skewed
topologies. The numbers of attractors and the attractor
lengths, two properties that increase with network size,
have very similar distributions that differ markedly
from the distribution of transient lengths. The typ-
ical tendencies between topologies, as explained
above, are found in many figures (Figs. 3, 5 and 6).
They clearly demonstrate that topology is another
critical factor influencing the dynamical behavior
of RBNs.

The connections between nodes determine the
routes for signal transmission. In networks with
highly skewed topologies a few nodes account for
a large portion of all the output connections. Thus,
most nodes in such networks have a high degree of
dependence upon the dictatorial nodes. This depen-
dence is evident inFig. 8B andTable 3, which show
that mutual information is greater in networks with
more skewed topologies. From the results inFigs. 3
and 5, which show that networks with more skewed
topologies have fewer attractors and shorter lengths,
we also would expect that an increase in mutual in-
formation would be accompanied by a decrease in the
number of attractors and in attractor length.

The differences in both entropy (Table 3 and
Fig. 8A) and active ratio (Fig. 7) between networks
with all Boolean functions and those with only XOR
Boolean functions show that the properties of XOR
networks are more disordered. These two types of
networks are able to increase their mutual informa-
tion in diametrically opposed ways through the use
of alternative topologies. XOR networks, which are
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more disordered to begin with, increase mutual infor-
mation with more skewed topologies, which decrease
entropy (Table 3), whereas full Boolean networks,
which are more rigidly ordered to begin with, increase
mutual information with more skewed topologies,
which increase entropy (Fig. 8). This is again an
indication that high mutual information is achieved
in an intermediate zone between frozen and chaotic
behavior.

The active ratio in networks with more Uniform
topology is smaller, which means a larger number of
genes that are unable to change state both within an
attractor and between attractors. However, the number
of attractors in those networks is larger (Fig. 3), which
suggests that networks with more Uniform topology
will tend to have a higher degree of similarity in their
patterns of gene expression (as represented by the tem-
poral sequence of the binary state vector).

The limited number of input connections and the
skewed distribution of output connections exhibited
by the bacteriumE. coli are consistent with a set
of well-established experimental observations. This
topology implies that most genes will have a small
number of input connections from, and output con-
nections to, other genes. This suggests that many gene
systems can be studied as relatively isolated subsys-
tems via the experimental manipulation of the man-
ageable number of input and output variables. This is
consistent with the wealth of experience in molecular
genetics that has accumulated over the past several
decades. On the other hand, this topology implies that
a few genes will have a large number of output con-
nections to other genes. These are the global regula-
tors whose true sphere of influence has been revealed
only with the advent of microarray technologies for
monitoring the expression profile of the entire genome
[4,5].

4.3. Extension of the results

The E. coli topology is the first biologically rel-
evant distribution of connections to be incorporated
into a RBN. This distribution is based on experi-
mental data[26,28] and theoretical predictions of
regulator–regulon relationships forE. coli [27]. The

resulting E. coli rank distribution is based mainly
on data forσ 70 promoters. However, the complete
genome sequence has been determined forE. coli
[37] and dozens of other microbial species[38], so
we can expect that data on the full connectivity of
regulatory gene networks for several organisms will
soon become available. These data will permit a more
detailed exploration of the generality of the results
presented here.

Harris et al. [17] and Kauffman[18] have sug-
gested that eukaryotic cells, which have higher input
connectivity, are able to avoid chaotic behavior by bi-
asing the choice of Boolean functions toward higher
internal homogeneity. Their results demonstrate that
ordered dynamics can be achieved even with high
input connectivities (K = 3–5) when networks have
this biased selection of Boolean functions. They found
support for this prediction in their analysis of papers
characterizing transcriptional regulation of eukaryotic
genes. Our results suggest another strategy by which
eukaryotic cells with higher input connectivity are
able to avoid chaotic behavior, namely, evolving a
more skewed distribution of output connections. This
prediction could be tested when more information
becomes available for the complete genome sequence
of higher eukaryotes.

Synchronous updating of the states is a prominent
feature of the standard model that we have retained for
reasons of computational efficiency and for purposes
of comparison with the existing literature. However,
we have done limited preliminary experiments with a
nonsynchronous updating scheme and found roughly
similar results (data not shown). A more sophisti-
cated algorithm is required for the determination of
the transients and attractors, and the lengths of the
transients are much longer, both of these factors con-
tribute to excessively long computation times. Thus,
we have postponed further analysis with this ap-
proach. A statistical approach developed for networks
described by continuous variables has been applied
to cases with a few different connections but many
different values for the parameters characterizing the
strengths of the connections[39]. Again, the compu-
tation time proved impractical for the large number
of randomly connected networks examined here.
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These alternative approaches have the potential to
better represent real genetic networks, and further ef-
forts to improve their computational efficiency are in
progress.

The molecular mode of gene control is predicted
to be a function of the demand for use of a regula-
tor in the expression of the regulated genes[40], the
positive mode is associated with high demand and the
negative mode with low demand. Numerous experi-
mental results support these predictions. This demand
theory is based on natural selection for robustness in
response to mutations in the regulatory mechanisms.
The RBNs used for the studies in this paper could be
used to model this evolutionary process and thereby
provide an additional means to explore the implica-
tions of this demand theory.
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Appendix A. Entropy

The entropy of a given pattern of expression (binary
sequence) for a finite length attractor is defined as:

H = −[p0 log(p0) + (1 − p0) log(1 − p0)], (A.1)

where the logarithms have base 2 andp0 represents
the proportion of zeros in the expression pattern.

A.1. Joint entropy

The joint entropy of two binary sequences, IN and
OUT, is defined as:

H(IN; OUT) =
∑

i,j=0,1

pIN OUT
ij log(pIN OUT

ij ), (A.2)

wherepIN OUT
ij is the joint probability that statei in the

sequence IN and statej in the sequence OUT appear
at the same time.
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