Effects of Annealing and Prior History on Enthalpy Relaxation in Glassy Polymers. 2. Mathematical Modeling

Ian M. Hodge* and Alan R. Berens

BFGoodrich Research and Development Center, Brecksville, Ohio 44141. Received August 24, 1981

ABSTRACT: A simple four-parameter model reproduces DSC data on the effects of annealing conditions, and thermal history before annealing, on the heat capacity of glassy polymers. The model is an application of the successful treatment of glass transition kinetics, due to Moynihan and co-workers, to thermal histories which include annealing. It is found that a nonexponential relaxation function is essential for the development of sub- T_g heat capacity peaks with annealing and that nonlinearity is important in accelerating their development to experimentally accessible aging times. Numerical integration allows accurate predictions of the effects of quench rate, annealing temperature, annealing time, and reheating rate on the magnitude and temperature of heat capacity peaks observed in DSC scans of annealed PVC (part 1) and other polymeric glasses.

I. Introduction

Glasses usually exist in a nonequilibrium state, and relaxation toward equilibrium is commonly referred to as physical aging or annealing. Aging affects a large number of properties such as density, modulus, and the rate of stress, strain, enthalpy, and volume relaxation.¹⁻³

The increased rate of aging as temperature approaches the glass transition temperature, T_g , and the elimination of aging effects after heating above T_g suggest a close connection between the aging and glass transition phenomena. Furthermore, Kovacs et al.^{2,3} and the present authors⁴ have demonstrated that the development of sub- T_{g} heat capacity peaks with aging is a consequence of the glass transition kinetics. The present paper explores in detail the relation between the glass transition phenomenon and aging effects. The approach used by Moynihan and co-workers⁵ to treat the glass transition is used to calculate the heat capacity as a function of glass transition kinetic parameters, annealing conditions, and thermal history before annealing. A comparison with experimental data given in part 1 is also made. We begin by reviewing some of the phenomenological aspects of the glass transition kinetics, as treated by Moynihan and coworkers.5

The kinetics of the glass transition and aging phenomena are both nonexponential and nonlinear. They are nonexponential in the sense that the relaxation toward equilibrium following a sudden perturbation (e.g., a temperature step) is described by a nonexponential decay function $\phi(t)$. This is formally equivalent to a distribution of relaxation times $g(\tau)$, related to $\phi(t)$ by

$$\phi(t) = \int_0^\infty g(\tau) e^{-t/\tau} \,\mathrm{d}\tau \tag{1}$$

and constrained by the condition

$$\int_0^\infty g(\tau) \, \mathrm{d}\tau = 1 \tag{2}$$

The description of a relaxation by a specific function for $g(\tau)$ does not necessarily imply separate relaxation mechanisms for the various relaxation time components of $g(\tau)$, since a single cooperative relaxation mechanism may produce a nonexponential form for $\phi(t)$. A well-known consequence of a nonexponential relaxation is the maximum in the response (e.g., volume) to two separate perturbations of opposite sign (e.g., temperature jumps).^{3,5} An empirical function which has been found to give an excellent fit to a wide range of relaxation processes in a large variety of amorphous materials is

$$\phi(t) = \exp[-(t/\tau_0)^{\beta}] \tag{3}$$

where τ_0 is a characteristic time and β ($0 < \beta \le 1$) is a direct measure of nonexponentiality. The corresponding $g(\tau)$ is asymmetric on a log τ scale, with a skew toward short times.⁶ Plots of eq 3 are shown in Figure 1 for $\beta = 1.0$ (single relaxation time) and $\beta = 0.5$ (a representative value). Compared with the exponential function, $\phi(t)$ for $\beta = 0.5$ has both shorter and longer time components. This has important consequences for aging behavior which are discussed below. In this paper we shall accept eq 3 as an adequate description of the nonexponentiality of the glass transition and use it to model aging.

The kinetics of aging and the glass transition are also nonlinear in the sense that $\phi(t)$ depends on the degree of departure from equilibrium. This nonlinearity is most conveniently treated by making the average relaxation time a function of structure as well as temperature. It is an additional convenience to treat the structural state of a system, as measured by macroscopic properties such as volume or enthalpy, in terms of the fictive temperature $T_{\rm f}$.⁷ In the general case, $T_{\rm f}$ is defined as the temperature at which the measured value of a property would be the equilibrium one. However, since $T_{\rm f}$ measures only the relaxational component of a specified property, values of $T_{\rm f}$ assessed from different properties for the same glass may differ. The equilibrium state well above T_{σ} is characterized by the condition $T_f = T$, and relaxation from a nonequilibrium state is described by the decay of $T_{\rm f}$ toward T. Nonlinearity is treated phenomenologically by allowing τ_0 in eq 3 to be an explicit function of T and $T_{\rm f}$, as in the expression of Gardon and Narayanaswamy^{8,9}

$$\tau_0 = A \, \exp\left[\frac{x\Delta h^*}{RT} + \frac{(1-x)\Delta h^*}{RT_{\rm f}}\right] \tag{4}$$

where A, x ($0 < x \le 1$), and Δh^* are constants and R is the ideal gas constant. The parameter x is a direct measure of nonlinearity, with x = 1 for a linear relaxation. Equations 3 and 4 accurately describe both the decay of refractive index n in response to a single temperature jump and the maximum in n following two large temperature jumps of opposite sign for glassy $B_2O_{3.5}$. The relaxation of enthalpy H following a large temperature jump (20 K) is also accurately described by eq 3 and 4 for the chalcogenide glass $As_2Se_{3.5}$

Combination of eq 3 and 4 with the Boltzmann superposition principle (as described below) has been used by Moynihan and co-workers^{5,10–12} to give an accurate description of the heat capacity C_p as a function of temperature during rate cooling and reheating through the

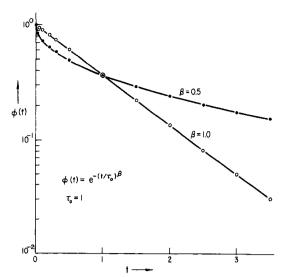


Figure 1. Plots of the decay function given by eq 3 for $\beta = 1.0$ and $\beta = 0.5$.

glass transition for a variety of glasses, including B_2O_3 ,¹⁰ As₂Se₃,¹⁰ NaKSi₃O₇,¹¹ "5-phenyl-4-ether" [C₆H₅(OC₆H₄)₃-OC₆H₅],⁵ and poly(vinyl acetate) (PVAc).¹² In particular, the C_p overshoot near T_g during reheating after rate cooling as a function of cooling and heating rates is accurately described.

