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ABSTRACT

Context. Whenever stars rotate very rapidly, such thatΩ/Ωcrit > 0.7 whereΩcrit is the Keplerian angular velocity of the star accounting
for its deformation, radiative stellar winds are enhanced in polar regions. This theoretical prediction has now been confirmed by
interferometric observations of rapidly rotating stars.
Aims. Polar winds remove less angular momentum than spherical winds, thus allow the star to retain more angular momentum. We
quantitatively assess the importance of this effect.
Methods. We first use a semi-analytical approach to estimate the variation in the angular momentum loss when the rotation parameter
increases. We then compute complete 9 M� stellar models at very high angular velocities (starting on the ZAMS with Ω/Ωcrit = 0.8
and reaching the critical velocity during the main sequence) with and without radiative wind anisotropies.
Results. When wind anisotropies are accounted for, the angular-momentum loss rate is reduced by less than 4% for Ω/Ωcrit < 0.9
relative to the case for spherical winds. The reduction amounts to at most 30% when the star is rotating near the critical velocity.
These values result from two counteracting effects: on the one hand, polar winds reduce the loss of angular momentum, and on the
other hand, surface deformations imply that the mass that is lost at high co-latitude is lost at a larger distance from the rotational axis
and thus removes more angular momentum.
Conclusions. In contrast to previous studies that neglected surface deformations, we show that the radiative wind anisotropies have a
relatively modest effect on the evolution of the angular momentum content of rapidly rotating stars.
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1. Introduction

Over the past few years, we have added several major improve-
ments to the Geneva stellar evolution code, such as rotation, the
inclusion of an extended nuclear-reaction network allowing us
to explore the advanced phases of massive star evolution (neon,
oxygen, and silicon burning; see Hirschi et al. 2004), and the
inclusion of magnetic field.

The inclusion of rotation allowed us to improve the agree-
ment between the outputs of numerical models and observational
results, such as the surface enrichments, the ratio of blue to red
supergiants in the SMC, the ratio of WR to O-type stars, and the
ratio of type Ibc to type II supernovae (see, for example Meynet
& Maeder 2000; Maeder & Meynet 2001; Meynet & Maeder
2003; Georgy et al. 2009). The treatment of the internal magnetic
field in the models enables a more realistic rate of gamma ray
bursts (GRB) as a function of the metallicity (Yoon et al. 2006),
produces a rotation rate for the young pulsars in much better
agreement with the observations (Heger et al. 2005), and allows
us to explain the flat rotation profile of the Sun (Eggenberger
et al. 2005).

Rotation acts not only in the interior of the stars, however, but
also has several effects on the surface. Maeder & Meynet (2000)
show that rotation increases the global mass-loss rate. It also
modifies the shape of the star and consequently surface quan-
tities such as effective gravity, effective temperature, and radia-
tive flux. Interestingly, Maeder (2002) shows that the mass loss
in rapidly rotating massive stars does not remain isotropic, but

becomes increasingly anisotropic as the rotation approaches the
critical rotation parameter. They show that this favours a bipo-
lar stellar wind, and modifies the quantity of angular momentum
removed from the star.

With the development of interferometric techniques, some
of the predicted effects have recently become observable. For
example, Carciofi et al. (2008) measured the ratio of the equa-
torial to polar radius to be 1.5 for the very rapidly rotating star
Achernar as expected in the framework of the Roche model the-
ory. Monnier et al. (2007) provided a map of the effective tem-
perature over the surface of Altair, showing that the tempera-
ture gradient between the pole and the equator of this star is in
good agreement with the von Zeipel theorem (von Zeipel 1924).
Meilland et al. (2007) obtained evidence of both a disc and a po-
lar wind around the star μAra, as predicted for a star rotating at
the critical limit.

The effects of wind anisotropies on stellar models have
been quantitatively explored in only two previous publications
(Meynet & Maeder 2003, 2007). In the present work, we im-
prove the numerical treatment of these works by reexamining
this effect. We include the following improvements:

– for the first time, we account not only for the variation in the
mass flux with co-latitude, as was done in previous work, but
also for the surface deformation of the star. As we will see,
this second effect cannot be neglected;

– we use an updated expression for the mass flux obtained by
Maeder (2009);
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– we account for the variation in the force multiplier parame-
ters over the surface of rapidly rotating stars (see below for
more details on that point).

To check the validity of the numerical results and also study in
a clearer and simpler context the various effects intervening in
the loss of angular momentum, we propose a semi-analytical
approach to estimate the effect of rapid rotation on the loss of
angular momentum. The relative effects obtained in that way de-
pend on only one parameter, the ratio Ω/Ωcrit, where Ω is the
surface angular velocity and Ωcrit, the critical angular velocity,
i.e., the angular velocity such that the centrifugal acceleration
at the equator compensates for the gravity (accounting for the
deformation of the shape of the star).

