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PHYSICAL REVIEW A

VOLUME 11, NUMBER 5 MAY 1975

Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

Dan Dill
Department of Chemistry, Boston University, Boston, Massachusetts 02215

Anthony F. Starace*
Behlen Laboratory of Physics, The University of Nebraska, Lincoln, Nebraska 68508

Steven T. Manson'
Department of Physics, Georgia State University, Atlanta, Georgia 30303
(Received 3 October 1974)

The photoelectron asymmetry parameter 8 in LS coupling is obtained as an expansion into
contributions from alternative angular-momentum transfers j,. The physical significance of
this expansion of 8 is shown to be that (i) the electric-dipole interaction transfers to the atom
a characteristic single angular momentum j; =1,, where !, is the photoelectron’s initial
orbital momentum, whereas (ii) angular-momentum transfers j,=1, indicate the presence of
anisotropic (i.e., term-dependent) interaction of the outgoing photoelectron with the residual
ion. For open-shell atoms the photoelectron-ion interaction is generally anisotropic; photo-
electron phase shifts and electric-dipole matrix elements depend on both the multiplet term
of the residual ion and the total orbital momentum of the ion-photoelectron final-state channel.
Consequently, 8 depends on the term levels of the residual ion and contains contributions from
all allowed values of j;. These findings contradict the independent-particle-model theory for 8,
which ignores the final-state electron-ion interaction and to which our expressions reduce in
the limiting cases for which only j; =1, is allowed, namely (a) spherically symmetric atoms
(e.g., closed-shell atoms) and (b) open-shell atoms for which the electron-ion interaction is
isotropic (e.g., very light elements). Numerical calculations of the asymmetry parameters
and partial cross sections for photoionization of atomic sulfur are presented to illustrate the
theory and to demonstrate the information on electron-ion dynamics that can be obtained from

the theoretical and experimental study of 8 for open-shell atoms.

1. INTRODUCTION

We obtain in this paper explicit expressions, in
LS coupling, for the angular distribution of photo-
electrons produced by electric dipole ionization of
an arbitrary open- or closed-shell atom. QOur
treatment is based on the angular momentum
transfer expansion for the differential photoion-
ization cross section!™® and is intended to provide
a theoretical framework that allows angular dis-
tribution calculations comparable in accuracy to
the best calculations of total photoionization cross
sections. The formulas we obtain show explicitly
the influence of anisotropic electron-ion interac-
tions on the electron angular distribution and at
the same time explain the success of the Cooper-
Zare* independent-particle-model theory in pre-
dicting such distributions for closed-shell atoms.>
For other than the lightest open-shell atoms,” how-
ever, we expect anisotropic electron-ion interac-
tions to produce photoelectron angular distribu-
tions that deviate significantly from the predic-
tions of the Cooper-Zare theory.

Our conclusions, described above, are contained

6
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implicitly in the LS-coupling formulas for the an-
gular distribution asymmetry parameter 8 obtained
by Lipsky®® and by Jacobs and Burke,” whose for-
mulas are in principle equivalent to ours. The ad-
vantage of the angular momentum transfer expan-
sion employed in this paper, however, is that such
conclusions follow explicitly from our formulation.
Hartree-Fock calculations of the angular distribu-
tion of electrons photoionized from atomic sulfur,
a typical open-=shell atom, are presented to illus-
trate our theoretical predictions.

In Sec. II we summarize the angular momentum
transfer formulation of the differential photoioniza-
tion cross section. We also exhibit how the angu-
lar momentum transfer probes anisotropic elec-
tron-ion interactions. The formulas in this sec-
tion depend on the amplitude for photoionization
with a particular value of the angular momentum
transfer. The form of this amplitude in LS cou-
pling, a main result of this paper, is obtained in
Sec. III. In Sec. IV we illustrate the theory by cal-
culating the photoelectron angular distribution of
atomic sulfur. Lastly, we discuss our conclusions
in Sec. V. A brief report of these results has been
published elsewhere.!
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II. SUMMARY OF THE ANGULAR MOMENTUM
TRANSFER FORMULATION

The ejection of an electron ¢~ from an unpolay-~
ized atomic target A by electric dipole interaction
with an incident photon y may be represented sche~
matically as

AWomo) +y(jy=1,7,==1)
~A*J )+ e [lsf, 1, =(-1)"]. (1)

The differential cross section for this process can
be separated into contributions characterized by
alternative values of the angular momentum trans-
fer,

Je=iy-1=d,+8-13,, @)
provided no measurement is made of either the
photoelectron spin or the orientation of the resid-
ual ion. The vector}t is the angular momentum
transferred between the unobserved initial and
final angular momenta in the reaction, i.e., be-
tween the total angular momentum 30 of the target
A and the combined angular momenta of the resid-
ual ion A+ and the photoelectron spin §, which we
denote J —J +3. Allowed values of j, are deter-
mined by conservatlon of angular momentum J
and parity 7 in reaction (1):

J=3, +']?7=3c +5+1, 3)

7= =my=7,(=1). 4)

The general form of the differential cross section
for reaction (1) is™

do

oI Z11 +BP,(coss)]. (5)

Here o is the total cross section, 8 isthe angle
between the axis of linear polarization of the inci-
dent light and the direction of the outgoing photo-
electron, and B is the asymmetry parameter. The
dynamical features of the angular distribution are
thus contained in 8, which may assume values in
the range -1 < 8<2, corresponding to distribu-
tions varying from sin®¢ to cos?4. [Though Eq. (5)
assumes linearly polarized incident light, unpolar-
ized,™ partially polarized,** and elliptically polar-
ized” incident light produce angular distributions
that may be expressed in terms of 8.]