The development of sub- T_g heat capacity peaks with aging has been well established experimentally since the pioneering work of Illers¹⁵ (see part 1 for further references). We describe here a procedure for accurately calculating these peaks.

II. Model

We first give a summary of the relevant features of Moynihan's treatment of the glass transition kinetics^{5,10} and then describe how annealing is introduced.

The glass transition is treated as a straightforward application of the Boltzmann superposition principle of aftereffects, with the nonexponentiality and nonlinearity described by eq 3 and 4, respectively. For heating or cooling rate Q, the time t and temperature T variables are simply related as

$$\mathrm{d}T = Q \, \mathrm{d}t \tag{5}$$

so that the Boltzmann superposition integral over time can be replaced by a corresponding integral over temperature. Thus the response $T_f(T)$ to temperature perturbations is given by

$$T_{\rm f}(T) = T_0 + \int_{T_0}^T {\rm d}T' \left\{ 1 - \exp\left[- \left(\int_{T'}^T {\rm d}T'' / Q\tau_0 \right)^{\beta} \right] \right\} \quad (6)$$

where T_0 is a starting temperature well above T_{g} , and T'and T'' are dummy temperature variables. The value of τ_0 varies continuously with T and T_f according to eq 4. A dimensionless heat capacity $C_p(T)$ is defined as

$$C_p(T) = \mathrm{d}T_\mathrm{f}/\mathrm{d}T \tag{7}$$

and is calculated by differentiating eq 6 during cooling from T_0 to a temperature far below T_g and reheating to T_0 again. The relation between $C_p(T)$ and experimental data is described below. The calculated heat capacity during heating, corresponding to the usual DSC scans, therefore depends on both the heating rate and the previous cooling rate through T_g . Equations 4 and 6 comprise the model for the glass transition phenomenon. The present model for annealing is obtained by inserting the annealing time into the cooling cycle at the annealing temperature in the manner described below.

III. Method of Computation

In practice, eq 6 must be integrated numerically. For this purpose continuous cooling or reheating at a rate Qis replaced by a series of temperature steps, ΔT , followed by isothermal holds of duration $\Delta t = \Delta T/Q$. The magnitude of ΔT must be sufficiently small to ensure linearity; $\Delta T = 1$ K is satisfactory¹⁰ and was used for all the calculations reported here. The evolution of $T_{\rm f}$ following *n* temperature steps is then expressed by rewriting eq 6 in the form

$$T_{f,n} = T_0 + \sum_{j=1}^n \Delta T_j \{ 1 - \exp[-(\sum_{k=j}^n \Delta T_k / Q_k \tau_{0,k})^\beta] \}$$
(8)

where $\tau_{0,k}$ is given by

$$\tau_{0,k} = A \, \exp\left[\frac{x\Delta h^*}{RT_k} + \frac{(1-x)\Delta h^*}{RT_{f,k-1}}\right] \tag{9}$$

The heat capacity corresponding to eq 7 is given by

$$C_{p,n} = \frac{\mathrm{d}T_{\mathrm{f}}}{\mathrm{d}T} = \frac{T_{\mathrm{f},n} - T_{\mathrm{f},n-1}}{T_{n} - T_{n-1}} \tag{10}$$

In fitting the model to experimental data, one must normalize the latter by extrapolating the experimental glass and rubber heat capacities into the glass transition region and expressing the measured heat capacities in excess of C_p (glass) as a fraction of the difference C_p (rubber) - C_p (glass). This normalized C_p has a value zero for the glass and unity for the liquid and is directly comparable with the calculated $C_p(T)$ given by eq 10.

with the calculated $C_p(T)$ given by eq 10. Aging at temperature T_k is introduced into the calculation, in essence, by replacing the term $\Delta T_k/Q_k$ in eq 8 with the annealing time t_{e} . In the preliminary communication of this model,⁴ t_e was inserted directly into eq 8 in this way during the cooling cycle. The calculation proceeded by cooling at a rate $Q_{\rm C}$ to the aging temperature $T_{\rm e}$, holding at that temperature for time $t_{\rm e}$, cooling at the same rate to room temperature (300 K), and reheating immediately at heating rate $Q_{\rm H}$. The relaxation time τ_0 of eq 3 was assumed constant over the time t_e ; i.e., no account was made of the self-retarding (nonlinear) aging kinetics. Although this approximation is sufficiently good to permit the prediction of general changes in the heat capacity maximum $(C_{p \max})$ and the temperature at which it occurs (T_{max}) with t_e and T_e for PVC,⁴ it was necessary to make the parameter x increase explicitly with T_{e} to give a quantitative account of the experimental data. This shortcoming is largely removed in the computation procedure described here, which incorporates the self-retarding kinetics of aging. The present calculation fits experimental data reasonably well with a single set of four parameters (two of which are constrained by the value of T_{g} and its variation with quench rate). The self-retarding kinetics were introduced by dividing the aging time into 10 subintervals and calculating $T_{\rm f}$ and τ_0 at the end of each. Because of the well-established dependence of aging effects on log $t_{\rm e}$, the subintervals were determined by dividing $t_{\rm e}$ into even logarithmically spaced intervals.