The paper is organised in the following way. In Sect. 2, we
derive the theoretical aspects of wind anisotropy. The third sec-
tion presents our semi-analytical approach. In Sect. 4, we discuss
results based on complete numerical stellar models. Conclusions
are presented in Sect. 5.

2. Rotation and wind anisotropy

2.1. Increase in the global mass-loss rate induced by rotation

As shown by Maeder & Meynet (2000), the local radiative mass-
loss rate ΔṀ by unit surface Δσ can be written

ΔṀ
Δσ
∼ A
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the force multiplier parameters empirically determined (Lamers
et al. 1995), M� = M
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)
is the reduced mass, where ρm

is the internal average density, L is the stellar luminosity, geff is
the effective gravity at the co-latitude θ (i.e., the vectorial sum
of the gravitational and centrifugal accelerations) and ζ(θ) ex-
presses the deviation from the von Zeipel theorem produced by
shellular rotation (Maeder 1999, this term is generally negligi-
ble), ΓΩ(θ) is the local Eddington factor, taking into account the
effect of rotation

ΓΩ(θ) =
κesL

4πcGM
(
1 − Ω2

2πGρm

) , (2)

where κes is the electron scattering opacity. The term 1/8 in the
power of expression (1) was added by Maeder (2009, see his
chapter 14.4) and does not appear in Maeder & Meynet (2000, a

T
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2

eff was absent in their Eq. (4.24)). We note that in the frame-
work of the line driven wind theory used here to obtain the ex-
pression of the mass flux (Eq. (1)), the opacity is expressed as a
function of the electron scattering opacity (Castor et al. 1975).
The variations are accounted for by the force multiplier parame-
ters α and k.

Averaging expression (1) over the whole stellar surface Σ,
one obtains the total mass-loss rate of the star
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This allows us to compute the ratio of the mass-loss rate of a
rotating star to the mass-loss rate of a non-rotating one lying at
the same position in the Hertzsprung–Russel diagram

Ṁ(Ω)
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=
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) 1
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where ΓEdd is the classical Eddington factor for a non-rotating
star. As a result, we can see that the more rapidly the star rotates,
the more mass will be lost per time unit.

2.2. Wind anisotropy

According to Maeder (1999), there are two main contributors
to the development of anisotropies in stellar winds. The first,
called the geff-effect, is due to the variation in the effective grav-
ity with the co-latitude: geff is smaller at the equator than at the
poles, and thus, the mass loss, which is directly related to geff
(see Eq. (1)), is favoured at the poles for a rotating star. The
second contributor is called the κ-effect. Owing to the so-called
bistability in the stellar winds (see Lamers et al. 1995), the A
term in Eq. (1) increases for lower values of the effective temper-
ature, i.e., towards the equatorial regions (see Fig. 6 in Ekström
et al. 2008). This occurs when the effective temperature are be-
low 11 500 K (Lamers, priv. comm.), enhancing equatorial mass
loss.

Looking at Eq. (1), we also expect a contribution to the lati-
tudinal variation in the mass loss due to the term κ(θ) in ΓΩ(θ).

2.3. Critical velocities

Since the concept of critical velocity is treated in many different
ways in the literature, we briefly repeat some common defini-
tions. Following Maeder & Meynet (2000), we define two dif-
ferent critical velocities. The first is the traditional Keplerian ve-
locity at the equator when the star rotates at the critical velocity
defined by geff = 0

vcrit,1 =

√
GM
Reb
=

√
2GM
3Rpb

, (5)

where Reb (Rpb) is the equatorial (polar) radius when the first
critical velocity is reached. The numerical factor 2/3 comes from
the polar to equatorial radius ratio when the star is at the critical
velocity and the Roche approximation is valid (see, e.g., Ekström
et al. 2008). We also define the critical angular velocity Ωcrit =
vcrit,1

Reb
, and the ratio ω = Ω

Ωcrit
.

The second critical velocity is reached when the star is at
the so-called ΩΓ-limit, i.e. when the local Eddington factor (ac-
counting for the effects of rotation) defined in Eq. (2) is 1.
According to Maeder & Meynet (2000), this term is equal to

v2crit,2 =
81
16

1 − ΓEdd

Vb

GM

R3
eb

R2
e , (6)

where ΓEdd is the Eddington factor, Vb is the ratio of the vol-
ume enclosed by the surface when the star rotates at the second
critical velocity, to the volume of a sphere with a radius equal
to Rpb, Re being the actual equatorial radius. For Γedd ≤ 0.639,
vcrit,2 = vcrit,1. For ΓEdd > 0.639, vcrit,2 < vcrit,1, and the relevant
critical velocity is the second one, because it is reached first.
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3. Effects of rapid rotation on angular-momentum
loss: a semi-analytical approach