The resolution of Eq. (5) into contributions cor-
responding to alternative values of j, requires
first that one determine the allowed values of 7,
from Egs. (2)-(4). Second, each value of j, is
characterized as being either parity favored or
parity unfavored,? corresponding to whether the
parity change of the target m,7, is equal to +(—1)¢
or —(~1)’t, respectively. The total cross section
o and the asymmetry parameter 8 may then be ex-

pressed in terms of cross sections ¢(j,) and asym-
metry parameters g(j,) for a particular value of
i, as follows?;

o= Z U(jt)y (6)
Jtedes
tav unt
op= }:(Zounmmmm—}:ou»u,ﬁz). )
Jes It

In Eq. (7) we have summed the favored and un-
favored values of j, separately, but, as seen from
Eq. (11) below, Eq. (7) represents g as a weighted
average of 5(j,). Note that while Egs. (6) and (7)
also have sums over J (cf. Ref. 3, p. 1981) we do
not indicate the dependence of ¢(j,) and 8(j4,) on
quantum numbers other than j, until Sec. III of this
paper. This dependence is hidden in the scatter-
ing matrix amplitudes S,(4,), in terms of which
o(j,) and 8(j,) are given by®

2 1., = —
U(jt)tdvhnxzzf;.:_l['S+(jt)l2+’S-(jt)lz]; (8)
25 =
O'(jt)unf = "xz 2;7;0-:_11 'SO(]t) IZ ’ (9)

B(jt)fav={(jt+2)’§+(jt)lz+(jt-l)l§-(jt)lz
=305, + D[S, (IS (G)" +e.c. ]}/
{@j + DS, G 12+ 15-GI 21}, (10)

B(jt)unf:—l' (11)

In these equations, X is the photon wavelength
divided by 27 and c.c. denotes complex conjugate.
The parity-favored cross sections and asymmetry
parameters, Eqgs. (8) and (10), depend on photo-
ionization amplitudes 5,(j,), the “+” denoting the
value of the photoelectron’s orbital angular mo-
mentum, /=j,+1. The parity-unfavored partial
cross sections in Eq. (9) depend on the amplitudes
S,(4.), the “0” denoting I=j,. That the asymmetry
parameter for any parity-unfavored value of j, is
-1 independent of dynamics, as indicated in Eq.
(11), is discussed in Ref. 2.

The scattering amplitudes §,(j,) may be ex-
pressed as a sum of reduced electric dipole ma-~
trix elements, each corresponding to a given total
angular momentum J 3:

S1(3e) =(T;8)5018(j ) | agdy iy = 1)

J, 1 J

=n(X) (~1)70 "‘13{ s }

; 1 J, g
X, 5l = | PP 0pdg) . (12)

Here, n(X)=4nofiw/3%%, J=(@2J+1)¥%, o, denotes
the set of quantum numbers necessary to uniquely
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specify the initial state, and the minus sign indi-
cates that the final state is normalized according
to incoming-wave boundary conditions. In Eq. (12)
the “+’” and “0” subscripts of the scattering-matrix
amplitudes are replaced by the appropriate value
of I. As it stands, Eq. (12) is completely general.
The LS-coupling form of §,(j,) in terms of reduced
electric dipole matrix elements is derived in

Sec. III.

Before continuing with this formal development,
however, we discuss in the rest of this section
the physical significance of the angular momentum
transfer and, in particular, its role as a probe of
anisotropic electron-ion interactions.

The physical significance of angular momentum
transfer as a direct probe of anisotropic electron-
ion interactions is illustrated in Fig. 1. In this
analysis it is convenient to think of the photoioniza-
tion process as having two stages, namely, an ini~
tial stage A of photoabsorption proper and a subse-
quent stage B of escape of the photoelectron from
the rest of the atom. The angular momentum
transfer is always equal to the difference between
the angular momentum input to the atom (namely,
the angular momentum j),:l of the electric dipole
interaction) and the angular momentum output from
the atom (namely, the photoelectron’s final-state
orbital momentum 1). Thus the angular momentum
transfer, 3, =?y —T, is the net angular momentum
transferred to (or deposited in) the target by the
photoionization process. (Note that since we con-
sider experiments in which the photoelectron’s
spin § is not measured, § is included as part of
the angular momentum of the residual target.) The
allowed values of j,, however, are different in the
two stages of the photoionization process.

In the initial stage A [illustrated in Fig. 1(a)] the
photoabsorption imparts j, =1 unit of orbital mo-
mentum to the photoelectron, which has initial or~
bital momentum 1, (in an independent-~particle
model), yielding a final orbital momentum 1 =T0 +’jy.
Therefore in stage A the angular momentum trans-
ferred to the target is

Elt E_er _T’ ="'-io: (13)
where the magnitude j; has the single value j} =1,
Furthermore, owing to parity conservation, !
=l,+1, and hence j; =1, is a parity-favored angu-
lar momentum transfer.