During annealing, T is, of course, held constant so that $Q_{\rm C} = 0$, and eq 8 must be modified to prevent a singularity in the summation over k. This was done by truncating the sum over j in eq 8, with the maximum value of j held fixed at the value at the beginning of the annealing time $(j = n_{\rm A})$. The summation over k was not truncated, the max-

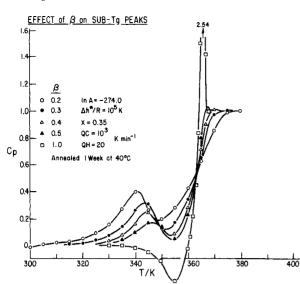


Figure 2. Calculated effect of the nonexponentiality parameter β (eq 3) on the development of sub- T_g heat capacity peaks after annealing at 40 °C for 1 week.

imum value of k being incremented for each subinterval of the aging time. Thus, during annealing eq 8 was modified to

$$T_{f,n} = T_0 + \sum_{j=1}^{n_A} \Delta T_j \{1 - \exp[-(\sum_{k=n_A}^n \Delta t_{e,k} / \tau_{0,k})^\beta]\}$$
(11)

where $n_A + 10 \ge n > n_A$ and

$$\Delta t_{e,k} = t_e^{1/10} \qquad k = n_A + 1$$

$$\Delta t_{e,k} = t_e^{(k-n_A)/10} - t_e^{(k-n_A-1)/10} \qquad k > n_A + 1$$

Equation 11 is a summation version of the integral expressions of Moynihan et al.^{5,10} At the first temperature step after annealing, the upper limit of j was increased from n_A to $n_A + 11$ and the summation over j recommenced using eq 8. As before,⁴ annealing was introduced during the cooling cycle. This is clearly an approximation to most experimental thermal histories, but since these are rarely specified exactly the precise difference is not known.

IV. Calculation Results

We present the model predictions in three sections. In the first, the effects of varying the model parameters are investigated, with the annealing conditions and other aspects of the thermal history held constant. In the second, the model parameters are held fixed and the predicted effects of changes in annealing conditions and thermal history (such as cooling rate before annealing) are presented. In the Discussion the model predictions are compared with experimental data, some of which were presented in part 1. Some additional results of special interest are also given in the Discussion.

The results presented here are the calculated C_p curves for the reheating cycle, corresponding to the experimental DSC scans. In most cases the value of T_g was fixed at 363 K, close to that of PVC. For this purpose, T_g is defined as the temperature at which the normalized C_p is 0.5 during heating at 20 K min⁻¹ after cooling at 10³ K min⁻¹.

A. Variation of Model Parameters. Variations in the nonexponentiality parameter β (eq 3), nonlinearity parameter x (eq 4), activation enthalpy Δh^* (eq 4), and preexponential factor A (eq 4) were studied. The parameters β and x were each varied individually, with the other three held fixed, and Δh^* and A were varied together to keep T_g constant at 363 K. To assess the importance of

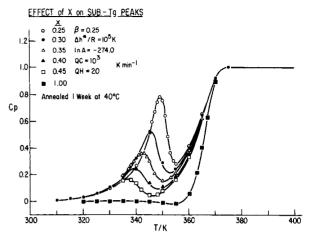


Figure 3. Calculated effect of the nonlinearity parameter x (eq 4) on the development of sub- T_g heat capacity peaks after annealing at 40 °C for 1 week.

the relative difference between $T_{\rm e}$ and $T_{\rm g}$, the parameter A was also varied alone to change $T_{\rm g}$.

1. Nonexponentiality Parameter β . The dimensionless parameter β is a direct measure of nonexponentiality or, equivalently, the breadth of the distribution of relaxation times. Smaller values of β correspond to increased nonexponentiality. Typically, β lies in the range 0.4-0.6 for the glass transition.⁵ The calculated effects of changing β on C_p during reheating of an aged glass are shown in Figure 2. The other parameters were fixed at $\Delta h^*/R = 1.0 \times 10^5$ K, $A = 1.01 \times 10^{-119}$ s, and x = 0.35, and the experimental variables were fixed at $T_e = 40$ °C, $t_e = 1$ week, $Q_C = 10^3$ K min⁻¹, and $Q_H = 20$ K min⁻¹. Note that A is an empirical parameter with no direct physical significance. The value of $Q_{\rm C}$ is an estimate of the rate usually referred to in the literature as a "rapid quench". Figure 2 demonstrates that a distinct sub- T_{g} heat capacity peak is predicted to occur when $\beta < 1$ but not when $\beta =$ 1.0. The peaks are asymmetric, with a low-temperature tail and relatively sharp high-temperature edge. This asymmetry is observed experimentally (e.g., see part 1). The results shown in Figure 2 also indicate that T_{max} decreases and $C_{p \max}$ increases with decreasing β , and this trend continues for values of β between 0.5 and 1.0 (not shown). The limiting case of $\beta = 1.0$ is considered in the Discussion. The glass transition broadens with decreasing β , as expected, but T_g ($C_p = 0.5$) is unaffected.

2. Nonlinearity Parameter x. The effects of changing x on the calculated C_p scans are shown in Figure 3. The other model parameters and the experimental variables are given in the figure. The calculations indicate that both T_{\max} and $C_{p\max}$ increase with decreasing x (increasing nonlinearity). The effect on $C_{p\max}$ is the same as, and that on T_{\max} the opposite of, decreasing β . This difference in response to variations in x and β permits an unambiguous choice of these parameters when fitting the model to experimental data. Indeed, the calculations performed to date suggest that the development of C_p peaks with annealing is more sensitive to x and β than are the shape of the glass transition and the overshoot behavior at T_g as a function of relative cooling and reheating rates. The limiting case of x = 1, where $C_{p\max} = 0$, is considered in the Discussion.

3. Activation Enthalpy Δh^* . The parameter Δh^* (eq 4) can be obtained from the dependence of the frozen-in fictive temperature, T'_f , on cooling rate¹⁰ and is not considered as adjustable in the analysis of the kinetics of the glass transition.¹⁰ However, for the purposes of illustrating how annealing behavior is affected by Δh^* , we shall regard

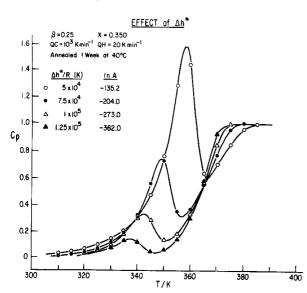


Figure 4. Calculated effect of the parameter Δh^* (eq 4) on the development of sub- T_g heat capacity peaks after annealing at 40 °C for 1 week.