We derive the variations in

– the shape of the star;
– the radiative mass flux;
– the angular momentum flux;
– the global angular momentum loss,

as a function of only one parameter,ω. In other words, the results
obtained are independent of the mass, metallicity, and evolution-
ary stage of the star considered. To obtain such a simple depen-
dence, some hypothesis and normalisations have to be made:

– We use the Roche approximation to compute the gravita-
tional potential (which is valid here, see Meynet et al. 2010).
Note that we also assume the Roche approximation in our
numerical stellar models. This assumption is not only sup-
ported by direct observations of (a few) rapidly rotating stars,
but also by in our numerical models, the angular velocities
being far smaller than the critical velocity in a large fraction
of the total mass. The results presented in this work are how-
ever probably dependent on the validity of this hypothesis.

– We neglect the variations over the surface of the force mul-
tiplier parameters (see below). This variation will be ac-
counted for in more complex stellar evolution models (see
Sect. 4.3).

– We neglect the correcting factor ζ(θ) in Eq. (1).
– The angular velocity of the surface is assumed not to depend

on the colatitude θ (no differential rotation of the surface).
– We assume that the polar radius of the star remains constant

when ω increases from 0 (no rotation) to 1 (critical rotation).
This is justified by complete numerical models (Ekström
et al. 2008). We normalise the polar radius Rp to 1.

– The total mass-loss rate is taken to be equal to 4π for all
rotation velocities. In that case, the mass-loss rate per unit
surface is equal to 1 in the non-rotating case.

3.1. Shape of the surface

With the above hypothesis, the equation of the surface of the star
can be given as a function of the rotation rate ω (Maeder 2002)

1
x(ω, θ)

+
4
27
ω2x2(ω, θ) sin2(θ) = 1, (7)

where x(ω, θ) = r(ω,θ)
Rp

is the ratio of the radius at a given co-
latitude to the polar one. We can easily express θ as a function
of the normalised radius x

θ(x) = arcsin

⎛⎜⎜⎜⎜⎜⎝
√

27(x − 1)
4ω2x3

⎞⎟⎟⎟⎟⎟⎠ if ω � 0

x(θ) = 1 if ω = 0. (8)

The range of satisfactory values for x is a function of ω. It starts
from 1 (to ensure a positive value under the square root), and in-
creases to the first positive root of the equation 4ω2x3−27x+27 =
0. In Fig. 1, we show how the shape of the surface varies for vari-
ous values of ω, starting fromω = 0 (non rotating case) to ω = 1
(critically rotating case). As ω increases, the centrifugal force
deforms the star even more, and the equatorial radius increases.
When the star is at exactly the critical angular velocity (ω = 1),
we see from Eq. (7) that the equatorial radius is 1.5 times larger
than the polar one.

Fig. 1. Shape of the surface for various values of ω = Ω
Ωcrit

(labelled at
the bottom of each curve). The x-axis is the equatorial radius, and the y-
axis the polar one. Hence this is how we would see the star equator-on.

Equation (7), which allows us to deduce the shape of the star,
depends only on ω. Maximal deformation is obtained for ω = 1.
Stars reaching the second critical velocity will have a ratio ω be-
low 1. Despite being at the critical velocity, they will not have as
strong deformations as stars reaching the first classical critical
limit, since, as we see below, it is the deformation of the star that
triggers the wind anisotropies. This means that stars that would
be at the ΩΓ-limit do not present as strong wind anisotropies
as stars at the classical Ω-limit. Accordingly, that η-Carinae has
strong polar winds, implies that this star should rotate at veloc-
ities close to the first classical critical rotation velocity, in case
the bipolar shape is due to rotationally induced wind anisotropy.

3.2. Mass flux variations with the latitude

To study how the mass flux is modified by the rotation, we use
Eq. (1) to compute the local mass-loss rate per unit surface. As
mentioned above, we normalise the total mass loss to a value of
4π, in order to have a local mass flux of 1 at every co-latitude in
the non-rotating case.

The results of these calculations are shown in Fig. 2. Not
surprisingly, the mass-loss rate per surface unit is constant when
there is no rotation. As the rotation parameter increases, the mass
flux increases towards the pole, and decreases towards the equa-
tor, because of the variation in the effective gravity, producing a
strong anisotropy in the winds. The mass flux at the pole is typ-
ically twice as high as the mass flux at the equator for ω � 0.8.
In the extreme case, when the rotation parameter ω = 1, the ef-
fective gravity at the equator is zero, and the radiative mass flux
becomes also zero in this idealised representation.