During the subsequent escape of the photoelec-
tron in stage B additional angular momentum trans-
fers can arise, within the allowed range deter-
mined by Eq. (2), from anisotropic interactions
of the photoelectron with the rest of the target. In
this report we consider only spin-independent in-
teractions in LS coupling. Therefore the interac-
tion in stage B is that between the orbital motion

AND MANSON 1
of the photoelectron and the net orbital motion of
the electrons of the residual ion core, as illus-
trated in Fig. 1(b). This interaction produces a
dynamical coupling of the respective orbital mo-
menta 1’ and I,,. Owing to the resulting angular
momentum exchanges K between the photoelectron
and the core, only the total angular momentum L
is conserved. (It is because of this dependence on
L that we call these interactions anisotropic.) In
particular, the photoelectron orbital momentum
can change from T tol during the departure of the
photoelectron from the atom, in which case the
angular momentum transfer is no longer j}=-1I,
but

Je=ly-1=ji -k, (14)
as illustrated in Fig. 1(c). Note that even if the
magnitudes of 1’ and i:; remain unchanged, a pre-
cession (albeit quantized in units of %) about the
total orbital momentum L is sufficient to produce
a change in the magnitude of}t.

It is at this point that the connection between the
present formulation and that of the Cooper-Zare
independent-particle model* emerges most clearly.
The Cooper-Zare model treats the residual ion
core as a spectator to the photoionization process.
That is, stage B is ignored altogether, in which
case only the single (parity-favored) angular mo-
mentum transfer j, =1, arises. In addition, the
amplitudes S,(j,=1,) assume limiting forms [cf.
Eq. (35) below] which, when substituted in Eq. (10),
give the Cooper-Zare formula for the asymmetry
parameter. These points are developed in detail
in the following sections.

1. PHOTOIONIZATION AMPL[TUDESE,(]',)
IN LS COUPLING

Our task in this section is to obtain the LS~
coupling form of the reduced electric dipole ma-
trix element in Eq. (12). Before specializing to
LS coupling, however, let us consider the problem
in general. The form of the reduced dipole matrix
element in Eq. (12) is inconvenient for numerical

FIG. 1. Tllustration of the origin of multiple angular
momentum transfers in atomic photoionization reactions.
See text for discussion.
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calculation for two reasons. First, the final
state ((J,s)J, L, J~| is defined in terms of the dis-
sociation-channel quantum numbers appropriate
to the electron-ion system at infinite separation.
In general it is more convenient to calculate the
electric dipole matrix element for transition to
one of the electron-ion eigenchannel states (aJ/,
where « denotes the eigenchannel coupling scheme,
Second, it is much more convenient to calculate
rveal matrix elements, and for this reason a trans-
formation to the standing-wave representation is
desirable.

For these reasons, we expand the dipole matrix
element in Eq. (12) as follows?:

(.M sl = [ PE [ arp )

=i-zeia<Jcr)Z((JCs)Jcsll a) ot ﬁ(w(aJ”P[ﬂ ” aoJo) .
o (15)

Each term in the summation in Eq. (15) comprises
three elements:

(i) The phase factor i~'ei-oW e+ 3@ yhich ef-
fects the change from incoming-wave to standing-
wave normalization. Here ¢(J,!) is the Coulomb
phase,

o, ) =argT(l+1-3/Ve), (16)

which depends on the binding énergy I(J,) of the
residual ion fine-structure level J, through the
photoelectron kinetic energy € measured in Ryd-
bergs:

e=Hw=-IJ,). (17)

The phase 6(a) is the photoelectron phase shift
with respect to Coulomb waves in the eigenchan-
nel ¢ and represents the effect of short-range
electron-ion interactions.

(ii) The real transformation coefficients
((J,8)J, ] @) which relate the eigenchannel cou-
pling scheme to the dissociation channel coupling
scheme.

(iii) The veal reduced dipole matvix elements
(OZJHPE13 | g Jo)-

Thus far Eq. (15) and all preceding equations
are exact for electric dipole transitions. Approx-
imations must be made, however, in the represen-
tation of the eigenchannels (o/| and their phase
shifts 5(a) as well as in the representation of the
initial state |a@,J,). We proceed in the rest of this

. section to derive the LS-coupling form of Eq. (15)
and then to reduce that further by assuming the
use of radial one-electron wave functions appro-
priate for given term levels of the ion core and
the electron-ion system.

In LS coupling ¢, and « are given by

@y =LySy, a@=(L,D)L(S,s)S. (18)

Implicit in the definition of ¢, is that we have an
atomic configuration having a single open shell

¥, where I, is the orbital angular momentum and
N is the occupation number. Similarly « implicit-
ly indicates the configuration of the final state after
photoionization, which is of the form I¥~'7., The
transformation coefficient in Eq. (15) may be found
either algebraically® or graphically’ to be

(LS ) L[ (LL(S,s)S)
:(_1)2J05+(LC+I+L)+(SC+3+s)jcj s
{LC S, JC}{'L S J}
X .
s oy Shlds 1 L) 19

Finally, we must evaluate the LS-coupling form
of the reduced dipole matrix element

(T | PP @y 70) =((L D L(S,5)S, T | PP | LoS,, o) -
(20)