Table I Calculated Effect of T_g on Development of Sub- $T_g C_p$ Endotherms^a

$\overline{T_{g}}, \mathrm{K}$	T _e , K	$C_{p \max}$	T _{max} , K
353	313	0.66	341
	323 333	$1.41 \\ 2.48$	349 356
363	313	0.35	342
	323 333	$0.77 \\ 1.56$	352 360
373	313	0.19	343
010	323	$0.19 \\ 0.42$	343 354
	333	0.87	363

^a
$$\Delta h^*/R = 10^5$$
 K, $\beta = 0.250$, $x = 0.350$, $Q_C = 10^3$ K min⁻¹, $Q_H = 20$ K min⁻¹, $t_e = 1$ week.

it here as fully adjustable. To keep T_g constant, it is necessary to change the parameter A (eq 4) together with Δh^* (Δh^* and log A are linearly related).

The effects of changing Δh^* , with corresponding changes in A, are displayed in Figure 4. The parameters β and x were kept fixed at 0.25 and 0.35, respectively, and the experimental variables were kept at the values given in IV.A.1. The effect of decreasing Δh^* is qualitatively the same as decreasing x; i.e., both T_{\max} and $C_{p\max}$ increase. This presumably reflects the fact that the product $x\Delta h^*$ determines the temperature dependence of τ_0 when T_f is constant (eq 4).

4. Preexponential Factor A. To determine how the relative values of T_e and T_g affect the development of sub- $T_g C_p$ peaks, A was varied alone to change T_g . The values of $C_{p \max}$ and T_{\max} as a function of T_e and T_g are tabulated in Table I.

The calculated values of $C_{p \max}$ increase as the difference between T_e and T_g diminishes, regardless of T_g . It is also found that $C_{p \max}$ is relatively constant when T_g is varied but $T_g - T_e$ is fixed. This is consistent with the qualitative experimental observation that the rate of aging depends on $T_g - T_e$ rather than T_e per se. On the other hand, T_{\max} depends principally on T_e , regardless of T_g , provided T_e is sufficiently below T_g (at least for the changes in T_g of up to 20 °C studied here).

B. Variation of Experimental Conditions. The effects of changing experimental variables were calculated with the model parameters fixed at $\ln A = -272.0$, $\Delta h^*/R$

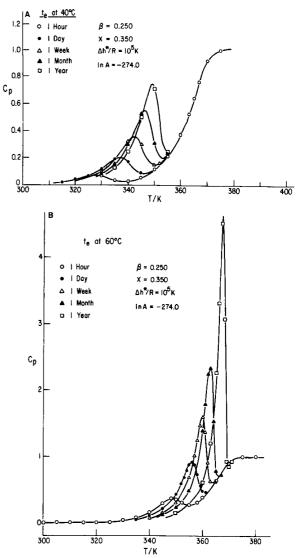


Figure 5. Calculated effect of annealing times from 1 h to 1 year: (A) $T_e = 40$ °C; (B) $T_e = 60$ °C. $Q_C = 10^3$ K min⁻¹, $Q_H = 20$ K min⁻¹.

= 10⁵ K, β = 0.25, and x = 0.35. These values are approximately those found to fit PVC data in the simplified preliminary communication.⁴ Four variables were varied, one at a time, with the others held fixed: aging time t_e , aging temperature T_e , cooling rate Q_C , and reheating rate Q_H . All of the calculated trends presented here are observed experimentally. A detailed comparison of experimental and calculated results is given in the Discussion.

1. Annealing Time. The effects of aging times from 1 h to 1 year were calculated for aging temperatures of 40 and 60 °C, with the result shown in Figure 5A,B, respectively. It is clear that both T_{\max} and $C_{p\max}$ increase with increasing t_e at both T_e 's. When T_{\max} lies well below T_g , the glass transition is unaffected by aging, but at the longest t_e 's at $T_e = 60$ °C the peak becomes superimposed on the glass transition step and eventually develops into the well-known overshoot. The calculated decrease in T_f during annealing, ΔT_f , is directly comparable with the experimental decrease in enthalpy ΔH . It is calculated that ΔT_f is an approximately linear function of log t_e at short t_e and low T_e (Figure 6A) but becomes independent of t_e at long t_e and high T_e . This leveling off occurs when T_f has relaxed fully to T_e . It is also calculated that T_{\max} increases approximately linearly with log t_e (Figure 6B).

2. Annealing Temperature T_{e} . The effects of annealing temperatures between 30 and 80 °C, calculated at

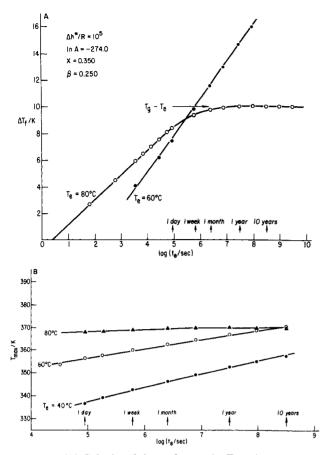


Figure 6. (A) Calculated dependence of $\Delta T_{\rm f}$ on log $t_{\rm e}$ for $T_{\rm e} = 60$ and 80 °C. Here, $T_{\rm g}$ refers to the value of $T_{\rm f}$ before annealing. (B) Calculated dependence of $T_{\rm max}$ on log $t_{\rm e}$ for $T_{\rm e} = 40, 60, {\rm and}$ 80 °C. Parameters are given in (A).

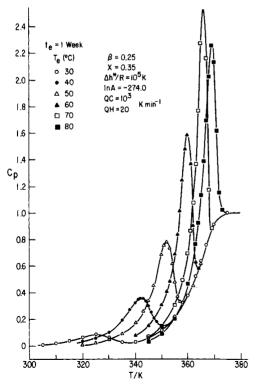


Figure 7. Calculated effects of T_e on C_p for $t_e = 1$ week.

10 °C intervals for a fixed annealing time of 1 week, are shown in Figure 7. $T_{\rm max}$ increases steadily with $T_{\rm e}$, but $C_{p\,{\rm max}}$ increases only up to $T_{\rm e} = 70$ °C and then begins to decrease. When $T_{\rm e}$ is well below $T_{\rm g}$ (by ~30 °C or more),

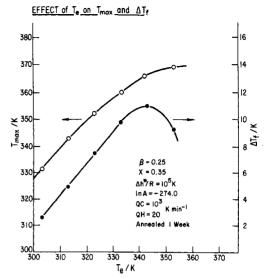


Figure 8. Calculated variation of T_{max} and ΔT_{f} with T_{e} for $t_{\text{e}} = 1$ week.