From Fig. 2, we see that the more rapidly the star rotates, the
more mass will be lost in the polar region. Integrating the mass
flux from the pole to a given co-latitude θ and dividing by the
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Fig. 2. Left panel: mass-loss rate per surface unit as a function of the co-latitude θ. The pole is on the left, the equator on the right. The mass-loss
rate per surface unit is normalised to 1 in the non-rotating case, thus is expressed without units. Right panel: 2D colour plot of the mass-loss
rate per surface unit. The x-axis is the co-latitude, the y-axis the rotation parameter ω = Ω/Ωcrit. The colour scale on the right indicates the local
mass-loss rate per surface unit, from blue for the lower mass loss flux to red for the higher.

total mass-loss rate, we obtain the fraction of the total mass flux
in a cone of semi-aperture θ, for a given rotation factor ω

Ṁ0−θ
Ṁtot

=

∫ θ
0
ΔṀ
Δσ

(ϑ)dσ(ϑ)

Ṁtot
, (9)

where dσ(θ) is the surface element at the colatitude θ, given by

dσ = r2(θ) sin(θ)dϕdθ
cos(ε) , and ε is the angle between the local effective

gravity and the radial direction. The angle ε is computed using
the components of the effective gravity geff

cos(ε) =
geff · er

||geff || , (10)

where

geff =

(
− GM

r2(θ)
+ Ω2r(θ) sin2(θ)

)
er

+ Ω2r(θ) sin(θ) cos(θ)eθ, (11)

and er (eθ) is the radial (colatitudinal) unit vector.
The result is shown in Fig. 3. For a non–rotating star (lower

curve), we see that 50% of the total mass is lost in a cone of
semi-aperture 60◦. When the star is at the first critical velocity,
the aperture of the cone containing 50% of the total mass flux is
slightly smaller, around 48◦.

3.3. Latitude dependency of the angular momentum loss

Once we know the local mass flux and the shape of the surface,
it is possible to compute the local loss of angular momentum in-
duced by the stellar winds, for a given angular velocity of the
surface (we assume that in this work we suppose that the angu-
lar velocity of the surface Ω is constant over the whole stellar
surface).

ω 
= 0

.0ω 
= 1

.0

Fig. 3. Fraction of the total mass loss contained in a cone with a semi-
aperture θ given by the x-axis. The lower curve is the result for a
non-rotating star losing its mass isotropically. The upper curve is for
a critically rotating star (ω = 1). The intermediate dashed curves are
the results of the same rotation parameter omega as in Fig. 2, i.e.
ω = 0.5, 0.75, 0.9, 0.96, 0.98, 0.99, and 0.995, respectively (from bot-
tom to top).

The loss of angular momentum per surface unit and time is
given by

dL̇
dσ
=
ΔṀ
Δσ

(θ)ΩR2(θ), (12)
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Fig. 4. Left panel: rate of angular momentum loss (normalised by the surface angular velocity) from infinitesimal rings centred on the rotational
axis for each co-latitude θ. The width of each ring is given by rdθ. The rotation parameter ω is indicated for the curves with ω = 0 and ω = 1.
The intermediate dashed curves are for ω = 0.5, 0.75, 0.9, 0.96, 0.98, 0.99, 0.995 respectively. The rate of angular momentum loss is expressed
in terms of the normalised units Ṁ�R2

�/(4π) where Ṁ� is the mass-loss rate of the star, and R� the polar radius of the star. Right panel: same as
left panel in a 2D colour plot. The x-axis is the co-latitude, and the y-axis the ratio ω = Ω/Ωcrit. The colour scale on the right indicates the local
angular momentum loss from infinitesimal rings centred on the rotational axis for each co-latitude θ. The units are the same as in left panel. The
smaller values are in blue and the larger ones in red.

where R(θ) is the distance from the considered unit surface ele-
ment to the rotation axis at the co-latitude θ. Using the surface
element (see above), and integrating over ϕ to obtain only the
co-latitudinal variation in the angular momentum loss, we have

dL̇
dθ
= 2π

ΔṀ
Δσ

(θ)r4(θ)Ω
sin3(θ)
cos(ε)

, (13)

which is the contribution to the total angular momentum loss of
an infinitesimal ring at the co-latitude θ extending over an angle
dθ. To avoid the Ω-dependency, and as in our model the surface
of the star rotates at a constant angular velocity, we consider
further the ratio L̇/Ω. This permits us to easily compare models
with various rotation parameters. The distribution of the ratio
L̇/Ω brought away by the wind is shown in Fig. 4.

In this figure, we see how the angular momentum flux (nor-
malised by the surface angular velocity) is distributed as a func-
tion of the co-latitude θ for various rotation parameter ω. Two
effects are competing: first, the increase in the equatorial ra-
dius (see Fig. 1), which increases the angular momentum flux
near the equatorial regions, and second, the decrease in the lo-
cal mass-loss rate near the equator, which decreases the angular
momentum flux in the same area.