This evaluation may be carried out graphically,®®
but in what follows we shall proceed algebraically.
The first step in the evaluation of Eq. (20) is to
make a fractional parentage expansion of the ini-

tial state,

lLoSo: Jo) = Z “Zolo)Lo(S_os)So: Jo)
L3,
X (I 1Ly, L 1Y LyS,) - (21)

Since the ionization process is spin independent,
the second step is to split off the geometrical de-
pendence of the matrix element in Eq. (20) on spin
and total angular momentum quantum numbers?®;

(LD L(S,8)ST | L[ (Zy1) Lo (Sy5)Sos o)

A ~
:(—I)L*S”O”JJO{LO I So}ﬁ(SC,SO)G(S,SO)
X (LOL || PYY ) (Toly) L) - (22)

The third step is to reduce the matrix element of
the electric dipole operator to a one-electron ma-
trix element by factoring out the geometrical de-
pendence on core and total orbital momenta®®;

Ll pti [ (Zolo) Lo)

{L L, 1)
=NV2 (=1 LetlogtL+17 1

(-1) LYy 1 L
X 8(Lg, L[| PEY[1,). (23)

In this equation the factor N*/2 is a weight factor
due to the presence of N equivalent electrons in
the initial state.’®?! The last step is to factor the
reduced one-electron matrix element into its ra-
dial and angular parts®:
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@ PEYI 1) =) | i)REe S (24)

where the angular part is
. <l 1 lo>
1 (1M 7

and the radial part is

(L DL(S,9)S, T P LoS, Jo)

J J,
=NY2(I¥-1L S, zoJ}l{,VLOso)(-1)Lc+50”0+1“301:£0i“0{ }{

AND MANSON 11

REeSel = f dr 3L )el, LS| Wy (ngloy LyS, | 7).
0
(26)

Note particularly that this radial part is calculat-
ed using radial wave functions dependent dynam -
ically on the angular momentum and spin quantum
numbers of the initial state, of the final state, and
of the residual ion core.

Putting Eqs. (21)~(26) together, we find for the
reduced dipole matrix element in Eq. (20)

1) (L L, 11<z 1 zo>
LoScl
Lo L sl 1 rJ\o o o/Ba - @7)

c

Finally, substituting Eqs. (15), (19), (20), and (27) into Eq. (14) and noting that (-1)70=7 =(-1)7 7o,
we find for the scattering amplitude the following result:

11
§,(jt)En(X)N”Z(ZQ"lLCSC,lol}lg’LOSO)i"e"”“’C”(-1)36*5*50ﬁ0<0 0 0)3030303130@

LoScL LoScL {Lo L: L
€

Xzeié 1 Rep 1?2
L

; 1 L}(_1)2J08+SO+I+L Z (__1)J
J

8

{JCSJ Z}SJO J 11%'50 J 1}
1 4, JO,)\L L, sl ¢ o)

Since we have assumed no dependence of the phase shifts and radial dipole matrix elements on total angu-
lar momentum J, the sum over J in Eq. (28) may be performed analytically using the Biedenharn identity®
to yield the desired expression for the scattering amplitude in LS coupling:

§l(jt) =1’L(7\)N1/ z(lév_chSc; lo}}lgLoSO)i"ei"("C”Q(j,, J,, Jcs)(_l)(L0+Lc+ 1) +(S;+s+ 80 +(Jcs—J0—jt)jO"zo(l 1 lo>

% Z eiaeLICSCLReZ;CSCL f,z {LO Lc 7:}{Lo Lc lO
L

! 1 L ! 1 L
where
Q(jt,Jc,chzioéoﬁcis{‘” Le S°}{“ Le L°}.
Sy 8§ Jeg) (So Jy Jogs

Though Eq. (29) gives the LS-coupling form of the
scattering amplitude, we see that there is a geo-
metrical dependence on the quantum numbers J
and J_ relating to the fine-structure levels of the
ionic core. (We have neglected any dependence of
the phase shifts %%~ and radial dipole matrix
elements R%%" on the fine-structure levels.) We
consider this dependence on J,, and J in turn.

All of the dependence on J, in Eq. (29) is con-
tained in the geometrical factor (-1)%s~ 7o
xQ(j;d,,d, ), Which depends additionally on quan-
tum numbers that are either fixed for a given ion-
ization process (e.g., s, L,, S, L., S., J,) or enter

000

(29)

(30)

f

incoherently in the differential and total cross sec-
tions (e.g., j, in addition to J,,). The square of
this factor, with phase +1, enters into the defini-
tions of the cross section [Eq. (6)] and the asym-
metry parameter [Eq. (7)], each of which involves
a summation over J,,.. Accordingly, it is conven-
ient to define a new quantity

QU= 3 QUind ey e, (31)

"CS

which gives the statistical weight with which ioni-
zation probability for a given j, is distributed
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among the possible fine-structure levels J,, since

> Qi do)?=1. (32)

Ie

Note, however, that in Eq. (29) there is an addi-
tional dynamical dependence on J, arising from the
Coulomb phase o(J 7). Often, though, the fine-
structure separations of the residual ion are not
resolved. Then o(J,!) can be taken as independent
of J,, and the dependence of the cross sections
and asymmetry parameter on J, can be removed
altogether by application of Eq. (32).