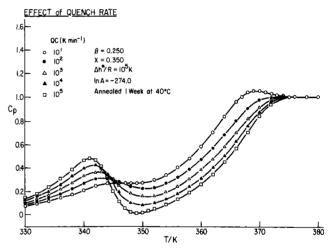


Figure 9. Calculated effects of cooling rate $Q_{\rm C}$ on the development of C_p peaks with aging. $T_{\rm e} = 40$ °C, $t_{\rm e} = 1$ week, $Q_{\rm H} = 20$ K min⁻¹.

 $T_{\rm max}$ is calculated to increase almost linearly with $T_{\rm e}$ (Figure 8), with curvature occurring at higher values of $T_{\rm e}$. The magnitude of $\Delta T_{\rm f}$ also increases linearly with $T_{\rm e}$ at low $T_{\rm e}$ and then, like $C_{p\,\rm max}$, passes through a maximum at ca. 70 °C (i.e., 20 °C below $T_{\rm g}$) (Figure 8).

3. Cooling Rate. The calculated effects of varying the cooling rate from 10 to 10^5 K min⁻¹ at decade intervals before annealing at 40 °C for 1 week are shown in Figure 9. The heating rate is 20 K min⁻¹. It is calculated that $C_{p \max}$ increases and the peaks become sharper and more asymmetric with increasing quench rate, whereas T_{\max} is almost unaffected. At the fastest cooling rate shown in Figure 9 (10^5 K min⁻¹), the minimum in C_p between T_{\max} and T_g drops below the unannealed glassy level.

The increase in T_g with increasing quench rate and the overshoot at T_g for the lowest cooling rate are also observed in unannealed glasses.^{5,10,28}

4. Reheating Rate. The calculated effects of varying the reheating rates from 10 to 10^3 K min⁻¹ at half-decade intervals are shown in Figure 10. The cooling rate was 10^3 K min⁻¹, and annealing for 1 week was introduced at 40 °C. The calculations show that both $T_{\rm max}$ and $C_{p \rm max}$ increase with increasing $Q_{\rm H}$. Most of the increase in $C_{p \rm max}$ with increasing $Q_{\rm H}$ is due to the rising glass transition background with increasing temperature. $T_{\rm max}$ increases

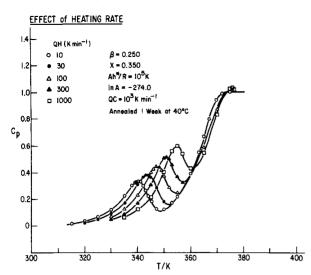


Figure 10. Calculated effects of heating rate on C_p after annealing 1 week at 40 °C.

approximately linearly with $\log Q_{\rm H}$.

V. Discussion

A. Comparison with Experimental Observations. 1. Effect of Aging Time t_e . The calculated linear increase in T_{max} with log t_e is observed experimentally.^{15-17,19,22} The decrease in T_f during annealing, ΔT_f , is directly comparable with the experimental decrease in enthalpy after aging, ΔH , determined from the integrated difference between C_p scans of aged and unaged glasses with otherwise identical thermal histories. For example, a change of 1 K in T_f corresponds to ca. 0.07 cal g⁻¹ for PVC. The linear increase in ΔT_f with log t_e at short t_e (Figure 6) is observed experimentally.^{3,15,16,18,19} The predicted constancy of ΔT_f at long t_e (Figure 6) is also observed^{17,19-21} and is due to T_f relaxing fully to T_e . This corresponds to the experimental situation in which the excess glassy enthalpy relaxes to the equilibrium value.

2. Effect of Annealing Temperature T_e . The calculated linear relation between T_{max} and T_e when T_e is well below T_g (Figure 8) is observed experimentally.^{3,15,16,18} The calculated linear relation between ΔT_f and T_e at low T_e (Figure 8) is also observed^{15,16,18-20} as is the maximum at 70 °C (ca. 20 °C below T_g).^{15,16,20,21,23} This maximum reflects the approach of T_f to T_e after annealing, since the maximum change in T_f is restricted by how much T_f exceeds T_e at the beginning of annealing, and this difference decreases as T_e approaches T_g . For example, at $T_e = 80$ °C T_f is calculated to exceed T_e by 10 K before annealing and almost all of this (9 K) relaxes out after 1 week of aging. This is much less than the change in T_f of 15 K obtained by extrapolation of the linear region at low T_e .

3. Cooling Rate and Prior History. The calculated increases in peak sharpness, peak asymmetry, and $\Delta T_{\rm f}$ with increasing cooling rate accurately reproduce the experimental data for PVC (see part 1). Similar effects are observed in annealed PVC glasses which were mechanically dilated or swollen by vapor before annealing (part 1) and in annealed PS¹⁷ and PVC²⁵ glasses which were vitrified under high hydrostatic pressures and annealed at atmospheric pressure. The similarity of the calculated curves to results on pressure-vitrified PVC²⁵ and PS¹⁷ is particularly striking. These observations suggest that both dilation and densification of glasses elevate their excess enthalpies just as rapid quench rates do.

Another common feature of rapidly quenched, pressure-densified, and mechanically or vapor-dilated glasses is the weak dependence of T_{max} on their prior histories

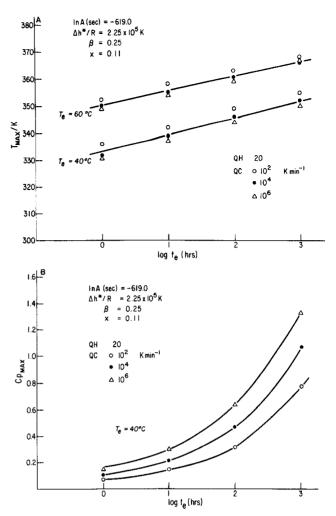


Figure 11. (A) Calculated variation of T_{max} with log t_e as a function of T_e and Q_c . (B) Calculated variation of $C_{p \text{ max}}$ with log t_e at $T_e = 40$ °C as a function of Q_c (cf. Figure 10 of ref 13).