Without rotation, the mass-loss rate per surface unit is con-
stant over the whole surface of the star, and the angle ε between
the effective gravity direction and the radial direction is zero.
Examining Eq. (13), we see that d

( L̇
Ω

)
/dθ varies as sin3(θ) (since

all other terms are constant). The corresponding curve is labelled
ω = 0 in Fig. 4. Progressively increasing the rotation parame-
ter, we see that the deformation of the stellar surface produces
an increase in the angular momentum loss in the equatorial re-
gion. When the rotation parameter ω � 0.75, the increase in
the equatorial radius becomes counterbalanced by a progressive
decrease in the local mass-loss flux in the same region. The an-
gular momentum loss thus becomes more and more reduced at

the equator, and the maximum of the momentum loss is shifted
towards the pole, up to a co-latitude of ∼70◦ when the rotation
becomes critical. At that moment, no more angular momentum
is lost at the equator, since there is no equatorial mass loss by
means of radiative winds in this regime in our model.

3.4. Total angular momentum lost

Once the distribution of the angular momentum loss is known,
we can integrate it over co-latitude to obtain the total angular
momentum loss rate due to the stellar winds

L̇ = 2π
∫ π

0

ΔṀ
Δσ

(θ)r4(θ)Ω
sin3(θ)
cos(ε)

dθ. (14)

To clearly assess the contribution of the anisotropic winds to
the total angular momentum loss, we distinguish the following
cases:

– Case 1: we determine a mean stellar radius rmean using the
relation

L = Σσ
〈
T 4

eff

〉
≡ 4πr2

meanσ
〈
T 4

eff

〉
, (15)

where L is the stellar luminosity and Σ the total stellar
surface. We neglect the stellar deformation and the wind
anisotropy, and the loss of angular momentum is thus com-
puted on a sphere of radius rmean: L̇ = 2

3 ṀΩr2
mean. This ra-

dius is the one we would find if we measured the luminosity
and the effective temperature of the star, and assumed it to
be perfectly spherical. It gives the angular momentum loss
computed in numerical models where the effects of rotation
on the shape of the surface and the mass loss distribution is
neglected.
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– Case 2: the deformation of the star is accounted for, but the
mass loss is uniformly distributed over the stellar surface (i.e.
the wind anisotropy is not taken into account). This case is
academic, but interesting because it allows us to see the ef-
fect of the deformation only.

– Case 3: both the deformation of the surface shape and the
anisotropy are accounted for. The angular momentum loss is
computed using Eq. (14).

The results that we obtain are shown in Fig. 5. The top panel
shows the variation in the ratio L̇/Ω removed by the wind in
the cases “neither deformation, nor anisotropy”, computed with
the mean radius discussed above (L̇/Ωsph, case 1), “deformation
only” (L̇/Ωiso, case 2), and “deformation + wind anisotropy”
(L̇/Ωani, case 3). In the three cases, the value for ω = 0 is given
by the integration of Eq. (14), with ΔṀ/Δσ = 1, r = 1 and ε = 0
at each colatitude, leading to L̇/Ω = 2π

∫ π
0

sin3(θ)dθ = 8π/3.
The increase in L̇/Ωsph in case 1 is due entirely to the in-

crease in the mean radius rmean when ω increases. When the de-
formation is accounted for, we see that more angular momen-
tum is lost because most of the mass leaves the surface of the
star at a greater distance from the rotational axis. We can see
that, at the critical limit, deformation would increase the angular-
momentum loss rate by around 20% with respect to case 1. For
case 3, we see that the wind anisotropy largely compensates for
the effect of the deformation and decreases the rate of angular
momentum loss by 49% with respect to case 2 and by 25% with
respect to case 1.

The lower panel of Fig. 5 shows the ratio L̇sph/L̇ani. It il-
lustrates the true impact of the anisotropy of winds and the de-
formation of the stellar shape, compared with a model where we
consider an isotropic spherical wind on the surface, with a radius
determined by the stellar luminosity and mean effective temper-
ature (as in most of the stellar evolution codes).

Interestingly enough, the error in the angular momentum loss
when neglecting the effects of wind anisotropies is small in most
cases, being smaller than 4% if ω < 0.9. At the critical veloc-
ity, the error is larger. Up to 25% more angular momentum can
be kept in the star when the effects of wind anisotropies are ac-
counted for. Therefore, the effects of the wind anisotropies be-
come important only for the faster rotators. This indicates that
in most cases studied in stellar evolution, the precise account
for the anisotropies are not relevant, and the errors induced by
neglecting it will remain small.

4. Effects of rapid rotation on angular momentum
loss: a numerical approach

The analytic relations given above can provide order of mag-
nitude estimates of the impact of the wind anisotropies on the
loss of angular momentum assuming thatω remains more or less
constant as a function of time. To obtain more accurate values, it
is necessary to compute numerical stellar models.