Having obtained the form of the scattering ampli-
tude in LS coupling in Eq. (29), it is instructive to
return to our discussion in the last section con-
cerning the role of j, as a probe of anisotropic in-
teractions, as illustrated in Fig. 1. The allowed
values of j, are those consistent with the triangu-
lar relations {L,L.j,} and {l1j,}, implied by the
first 6j symbol in Eq. (29). The coupling of the
electron to the residual ion [cf. Fig. 1(b)] is re-
flected in the dependence of the phase shifts 6%¢%~
and dipole matrix elements R%*%’ on the total ang-
ular momentum of the electron-ion complex. Only
when these phases and matrix elements do not de-
pend on L (i.e., when the electron-ion interaction
is isotropic) is j, restricted to the single value
ji=1ly For in this case the dynamical weight fac-
tors in Eq. (29) may be extracted from the sum-
mation, since

LeSeL LeScL i
i xc ¢ pcse isotropic 5. R
e el interaction et ) (33)
and the summation over L may be performed ana-

lytically:

3L {LO L ]t}{% L ’0}:252&1‘“ .

2 ! 1 L)l 1L
(34)

The scattering amplitude then depends only on the
final orbital angular momentum [ of the photoelec-
tron,

gl(jt: lo) oci—lei(a€,+8€l)zz0(l 1 lo

>R€l’ <35)
0000

where the proportionality constant indicates that we
have not written down all the other factors from
Eq. (29) which depend on quantum numbers that are
fixed for a given photoionization process. These
other factors do not contribute to the asymmetry
parameter in Eq. (10) since they occur in both nu-
merator and denominator and thus cancel out.
Setting j, =/, in Eq. (10) and substituting the scat-
tering amplitude from Eq. (35) leads to the asym-

metry parameter §(4,) of the Cooper-Zare inde-
pendent-particle model.*

IV. APPLICATION TO SULFUR PHOTOIONIZATION

To illustrate the theory developed in the last two
sections we calculate the angular distribution of
photoelectrons ionized from atomic sulfur accord-
ing to the reaction

S(3p* 3P) +y - S* (3p° 4S, 2D, 2P) +e~ . (36)

For each of the residual ion terms L S, we present
in Table I the allowed values of photoelectron ang-
ular momentum /, angular momentum transfer j,,
reaction parity (where parity change =+1 is fa-
vored and parity change = -1 is unfavored), and
the allowed values of total angular and spin mo-
menta for the electron-ion system. We see that
the “S-ion term has only the single angular momen-
tum transfer j,=1,=1, but that the 2D and P ion
terms both have other values of j,; including parity-
unfavored values. Note that for the 2D- and 2P-ion
terms the /=2 states have two or more allowed
values of LS, implying that there will be interfer-
ence between phase shifts belonging to different
final-state channels.

It should be noted that the values of the quantum
numbers appearing in Table I are all those ob-
tained from Eqs. (2)-(4) that ave consistent with
our approximations, given in Sec. III. In particu-
lar, angular momentum and parity conservation,
represented by Egs. (2)-(4), allow the photoelec-
tron orbital angular momentum [ to have the values
0, 2, 4, and 6 for the reaction

S(3ptd,=2) +hv = ST (3p*d,=3) +e ().

However, in our LS-coupling single-configuration
approximation for the ground state the electric
dipole operator restricts the photoelectron to =0,
2 [cf. Eq. (25)]. One may obtain I=4 photoelec-
trons in LS coupling by considering the interaction
of the ground 3p* configuration with other highly
excited configurations, as found by Conneely,
Smith, and Lipsky.* To obtain /=6 photoelectrons
one must either abandon LS coupling and consider
relativistic interactions for which only the total
angular momentum is conserved, or else, keep LS
coupling but consider the photoionization of highly
excited ground states to excited ion states that do
not interact with the configuration 3p®. This pro-
motion of the photoelectron to I=4 or [=6is a
specific example of anisotropic interaction as rep-
resented schematically in Fig. 1(b).

For conciseness we shall concentrate in what
follows on the photoionization reaction leading to
the 2 D-ion term since it shows the strongest an-
isotropic electron-ion interactions. For this ion
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term the scattering amplitudes S,(j,) in Eq. (29)
for the allowed values of 7 and j, listed in Table 1

are

Sy(1)=Ciellost 8O R (D), (37a)

Si(1)=C(2Y2/5)e! %[5t S°S) R (35) +5¢°P R, (°P)

+2eBd° PR (CD)], (37b)

-S‘d(z) =C(2Y2/5)et % —-—:‘,—e"sd(ss)Red(aS) _ %6154(3P)R€d(3p)
+5e" PR ,CD)], (37¢)

§d(3) =c(2v 2/5)6104[%615,,(%)13“(38) _ %eiéd(sP)Red(SP)

+é_eiéd(3D)R€d(3D)] . (37d)

In Eq. (37) C denotes those constant factors in Eq.
(29) that are common to all channels, s and d de-
note /=0 and =2, and R.,(®S), for example, de-
notes the radial dipole matrix element R%%" for
L,S,=%D, L=0, and l=2. Note that we have ig-

J
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TABLE I. Allowed values for the ion-core term level
L, S, , photoelectron orbital angular momentum?, angu-
lar momentum transfer j,, reaction parity T, (—~1)%¢,
and total orbital and spin angular momenta L S for the
reaction S (3p%3P) +hv —S*(3p% 45, 2D, P) +e"~,

LS, i It Parity LS
4g 0 1 +1 (fav) ’s
‘s 2 1 +1 (fav) 3p
D 0 1 +1 (fav) 3D
’p 2 1 +1 (fav) 3p, P, %S
p 2 2 -1 (unf) 3p, %p, 3
p 2 3 +1 (fav) 3p, P, %
p 0 1 +1 (fav) p
p 2 1 +1 (fav) 3p, p
p 2 2 —1 (unf) 3p, p

nored the dependence of the Coulomb phase shifts
0s and g, on ion-core fine-structure levels J,, as
discussed at the end of the previous section.