(Figure 9, part 1). The results presented in IV.B.3 indicate that T_{\max} is almost independent of quench rate when the other experimental variables are fixed. The calculation is now extended to include variations in t_e and T_e . The model parameters chosen were those which best fit the experimental data for liquid-nitrogen-quenched PVC (see section V.A.5 below). The calculated effects of varying $Q_{\rm C}$ and T_e on T_{max} as a function of log t_e are shown in Figure 11A. It is found that T_{max} varies with log t_e in almost the same way for a large range of quench rates and that the slope $(\partial T_{\max}/\partial \log t_e)_{T_*}$ is weakly dependent on T_e . These results closely parallel the experimental observations summarized in Figure 9 of part 1. Also, the calculated increase in T_{max} of 6.5 K per decade of t_{e} is in reasonable agreement with the experimental value of ca. 5 K per decade obtained from Figure 9 of part 1. In contrast to the weak dependence of T_{max} on cooling rate, the values of $C_{p \max}$ and ΔT_{f} and their variation with log t_{e} are quite sensitive to $Q_{\rm C}$, as shown in Figure 11B. The more rapid increase in $C_{p \max}$ with t_e for rapidly quenched glasses reproduces the experimental trends exhibited in Figure 10 of part 1, but the experimental scatter is too large to determine if the calculated curvilinear relation between $C_{p \max}$ and $\log t_e$ is correct.

Yet another feature shared by rapidly quenched, dilated, and densified glasses is the occurrence of exothermic minima. Such exotherms are frequently observed below T_g in glasses which have been rapidly quenched and reheated slowly, and it is now well established that this is

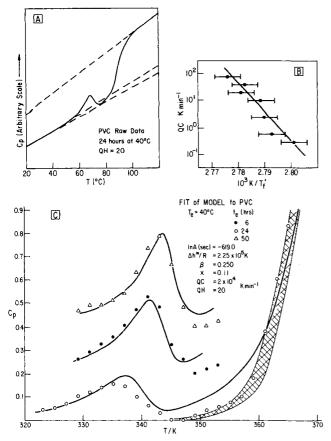


Figure 12. Fit to experimental data for liquid-nitrogen-quenched PVC (from part 1). (A) Representative raw data, with extreme choices for glassy C_p . (B) Dependence of T_f on Q_c . (C) Experimental data are shown as points, model fits as solid lines. The curves for $t_e = 24$ and 50 h are displaced upward for clarity, by 0.2 and 0.4, respectively. Crosshatching corresponds to experimental scatter at T_g .

due to partial relaxation of the excess enthalpy to the lower equilibrium enthalpy during slow reheating.¹⁰ The development of a sub- T_g peak with annealing evidently does not significantly change this phenomenon.

The increase in the magnitude of ΔH with increasing quench rate, dilation, or densification is a direct result of the elevated excess enthalpies and the nonlinearity of the relaxation kinetics; the large excess enthalpies reduce the average relaxation time so that aging occurs more rapidly. The increased density of the pressure-densified glasses would also be expected to increase the average volume relaxation time, but any density-induced increase in enthalpy relaxation times is apparently not large enough to reverse the enhanced relaxation rate caused by the large excess enthalpy. An answer to the interesting question of whether changes in density alone affect the enthalpy relaxation rate must await an experimental comparison of enthalpy relaxation in chemically identical glasses with the same excess enthalpies but different densities.

4. Reheating Rate. Only a few systematic studies of the effect of heating rate on sub- $T_g C_p$ peaks have been made.^{3,19,26} Analysis of these results indicates that the calculations correctly predict an approximately linear increase in T_{max} with log $Q_{\rm H}$. Since the reheating rate affects only the manifestation of enthalpy relaxation during annealing, no change in ΔT_f is expected nor seen.

5. Poly(vinyl chloride) (PVC). Representative data for liquid-nitrogen-quenched PVC, with estimates of C_{p_g} and C_{p_l} , are given in Figure 12A. Two extreme choices of C_{p_g} are shown to illustrate the major source of uncertainty in the normalization procedure. The minimum

Table IIFit of Model to PVC Data^a

T _e , °C	t _e , h	$C_{p \max}$		T _{max}	
		obsd	calcd	obsd	calcd
20	7	0.13	0.08	324	323
	27	0.14	0.12	328	327
	150	0.21	0.21	332	333
40	6	0.16	0.19	336	337
	24	0.33	0.31	341	341
	50	0.40	0.40	343	343
60	1	0.21	0.37	351	350
	7	0.66	0.76	357	355
	24	1.10	1.2	359	357
	50	1.6	1.6	360	359

^a $\Delta h^*/R = 2.25 \times 10^5$ K, $\beta = 0.250$, x = 0.110, ln A = -619.0, $Q_C = 2 \times 10^4$ K min⁻¹, $Q_H = 20$ K min⁻¹.

between $T_{\rm max}$ and $T_{\rm g}$ is particularly sensitive to this uncertainty. The cooling rate through $T_{\rm g}$ was estimated as 2×10^4 K min⁻¹, by assuming an exponential decrease in temperature from +120 to -196 °C in 2 s (see part 1). The model parameter Δh^* was determined from separate measurement of $T_{\rm f}$ (the value of $T_{\rm f}$ frozen-in immediately after cooling) as a function of cooling rate in the manner described by Moynihan and co-workers.⁵ A plot of log $Q_{\rm C}$ vs. $1/T_f$ is given in Figure 12B. The best-fit value for $\Delta h^*/R$ is $(2.25 \pm 0.25) \times 10^5$ K. The large imprecision is a result of the estimated uncertainty in $T_{\rm f}$ (±0.5 K), being large compared with the total change in $T_{\rm f}$ of ca. 3 K for a 2 order of magnitude change in $Q_{\rm C}$. The parameter A was then fixed by $T_{\rm g}$ (363 K for the liquid-nitrogenquenched glass reheated at 20 K min⁻¹ when defined as the temperature at which the normalized heat capacity is 0.5). The parameters β and x were varied to give the best overall fit to the data for $T_e = 40$ °C. Thus, only two parameters were adjusted.