An additional complication, ignored in the above estimates,
is that the global mass-loss rate increases with faster rotation. We
first consider a case where the mass loss remains constant. This
will allow us to more directly compare with the semi-analytical
results obtained above, thus to check that the process was imple-
mented correctly in the stellar evolution code. In a second step
(see Sect. 4.3), we shall consider the case of a model with all the
usual prescriptions, in particular accounting for the evolution of
the mass-loss rate as a function of time, and the possible vari-
ation in the force multiplier parameters α and k over the stellar
surface.

L
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h
/
L

an
i

.

.

ca
se 

1
ca

se 
2

case 3

Ω/Ωcrit
L

/Ω
sp

h,
is

o,
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i

.

Fig. 5. Top panel: evolution of the total angular momentum loss as a
function of the rotation rate. The long-dashed curve is the angular mo-
mentum loss when the mass loss is supposed isotropic and spherically
symmetric (L̇sph), case 1). The solid curve is the angular momentum
loss when the deformation of the star is accounted for, but the mass loss
is assumed to be isotropic (L̇iso, case 2). The dotted curve is the angu-
lar momentum loss when both the deformation and the anisotropy of
the winds are accounted for (L̇ani, case 3) (see text for more details).
Bottom panel: L̇iso/L̇ani as a function of ω.

4.1. Models with constant mass-loss rate

We examine the effects of anisotropic stellar winds on the evo-
lution towards the critical velocity of two sets of models of a
9 M� star. To see the effects of anisotropic winds already on the
zero-age main sequence (ZAMS), we start the computation of
the stellar models at a very high initial angular velocity of 80%
of the critical velocity. The metallicity is assumed to be equal
to Z = 0.002, i.e., equivalent to that of the Small Magellanic
Cloud (this implies smaller mass-loss rates than at higher metal-
licity, favouring the reaching of the critical velocity for the nu-
merical models presented in Sect. 4.3). The rotation is treated as
in Maeder & Meynet (2005), accounting for the internal mag-
netic field and its impact on the transport of angular momentum
(Spruit 2002). These numerical models are based on the shellu-
lar rotation assumption (Zahn 1992). Even if the surface of our
models reach rotation parameters close to 1, as a large part of
the stellar interior rotates far from the critical velocity, we con-
sider this assumption to be valid. Accounting for the magnetic
field ensures a strong coupling between the centre and surface
of the star, and leads to higher surface velocities. In this context
we thus expect the anisotropic winds to have a more important
effect. Both models were computed using a constant mass-loss
rate of 10−9 M� yr−1, independent of both the stellar surface pa-
rameters, and rotation rate. One model was computed by tak-
ing account of the anisotropic winds, and another by assuming
isotropic winds. In both cases, we accounted for the deformation
of the shape of the star.

In Fig. 6, we show the Hertzsprung-Russell diagram (HRD)
of both models. The evolutionary stages where the models reach
80%, 90%, and 95% of the critical angular velocity are indicated
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Fig. 6. HR diagram for the isotropic model (black solid line) and
anisotropic model (red dashed line) with constant mass-loss rate. The
rotation parameter is indicated for some points along the tracks. The
end point of the track (on the right) corresponds to the reaching of
the first critical velocity.

on the tracks. The ZAMS is bottom-left, and the evolution pro-
ceeds towards the top-right corner. We see that including the
effects of anisotropic winds has only a minor impact on the
evolutionary track. A small deviation begins to appear when
the surface velocity is around 90% of the critical velocity. The
anisotropic model evolves slightly more to the red side of the
HRD. This is because this model rotates faster than the isotropic
model (see the top panel of Fig. 7). Its surface is slightly larger,
thus, for a given luminosity, the mean effective temperature will
be lower.

Figure 7 shows in the top panel the evolution of the ratio
Ω/Ωcrit as a function of time for both models. The bottom panel
shows the total angular momentum of the star. As expected, the
mass loss due to the stellar winds causes a decrease in the angu-
lar momentum retained by the star. The model in which the wind
anisotropy is taken into account loses less angular momentum
than the isotropic model. As a consequence, the stellar surface
of the anisotropic model rotates slightly faster than the isotropic
model.

The mean Ω/Ωcrit of the anisotropic model is Ω/Ωcrit =
0.867. According to Fig. 5, we expect the anisotropic model
to retain 1.12 times more angular momentum than the isotropic
one. During the time between the ZAMS and the reaching of the
critical rotation rate, the anisotropic star loses an amount of an-
gular momentumΔLani = 3.56×1050 g cm2 s−1. During the same
time, the isotropic model loses ΔLiso = 4.13 × 1050 g cm2 s−1.
The final ratio ΔLiso/ΔLani = 1.16 is very close to the estimate
based on the mean Ω/Ωcrit.