The asymmetry parameter for photoionization to
the ?D-ion term is given by Eqs. (7)-(11):

S8

A 35,17 +3]5,(1)2 1515,(2) 2 +7|5,(3) |2

In Eq. (38) the common factor C in Eq. (37) cancels
in numerator and denominator. As pointed out in
the last section, Eq. (38) reduces to the Cooper-
Zare result for 8* when the phase shifts 6%%” and
radial dipole matrix elements RL;SCL become inde-
pendent of L,S.L. It is of interest to see how this
occurs for this particular example. Note first
that S;(2)— 0 and 5,(3)~ 0 in Eqs. (37¢) and (37d)
when the phase shifts and dipole matrix elements
become identical. We also see that the squared
modulus of each of these scattering amplitudes,
having j, #[,=1, is nonzero partly because the re-
sulting factors cos[5,(S) - 5,3P)], etc., in the
cross terms are not unity. These same factors al-
so arise in cross terms of [S,(1)|? and are partly
responsible for changing the value of this modulus
from what its (nonzero) value would be in a Coo-
per-Zare model calculation. For these reasons
we regard the magnitude of phase-shift differences
gleSel — §feSel’ to be an indication of the strength of
anisotropic electron-ion interactions and hence of
the validity of the Cooper-~Zare model for §.*

The scattering amplitudes in Eqs. (37a) and
(37b), having j,=1,=1, contribute to the cross
section and the asymmetry parameter 8 whether
the phase shifts and matrix elements are identical
or not. The scattering amplitudes in Eqs. (37c)
and (37d), however, having j,#[,=1, contribute
only when the phases and matrix elements are dif-

(38)

r

ferent from one another. An index of the strength
of angular momentum transfers j,# [, is thus the
fraction {0 —o(j,=,)]/0, where o is the photoioni-
zation cross section and o(j,=1,) is the partial
cross section corresponding to j,=/,. For photo-
ionization to the D ion term of sulfur this ratio
is expressed as

[o-0(1)]/0=[515,(2)12+7|5,(3)|%]/
[31S,(1)[2+3]5,(1)?
+515,(2)12 +1715,(3)|2] . (39)

To evaluate Egs. (37)-(39) we used continuum
Hartree-Fock (HF) wave functions obtained by
solving the equations given by Dalgarno, Henry,
and Stewart® using methods discussed fully by
Kennedy and Manson.® These continuum wave func-
tions depend on both the ionic term level and the
total orbital angular momentum. Discrete HF
single-particle orbitals for the neutral atom and
for the ion were obtained from the tabulation of
Clementi.*®

For comparison, we have also carried out a
Cooper-Zare type of calculation employing Her-
man-Skillman®’ (HS) wave functions. The continu-
um HS wave functions are calculated in the average
sulfur potential appropriate to the ground configu-
ration as tabulated by Herman and Skillman.?”
These wave functions depend neither on the ion
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core level L,S, nor on the total angular momentum
L, and thus the phase shifts and radial dipole ma-
trix elements depend only on €}, and Eq. (37) re-
duces to

S,(1)=C3ellost89R | (40a)
S,(1)=C(22/3)gioat SR | (40b)
5,(2)=5,(3)=0. (40c)

Note that since the HS continuum wave functions
do not depend on the ionic term level the asym-
metry parameters for each ion term, when plotted
versus photoelectron kinetic energy €, are iden-
tical. Discrete wave functions for both the ion and
the atom were taken to be the tabulated HS neu-
tral-atom discrete wave functions.

In Fig. 2 we have plotted HF phase shifts &Ll
for the ionic term level 2D as a function of photo-
electron kinetic energy €. The three allowed val-
ues of L are listed in Table I. These phase shifts
differ by as much as 0.7 rad, indicating that an-
isotropic electron-ion interactions are significant-
ly large.

In Fig. 3 we have plotted the three asymmetry
parameters corresponding to the three alternative
ionic term levels resulting from photoionization of
the sulfur atom. Contrary to the Cooper-Zare
model, these asymmetry parameters are signifi-
cantly different from one another when plotted as
a function of photoelectron kinetic energy. In this
plot the length formula for electric dipole transi-
tions has been used since this is the correct one
for HF calculations.?® In Table II, however, we
list calculated HF asymmetry parameters using
both length and velocity formulas for the dipole
matrix elements in order to show that for most en-
ergies listed the differences between the asym-
metry parameters for different ion terms are
larger than the length and velocity difference for
a given ion term. We also list for comparison the

2.0f
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FIG. 2. Hartree-Fock d-wave phase shifts 5£‘gSCL for
the 2D sulfur-ion term versus photoelectron kinetic en-
ergy ¢ for alternative allowed values of L. Solid line,

L =0 li.e., the state 3p°(2D)ed3S]; dashed line, L =1(P);
dot-dashed line, L =2(°D).
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FIG. 3. Asymmetry parameters 3(°P — L.S,) for the
photoionization reactions $@3p*3P) — S*(3p°L,S,) +e~ as
a function of photoelectron kinetic energy. Solid line,
4S ionic term; dashed line, 2D; dot-dashed, 2P.