The calculated values of $C_{p \max}$ and T_{\max} as a function of T_e and t_e are compared with experimental data in Table II. In Figure 12C, the experimental and calculated C_p curves for $T_e = 40$ °C are compared at several t_e 's. The band at T_g represents the experimental spread for all the combinations of t_e and T_e listed in Table II.

The agreement between experimental data and model calculations exhibited in Table II and Figure 12C is sufficiently good to be considered as support for the general accuracy of the treatment, especially in view of the experimental uncertainties in quench rate and $C_{p_{\rm g}}$ and the (unknown) differences in detail of the experimental and modeled thermal histories. In particular, the reproduction of $T_{\rm max}$ and $C_{p\,\rm max}$ for several combinations of $t_{\rm e}$ and $T_{\rm e}$ using a single set of four parameters (of which only two were adjusted) is considered strong evidence for the fundamental correctness of the model.

We turn now to a discussion of the parameters. The assumption that Δh^* is independent of temperature is evidently an adequate approximation despite the wellknown WLF behavior above T_g . The value of $\Delta h^*/R$ for PVC is much higher than the values obtained by the same method for other glasses.⁵ However, it should be recalled that the temperature dependence of the relaxation times at constant T_f is determined by $x\Delta h^*/R$ (eq 4), whose value of 2.5×10^4 K is comparable with that for PVAc (2.7×10^4 K).¹² The low value of x, 0.11, indicates a very strong dependence of the relaxation time on structure. The β parameter is also low, corresponding to a very broad $g(\tau)$ and is consistent with the broad dielectric loss peaks for PVC near T_g^{14} (width at half-height of ca. 5.0 decades, corresponding to a β of ca. 0.25). This may reflect the

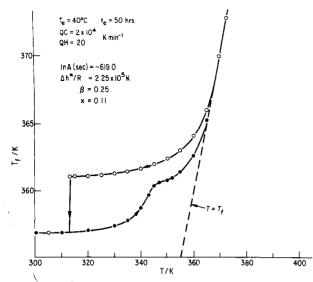


Figure 13. Calculated variation of T_f with T during cooling, annealing, and reheating. Curves correspond to calculated C_p behavior shown in Figure 12C for $t_e = 50$ h at 40 °C.

presence of ordered regions since the chain segments within the amorphous phase adjacent to the immobile ordered regions would be expected to have a reduced configurational mobility and correspondingly longer relaxation times. This tentative interpretation is supported by data for PVAc ($\beta = 0.51$)¹² and preliminary data for polystyrene ($\beta \simeq 0.6$)²⁹ (both polymers are completely amorphous).

6. Effects of Nonexponentiality. When $\beta = 1$ the relaxation is exponential (single relaxation time) and no sub- T_g endothermic peak is observed (Figure 2). No combination of model parameters and experimental parameters, including those which enhance peak development (e.g., low x, high $Q_{\rm C}$, and very long $t_{\rm e}$), was found which would generate a sub- T_g endotherm when $\beta = 1$. The pronounced exotherm and endotherm near T_g calculated for $\beta = 1$ (Figure 2) are a direct result of the change in glass transition kinetics and occur identically in unannealed glasses in which the cooling rate was decreased to produce the same $T_{\rm f}$ as the annealed glass. Thus, for an exponentially relaxing system the C_p behavior during reheating depends only on the starting value of $T_{\rm f}$ and is independent of how that $T_{\rm f}$ was achieved. The experimentally observed dependence of C_p behavior on prior history is another example of the well-established fact that memory effects in glasses are a direct reflection of nonexponentiality.

The sub- T_{g} heat capacity peaks correspond to a rapid increase in enthalpy, followed by a leveling off (or a decrease when an exothermic minimum in C_p is observed). This is illustrated in Figure 13, which shows the calculated temperature dependence of $T_{\rm f}$ during cooling, annealing, and reheating. The model parameters, cooling rate, and heating rate are those for the PVC fit shown in Figure 13 for an annealing time of 50 h at 40 °C. The reheating curve is similar to the time dependence of volume following two temperature jumps of opposite sign separated by a holding time, first observed by Kovacs.⁴ In a qualitative sense the cooling may be equated with a step decrease in temperature, annealing time equated with the holding time, and heating equated with the second temperature jump. More accurately, the response to a cooling-annealing-reheating cycle is the superposition of responses to many of these temperature jump sequences with different holding times.

7. Effect of Nonlinearity. When x = 1.0 (linear relaxation) the development of sub- T_g endotherms is completely suppressed for practicable observation times (Figure 3). Calculations indicate that when x = 1, production of an observable sub- T_{g} endotherm, after annealing at 40 °C, for example, is not eliminated but would require annealing times of the order of $10^2 - 10^3$ years. The importance of nonlinearity in accelerating the rate of development of sub- T_{g} peaks with annealing is readily explained. The glassy state before annealing is characterized by $T_{\rm f}$ being much higher than T (indeed, the frozen-in value of $T_{\rm f}$ is one measure of $T_{\rm g}$). For increasingly nonlinear systems in which the average relaxation time has a greater dependence on $T_{\rm f}$, relaxation will be faster and $\Delta T_{\rm f}$ will be greater. This occurs even though the frozen-in value of $T_{\rm f}$ for more nonlinear systems is somewhat lower (for the same reason). The increase in $\Delta T_{\rm f}$ enhances the magnitude and rate of development of sub- T_{g} peaks on reheating in the same way that increased quench rates and longer annealing times do. In addition, increasingly nonlinear systems are more self-accelerating during reheating, which also contributes to the increase in $C_{p \max}$.

It is of further interest to compare, briefly, the effects of nonexponentiality and nonlinearity on the development of sub- T_g endotherms with annealing with their effects on overshoot behavior near T_g during heating of unannealed glasses. Both phenomena are enhanced by nonlinearity because a nonlinear relaxation is self-accelerating during heating. However, although increasing nonexponentiality enhances the development of endotherms with annealing, it decreases the overshoot at T_g for rate-cooled glasses.¹⁰ The latter is a direct reflection of the approach to equilibrium near T_g being spread over a large temperature range.