4.2. Total mass-loss rate as a function of ω and ΓEdd

Before discussing the results of models that account for time-
dependent mass-loss rates, we briefly recall how rotation en-
hances the global mass-loss rate. Examining Eq. (4), we see

L
st
ar

Fig. 7. Top panel: rotation parameter as a function of the time for the
isotropic (black solid line) and anisotropic model (red dashed line) with
constant mass-loss rate. Bottom panel: total angular momentum con-
tained in the star in units of 1053 g cm2 s−1. The models are represented
as in top panel.

that the mass-loss rate of a rotating star is simply expressed as a
function of the angular velocity Ω, the classical Eddington fac-
tor ΓEdd, and the local Eddington factor ΓΩ. To this relation, we
introduce the rotation parameter ω defined above, and the defi-
nition of ΓΩ given by Eq. (2), to derive

Ṁ(Ω)

Ṁ(Ω = 0)
=

(1 − ΓEdd)
1
α−1(

1 − 4ω2V
27πR3

pb
− ΓEdd

) 1
α−1
, (16)

where we have also used Eq. (5), and replaced the mean density
ρm by V/M, V being the volume enclosed by the stellar surface.

For stars with an Eddington factor ΓEdd larger than 0.639,
we can use the expression of vcrit,2 in Eq. (6) to rewrite the last
relation

Ṁ(Ω)

Ṁ(Ω = 0)
=

(1 − ΓEdd)
1
α−1(

(1 − ΓEdd)
(
1 − v2eq

v2crit,2

V
Vb

R2
eb

R2
e

)) 1
α−1
· (17)

Thus, we see that the-mass loss enhancement is governed by the
ratio v/vcrit,2, while the deformation of the star is governed by the
ratio v/vcrit,1. In the expression of vcrit,2, the Eddington factor ΓEdd
appears, thus the global enhancement factor of the mass loss will
depend on the two parameters ω (or veq/vcrit,2) and ΓEdd.

Figure 8 shows the variation in the ratio Ṁ(ω)/Ṁ(ω = 0)
as a function of these two parameters. For this plot, we took a
value for α = 0.43, which is adapted for effective temperatures
4.05 ≤ log(Teff) ≤ 4.3 (Lamers 2004, priv. comm.). The volume
V enclosed by the stellar surface is numerically computed using
Eq. (8) for the particular shape of the surface.

For Eddington factors greater than 0.639, vcrit,2 < vcrit,1
(Maeder & Meynet 2000), thus the second limit is the impor-
tant one to consider. At this limit, the mass-loss rate becomes
very high. The precise value of the enhancement cannot be given
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Fig. 8. Logarithm of the ratio Ṁ(ω)/Ṁ(ω = 0) as a function of ω = Ω
Ωcrit

for various values of the Eddington factor (value indicated at the top of
each curve). For ΓEdd ≥ 0.639, the curve tends towards infinity when ω
approaches ωmax (see Table 1). α is set to 0.43 (see text).

Table 1. Maximum rotation parameter ωmax, and maximum increase in
the mass-loss rate as a function of the Eddington factor ΓEdd (see text).

ΓEdd ωmax Ṁ(ω)/Ṁ(0) ΓEdd ωmax Ṁ(ω)/Ṁ(0)
0.0 1.0 1.810 0.6 1.0 21.696
0.1 1.0 1.972 0.639 1.0 ∞
0.2 1.0 2.214 0.7 0.968 ∞
0.3 1.0 2.612 0.8 0.861 ∞
0.4 1.0 3.383 0.9 0.659 ∞
0.5 1.0 5.444 0.95 0.484 ∞

since, at that limit and beyond, the hypothesis made in deriving
Eq. (16) no long holds. For instance, near the Eddington limit,
a continuous radiation field contributes to the pushing-out of the
outer layers, while to obtain the above expression, we hypothe-
sised that the wind is triggered by radiation pressure on lines.

In Table 1, we indicate the maximum values of the rotation
parameter ωmax above which the formulae given before for the
enhancement of the mass-loss rate due to rotation no long hold.
For values of ΓEdd inferior to 0.639, the maximum value is equal
to one. In that range, stars with ω reaching 1 will begin to lose
mass by means of mechanical mass loss in the equatorial re-
gions. For ΓEdd superior to 0.639, the maximum value is inferior
to one. In that domain, the continuous emission will participate
in pushing out the matter and significantly high mass-loss rates
are expected (van Marle et al. 2008). Depending on the value of
ΓEdd, the winds can be more or less anisotropic: for ΓEdd values
just above 0.639, vcrit,2 is near vcrit,1 and strong anisotropies are
expected; when ΓEdd is near 1, vcrit,2 is much lower than vcrit,1 and
the winds are expected to be isotropic.