B8 parameter calculated using HS wave functions
and the Cooper-Zare formula for 8 [i.e., Eq. (40)].
The HS wave functions are quite different from the
HF wave functions, and thus the HS asymmetry
parameter does not seem to be an “average” of the
HF asymmetry parameters at low energies.

In Table III we have plotted HF and HS cross sec-
tions for photoionization of sulfur. Note that the
HS cross section is a total cross section and would
correspond to the sum of the three HF partial
cross sections at a given pholon enevgy. However,
we have plotted the HF partial cross sections as
functions of photoelectron kinetic enevgy for com-
parison with Table II. Comparing Tables II and
ITI, we see that the largest differences in the
asymmetry parameters occur for energies 1.5
<€ <2.1 Ry. This is just before the Cooper mini-
ma®® in the cross sections, which occur in the re-
gion 2.1 <€ <2.8 Ry. The cross sections in the re-
gion 1.5 € <2.1 Ry are of the order of 107! cm?,
and thus measurement of 8 for the different thresh-
olds should be experimentally possible, if not for
sulfur then for some other element. Simply put,
we wish to emphasize that the differences we have
found between the asymmetry parameters for the
different ionic term levels are not dependent on
being at a cross-section minimum. Indeed, as
seen in Fig. 3 and Tables II and III there are mea-
surable differences between SCP~%S) and 3(°P
—2P) in the energy range 0.1 <€ <0.8 Ry, where
the cross sections are of the order of 10717 em?.

Finally, in Fig. 4 we examine the influence of
angular momentum transfers j,+# [, on the asym-
metry parameter and partial cross section for
photoionization to the 2D ionic term level. The
solid line represents the asymmetry parameter
given by Eq. (38) and plotted also in Fig. 3. The
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TABLE II. HF asymmetry parameters for the reactions S(3p 4%P) +hv—S*(3p34S, 2D, P)
+e” as a function of photoelectron kinetic energy € using dipole-length (velocity) formula and

comparison with HS asymmetry parameter.

€ ([Ry) B (P —1s) 8Cp D) B P —~P) HSB
0.00 0.144(0.054) 0.176(0.248) 0.274(0.360) 0.35
0.05 0.551(0.495) 0.584(0.614) 0.705(0.739) 0.74
0.10 0.769(0.734) 0.805(0.814) 0.942(0.950) 0.96
0.20 1.052(1.048) 1.090(1.082) 1.248(1.229) 1.25
0.40 1.365(1.407) 1.402(1.402) 1.594(1.564) 1.61
0.60 1.543(1.619) 1.574(1.604) 1.779(1.761) 1.78
0.80 1.659(1.761) 1.670(1.735) 1.851(1.856) 1.82
1.00 1.734(1.849) 1.693(1.782) 1.793(1.820) 1.68
1.25 1.772(1.860) 1.581(1.640) 1.472(1.488) e
1.50 1.714(1.665) 1.234(1.131) 0.847(0.775) 0.10
1.80 1.408(0.944) 0.497(0.185) 0.044(~0.078) -0.24
2.10 0.724(0.016) —0.127(-0.270) —0.250(~0.268) -0.02
2.30 i 0.211(-0.210) -0.223(~0.207) -0.173(~0.136) 0.18
2.60 —0.108(-0.029) —0.029(0.076) 0.094(0.155) 0.44
2.80 —0.013(0.189) 0.170(0.273) 0.281(0.339) 0.60
3.00 0.177(0.393) 0.360(0.447) 0.450(0.500) 0.74
4.00 0.933(1.003) 0.972(0.989) 0.996(1.009) 1.10
8.00 1.576(1.526) 1.513(1.523) 1.522(1.526) 1.54

15.00 1.697(1.629) 1.614(1.636) 1.622(1.636) 1.62

30.00 1.582(1.561) 1.534(1.564) 1.537(1.564) 1.54

dashed line represents B8 calculated according to
Eq. (38), but setting S,(2)=5,(3)=0. Note that the
result is nof the Cooper-Zare expression for j
since we still use Eq. (37b) for S,(1), and thus the
dependence of phase shifts and radial dipole ma-

TABLE III. HF cross sections for the reactions
S@Bp1%P)y +hy —+~S*(3p%%, D, P)+e” as a function of
photoelectron kinetic energy € using dipole length (vel-
ocity) formula and comparison with HS cross section.
All cross sections are in units of 10718 em?.