VI. Summary and Conclusions

The occurrence of sub- T_g endothermic heat capacity maxima observed in DSC scans of annealed polymeric glasses is a relaxation effect due to the superposition of nonlinear and nonexponential responses to previous thermal history. A simple adaptation of the successful treatment of the glass transition kinetics of Moynihan and co-workers,^{5,10-12} reproduces the following experimental observations:

1. The sub- T_{g} peaks are asymmetric, with long low-temperature tails and relatively steep high-temperature edges.

2. The peaks increase in magnitude $(C_{p \text{ max}})$ and shift to higher temperatures (T_{max}) with increased annealing time (t_e) and annealing temperature (T_e) . At long t_e and/or high T_e , the sub- T_g peaks merge with the glass transition and become the well-known C_p overshoot.^{15,17-20}

3. The decrease in enthalpy after annealing, ΔH (measured in the model by the decrease in $T_{\rm f}$, $\Delta T_{\rm f}$), is proportional to $T_{\rm e}$ if $T_{\rm g} - T_{\rm e} \geq 20$ K.^{15,16,18-20} As $T_{\rm e}$ approaches $T_{\rm g}$, $\Delta T_{\rm f}$ begins to decrease with increasing $T_{\rm e}$.^{16,20} Similar behavior is exhibited by $C_{p \rm max}$.

4. ΔH and $C_{p \max}$ are approximately linear functions of log $t_{\rm e}$. This is reported explicitly,^{3,15,17,19} and is also found from plotting data contained in other papers.^{16,18}

5. \bar{T}_{max} is an approximately linear function of T_{e} . This, too, has been reported explicitly^{3,15} and is implicit in other data.^{16,18}

6. T_{max} is an approximately linear function of log t_e . Again, this is reported explicitly^{3,15} and implicitly.^{16,17,19,22}

7. The rate of development of the C_p peaks with annealing increases with increasing quench rate before annealing.

8. Increased heating rate increases T_{max} and increases $C_{p \text{ max}}^{3,19,25}$ T_{max} is an approximately linear function of log Q_{H} .

Acknowledgment. This work was supported in part by National Science Foundation Grant No. CPE-7920740 under the Industry-University Cooperative Research Program. It is a pleasure to acknowledge the programming assistance of R. Iden and useful discussions with Professor H. B. Hopfenberg. We thank the BFGoodrich Co. for permission to publish.

References and Notes

- (1) Struik, L. C. E. "Physical Aging in Amorphous Polymers and Other Materials"; Elsevier: Amsterdam, 1978.
- (2) Kovacs, A. J.; Aklonis, J. J.; Hutchinson, J. M.; Ramos, A. R. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 1097.
- (3) Kovacs, A. J. Fortschr. Hochpolym. Forsch. 1963, 3, 394.
- (4) Hodge, I. M.; Berens, A. R. Macromolecules 1981, 14, 1598.
- (5) Moynihan, C. T.; Macedo, P. B.; Montrose, C. J.; Gupta, P. K.; DeBolt, M. A.; Dill, J. F.; Dom, B. E.; Drake, P. W.; Easteal, A. J.; Elterman, P. B.; Moeller, R. P.; Sasabe, H.; Wilder, J. A. Ann. N.Y. Acad. Sci. 1976, 279, 15.
- (6) Lindsey, C. P.; Patterson, G. D. J. Chem. Phys. 1980, 73, 3348.
- (7) Tool, A. Q. J. Am. Ceram. Soc. 1946, 29, 240.
- (8) Gardon, R.; Narayanaswamy, O. S. J. Am. Ceram. Soc. 1970, 53, 148.
- (9) Narayanaswamy, O. S. J. Am. Ceram. Soc. 1971, 54, 691.
- (10) Debolt, M. A.; Easteal, A. J.; Macedo, P. B.; Moynihan, C. T. J. Am. Ceram. Soc. 1976, 59, 16.

- (11) Moynihan, C. T.; Easteal, A. J.; Tran, D. C.; Wilder, J. A.; Donovan, E. P. J. Am. Ceram. Soc. 1976, 59, 137.
- (12) Sasabe, H.; Moynihan, C. T. J. Polym. Sci. 1978, 16, 1447.
- (13) Berens, A. R.; Hodge, I. M. *Macromolecules*, preceding paper in this issue.
- (14) McCrum, N. G.; Read, B. E.; Williams, G. "Inelastic and Dielectric Effects in Polymeric Solids"; Wiley: New York, 1967.
- (15) Illers, K. H. Makromol. Chem. 1969, 127, 1.
- (16) Foltz, C. R.; McKinney, P. V. J. Appl. Polym. Sci. 1969, 13, 2235.
- (17) Weitz, A.; Wunderlich, B. J. Polym. Sci. 1974, 12, 2473.
- (18) Wyzgoski, M. G. J. Appl. Polym. Sci. 1980, 25, 1455.
- (19) Petrie, S. E. B. J. Polym. Sci., Part A-2 1972, 10, 1255.
- (20) Gray, A.; Gilbert, M. Polymer 1976, 17, 44.
- (21) Straff, R.; Uhlmann, D. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 1087.
- (22) Shultz, A. R.; Young, A. L. Macromolecules 1980, 13, 663.
- (23) O'Reilly, J. M. J. Appl. Phys. 1979, 50, 6083.
- (24) Robertson, R. E. J. Appl. Phys. 1978, 49, 5048.
- (25) Prest, W. M., Jr.; O'Reilly, J. M.; Roberts, F. J., Jr.; Mosher, R. A. Polym. Eng. Sci. 1981, 21, 1181.
- (26) Brown, I. G.; Wetton, R. E.; Richardson, M. J.; Savill, N. G. Polymer 1978, 19, 659.
- (27) Prest, W. M., Jr.; Roberts, F. J., Jr. Ann. N.Y. Acad. Sci. 1981, 371, 67.
- (28) Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker, J. J. Phys. Chem. 1974, 78, 2673.
- (29) Hodge, I. M., unpublished data.