4.3. Models with realistic mass-loss rate

Here we discuss 9 M� models using a realistic mass-loss rate
(Vink et al. 2001), and accounting for the increase in the

Fig. 9. HR diagram for the isotropic model (black solid line) and
anisotropic model (red dashed line) with realistic mass-loss rates. The
rotation rate is indicated for some points along the tracks.

mass-loss rate induced by rotation (see above). One model takes
the effect of anisotropic winds into account, and one assumes
isotropic mass loss. In the anisotropic model, we also included
the effects of the variation in the force multiplier parameters k
and α which is in turn produced by the variation in the local ef-
fective temperature as a function of the co-latitude. Models were
followed until they reached the critical velocity.

The variations in the force multiplier parameters are ac-
counted for in the following way. In the expression of the in-
crease in the global mass-loss rate due to rotation (Eq. (16)),
we take α and k given by the mean effective temperature of the
star. To compute the anisotropic effects (see Eq. (1)) at each
co-latitude, we use the values of α and k corresponding to the
local effective temperature, allowing variations over the stellar
surface.

Figure 9 shows the HRD for this set of models. The black
curve represents the model with an isotropic mass loss over the
surface, and the red curve the anisotropic one. As in the previous
case, the tracks in this diagram are very similar for both models,
even if a more comprehensive physical treatment is included.
This confirms that even with a precise consideration of the wind
anisotropy, including a realistic mass-loss rate and the variation
in the force multiplier parameters, the effect of the anisotropic
mass loss for very fast rotators remains very small.

In the top panel of Fig. 10, we see the evolution of the ratio
ω as a function of the central hydrogen content for the isotropic
model (black solid line) and the anisotropic one (red dashed
line). The ZAMS is on the left, and the point where ω = 1 is
on the right. The anisotropic model rotates ever more rapidly
than the isotropic one, but the difference is limited. The increase
in the rotation of the isotropic model near Xc = 0.52 causes
the crossing of the tracks in the HRD (see Fig. 9). The inflation
of the surface induced by the higher rotation rate decreases the
mean effective temperature, pushing the track towards the right.

The bottom panel of Fig. 10 shows an interesting feature.
From the ZAMS until Xc ∼ 0.4, the behaviour of the total an-
gular momentum contained in the whole star is similar to the
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Fig. 10. Top panel: rotation rate as a function of the central hydrogen
mass fraction for the isotropic (black solid line) and anisotropic model
(red dashed line) with realistic mass-loss rates. The evolution proceeds
from left to right. Bottom panel: total angular momentum contained in
the star in unit of 1053 g cm2 s−1. The models are represented as in top
panel.

models with constant mass-loss rate: the anisotropic model re-
tains more angular momentum because the wind is polar. From
that point on, however, the star reaches a high enough rotation
rate to strongly decrease the equatorial effective temperature.
The force multiplier parameters are different in this area, and
generate a strong equatorial mass loss. This effect produces
the change in the angular-momentum loss rate: the anisotropic
model loses more angular momentum than the isotropic model.
When the star reaches the critical limit, the isotropic model
finally has a higher angular momentum content than the
anisotropic model!

The final angular momentum of the star strongly depends on
the angular momentum removed by the mechanical mass loss
that the star undergoes during the critically rotating phase. It is
difficult to estimate which of the isotropic or anisotropic model
will have retained the larger amount of angular momentum at
the end of the stellar evolution, and to quantify this difference
without using a model that includes the effects of the mechanical
mass loss. This question, and first estimates of the mass lost in
the equatorial disk, will be addressed in a forthcoming paper.

5. Conclusion

The main result of this paper is that radiative wind anisotropies
do not strongly affect the angular momentum content of stars, in

contrast to previous findings. The different conclusion obtained
here comes mainly from a precise account of the effects of
both the surface deformation and the variation in the mass flux
with the co-latitude. Interestingly, taking into account the varia-
tion in the force multiplier parameters over the surface when the
star is near the critical limit can favour an equatorial-enhanced
mass loss rather than a polar mass loss. In that case, the angular
momentum loss when the effects of wind anisotropies are ac-
counted for can be higher than when they are neglected!

Since the anisotropic winds do have a strong influence on the
evolution of the star, the strong enhancement of the polar mass
flux has a significant effect on the evolution of the circumstellar
medium (see Georgy et al. 2009). Hence, the formation of an
asymmetric nebula around rapidly rotating stars is very likely.

However, another point that appeared in that work is the im-
portance of the equatorial mass loss triggered by the reaching
of the first critical limit. Two processes can keep the star at the
critical limit. The first is the variation in the force multiplier pa-
rameters α and k in the equatorial regions when the local effec-
tive temperature becomes low enough because of the effect of
rotation. This triggers strong equatorial radiative winds, and is
already accounted for in this study. The other is the mechanical
mass loss in the equatorial plane, when the equatorial effective
gravity vanishes. In that case, the mechanical mass loss through
an equatorial disc can remove angular momentum. In a forth-
coming paper we shall study in a quantitative way the impact of
such a disc mass-loss on the evolution of rapidly rotating stars.
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