¢ Ry) o(p—1s) olp — D) o®p—?%P) o(HS)

0.00 13.82(8.92) 27.43(19.23) 20.87(15.40) 58.00
0.05 14.61(9.11) 28.00(19.18) 20.78(15.04) 58.78
0.10 15.03(9.10) 27.46(18.42) 19.73(14.04) 57.24
0.20 15.04(8.65) 24.21(15.65) 16.03(11.09) 48.33
0.40 12.85(6.85) 15.42(9.38) 8.43(5.62) 24.60

0.60 9.47(4.75) 8.70(5.05) 4.01(2.62) 11.84
0.80 6.27(2.97) 4.67(2.61) 1.92(1.23) 4.73
1.00 3.84(1.73) 2.47(1.34) 0.95(0.61) 2.00
1.25 1.96(0.82) 1.14(0.59) 0.44(0.27) ter
1.50 0.97(0.38) 0.56(0.29) 0.23(0.15) 0.58
1.80 0.42(0.17) 0.29(0.17) 0.15(0.10) 0.52
2.10 0.21(0.11) 0.20(0.15) 0.13(0.10) 0.57
2.30 0.16(0.10) 0.19(0.16) 0.13(0.10) ~ 0.61
2.60 0.14(0.12) 0.20(0.18) 0.14(0.12) 0.68
2.80 0.14(0.13) 0.21(0.19) 0.15(0.12) 0.71
3.00 0.15(0.14) 0.22(0.20) 0.15(0.13) 0.75
4.00 0.22(0.17) 0.27(0.23) 0.17(0.14) 0.80
8.00 0.17(0.12) 0.18(0.15) 0.11(0.09) 0.42
15.00 0.05(0.04) 0.06(0.05) 0.04(0.03) 0.15
30.00 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.03

trix elements on LS, L is still important. We see
from Fig. 4 that values of j;# [,=1 lower 8 as much
as 0.2 units in the neighborhood of €~1.0 Ry. The
dot-dashed curve is a plot of the ratio [ - o(1)]/0
given in Eq. (39). Values of j,#I,=1 contribute as
much as 8% to the partial cross section in the
neighborhood of €e>~1.5 Ry.
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FIG. 4. Dependence of the asymmetry parameter
B(3P — ’D) and cross section o(*P — 2D) for the %D ion
term of sulfur on angular momentum transfers j, =
as a function of photoelectron kinetic energy. Left-hand
scale refers to (i) the solid line denoting 8 and (i) the
dashed line denoting B(j, ={,=1), both for the *°P — %D
transition. Right-hand scale refers to the dot-dashed
line which denotes the ratio [o—o(j, =1)]/0 for the
3p — 2D transition.
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V. DISCUSSION AND CONCLUSIONS

We have shown that anisotropic electron-ion in-
teractions in atomic sulfur lead to measurable dif-
ferences between photoelectron angular distribu-
tion asymmetry parameters corresponding to al-
ternative ionic term levels. Similar effects are
expected for most open-shell atoms. A measure
of the strength of anisotropic electron-ion inter-
actions is the difference between phase shifts for
alternative final-state channels. In atomic sulfur
these phase-shift differences are as large as 0.7
rad. A separate study of atomic oxygen’ found
phase-shift differences of only 0.2 rad and asym-
metry parameters that were nearly identical for
each ionic term level. However, atomic oxygen
and the other second-row elements are regarded
as exceptions, since they are too light to have
strong interactions, and atomic sulfur is regarded
as more typical of open-shell atoms in general.
Our choice of atomic sulfur for study was purely
a matter of convenience. We know of no experi-
mental data on photoelectron angular distributions
for an open-shell atom. We emphasize, however,
that we expect the magnitude of the difference be-
tween asymmetry parameters and the magnitude of
the cross sections to be experimentally measur-
able for many open-shell atoms.

For the particular case of atomic sulfur we have
found that angular momentum transfers j,# [,
which do not arise in the Cooper-Zare model,*
contribute only a small but nevertheless signifi-
cant amount to the asymmetry parameters and to
the cross sections. We simply do not know whe-
ther this will hold true for other open-shell atoms.
The contributions to the asymmetry parameter
from angular momentum transfers j, =1, are, how~

ever, quite different from those in the Cooper-

Zare model, which has only j, =, contributions,
since the phase-shift differences are so large in
the different final-state channels [cf. Eqs. (37b)
and (40b)].

For closed-shell atoms our formulas reduce
rigorously to those of the Cooper-Zare model.
Unfortunately, nearly all experimental measure-
ments of photoelectron angular distributions known
to us are for closed-shell atoms. Considering the
importance of photoelectron angular distributions
to such diverse areas as radiation dosimetry (e.g.,
8-ray spectrum)?® and the physics of the upper at-
mosphere (e.g., conjugate point phenomena)®! as
well as to theoretical physics, as emphasized in
this paper, we:feel that experimental data on pho-
toelectron angular distributions for open-shell
atoms would be most valuable.

Last, we point out that our formulas for photo-
electron angular distributions have been derived
for any electron-ion coupling scheme, but worked
out in detail only for LS coupling. In general the
electron-ion interaction is best deseribed in an
intermediate coupling scheme, particularly in
semiempirical calculations.® Nearly all ab initio
atomic calculations, however, use the LS-coupling
scheme, and it is for these calculations that our
formulas have been worked out most fully. While
we have calculated phase shifts and dipole matrix
elements in HF approximation, other more accu-
rate procedures (e.g., many-body perturbation
theory, random-phase approximation, etc.) may be
used to compute these quantities for use in our
formulas for the asymmetry parameter. Similar-
ly, while we have ignored fine-structure splittings
of the ionic core, these may easily be included in
angular-distribution calculations using our formu-
las as discussed at the end of Sec. III.
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