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ABSTRACT

Gas-turbine combustion chambers typically consist of nom-

inally identical sectors arranged in a rotationally symmetric pat-

tern. However, in practice the geometry is not perfectly sym-

metric. This may be due to design decisions, such as placing

dampers in an azimuthally non-uniform fashion, or to uncertain-

ties in the design parameters, which break the rotational symme-

try of the combustion chamber. The question is whether these

deviations from symmetry have impact to the thermoacoustic-

stability calculation. The paper addresses this question by

proposing a fast adjoint-based perturbation method. This

method can be integrated into numerical frameworks that are in-

dustrial standard such as lumped-network models, Helmholtz-

and linearized Euler-equations. The thermoacoustic stability of

asymmetric combustion chambers is investigated by perturbing

rotationally symmetric combustor models. The approach pro-

posed in this paper is applied to a realistic three-dimensional

combustion chamber model with an experimentally measured

flame transfer function, which is solved with a Helmholtz solver.

Results for modes of zeroth, first, and second azimuthal mode

order are presented and compared to exact solutions of the prob-

∗Address all correspondence to this author.

lem. A focus of the discussion is set on the loss of mode-

degeneracy due to symmetry breaking and the capability of the

perturbation theory to accurately predict it. In particular, an “in-

clination rule” that explains the behavior of degenerate eigenval-

ues at first order is proven.

NOMENCLATURE

Roman

BBB FEM discretization matrix for the BCs

c0 Speed of sound

i Imaginary unit

KKK FEM discretization matrix for the second derivative

L Linear operator

MMM FEM discretization matrix for identity

p̂ Fourier transform of acoustic pressure

QQQ FEM discretization of the heat release operator

q0 Mean heat release rate

SSS i state-space matrices

sss system state

t Time

u0 Mean velocity at which FTF was calculated
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XXX,YYY Matrices of the auxiliary eigenvalue problem

Z Impedance

zzz Eigenvector of the auxiliary eigenvalue problem

Greek

γ Ratio of specific heats

ε Design parameter

εεε Vector of design parameters

∆εn Perturbation of the nth design parameter with respect to

the baseline

µ Scaling perturbation parameter

ρ0 Density

ω Complex eigenfrequency

INTRODUCTION

Thermoacoustic instabilities pose a major threat to modern

gas turbines. They may cause severe damage to the machines,

limit their lifetime, lead to an increase of pollutant emissions,

and trigger strong noise exposure [1,2]. The availability of math-

ematical and computational design tools to the developers of new

gas turbines is, thus, essential [3]. Although Large-Eddy Simu-

lations (LES) resolve the relevant physics down to small scales,

they are inefficient when the effects of a large set of parame-

ters on the thermoacoustic stability need to be investigated. This

is because of the large computational cost of LES. Early-stage

gas turbine development, thus, often resorts to linear frequency-

domain based approaches, such as low-order network models [4]

and solutions of the thermoacoustic Helmholtz equation [5].

Frequency-based models of thermoacoustic systems typi-

cally result in eigenvalue problems that are nonlinear with re-

spect to their eigenvalue – the complex eigenfrequency ω

L(ω,εεε)p̂ = 0, (1)

whereL denotes a linear operator, p̂ the eigenvector, ω the corre-

sponding eigenvalue that may appear under nonlinear terms, and

εεε a vector of design parameters. The dependency of the solutions

on the design parameters is, however, not explicit. Hence, several

solutions of the eigenvalue problem have to be computed to infer

explicit relations for ω = ω(εεε) and p̂ = p̂(εεε). This is generally a

laborious and non-efficient task.

Thermoacoustic problems depend on many parameters, but

only a handful of modes are of interest. Adjoint perturbation the-

ory enables the calculation of explicit relations between the so-

lutions of the perturbed eigenvalue problem and the many design

parameters. The calculation by adjoint methods is computation-

ally cheap and accurate. For these reasons, adjoint methods have

been recently applied to thermoacoustic stability analysis [6, 7].

Adjoint methods were subsequently applied to uncertainty

quantification of thermoacoustic stability with wave approaches

in annular combustors [8] and with a Helmholtz solver for

a swirled turbulent longitudinal combustor [9]. To avoid the

Monte-Carlo sampling, the probability that a dump combustor

becomes unstable was calculated by high-order adjoint perturba-

tion methods, which enabled for the calculation of the stability

boundary with an algebraic expression [10].

Focusing on annular combustors, [11] computed the ther-

moacoustic modes with a Helmholtz solver by applying Bloch-

wave theory to only one sector. By using adjoint methods, they

calculated the sensitivity of the degenerate eigenvalue to asym-

metries in the flame transfer function due, for example, to vari-

ations in the mean flow. The gradient information was then em-

bedded in an optimization algorithm to maximize the damping by

optimal placement and tuning of acoustic dampers in an annular

combustor [12].

The aim of this paper is to apply high-order adjoint pertur-

bation theory to practical annular combustors. Such combustors

have discrete rotational symmetry, which causes many of the

eigenmodes to be degenerate. In other words, two eigenmodes

may be associated with the same eigenvalue, but different eigen-

vectors. This observation has significant consequences on the

correct application of adjoint perturbation theory to symmetry-

breaking perturbations. Symmetry-breaking with regard to an-

nular combustion chambers has been discussed in recent experi-

mental and analytical studies, e.g. [13, 14, 15, 16].

The paper is organized as follows. First, the theory of

both frequency-domain-based thermoacoustic stability assess-

ment and adjoint perturbation theory is presented. Second, the

theory is applied to the well-studied annular combustor model,

namely the MICCA combustor. Third, a short mathematical

proof explaining the phase of the first-order eigenvalue shifts in

the complex plane is given. The paper concludes with remarks

on why the findings are useful for practical gas turbine design.

THEORY

Thermoacoustic Helmholtz Equation

By linearizing the equations of conservation of mass, mo-

mentum and entropy for a fluid at rest, the thermoacoustic

Helmholtz equation can be obtained after appropriate combina-

tions of the equations [5]

∇ ·
(
c2

0∇p̂
)
+ω2 p̂ = −(γ−1)iωq̂. (2)

Here, c0 denotes the speed of sound, γ is the ratio of specific

heats, and p̂ and q̂ are the the Fourier transforms of the pressure

and heat-release fluctuations, respectively.

The (·)(t) 7→ (̂·)exp(iωt) convention is used to define the

Fourier transform. The fluctuating part of the heat release rate

is related to velocity fluctuations at a reference point by a flame
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transfer function (FTF)

q̂ =
q0

u0
FTF(ω)~ure f ·~nref . (3)

In this relation, q0 denotes the mean heat-release rate, u0 is the

mean velocity at the reference position, ~ure f is the velocity fluctu-

ation at a reference position, and ~nref is a unit vector, which rep-

resents a reference direction. By relating the velocity fluctuation

to the pressure gradient via the linearized momentum balance,

the following eigenvalue problem is obtained

∇ ·
(
c2

0∇p̂
)
+ω2 p̂−

γ−1

ρ0
FTF(ω)∇p̂ref ·~nref = 0, (4)

where ρ0 denotes the mean gas density at the reference position.

The boundary conditions are provided by

p̂−
ic0Z

ω
∇p̂ ·~n = 0, (5)

where Z denotes the impedance and ~n is the outward pointing

unit normal vector.

For the current study the eigenvalue problem is discretized

by a finite element method, which utilizes tetrahedral linear La-

grange elements. This leads to the following disrcretized form of

the thermoacoustic Helmholtz equation

(
KKK +ωBBB+ω2MMM+QQQ(ω)

)
ppp = 0 (6)

where ppp is the discretized pressure fluctuation amplitude, KKK de-

notes the discretization matrix for ∇ · c2
0
∇-operation (also known

as the stiffness matrix), MMM refers to the discretization of the iden-

tity operation (also known as the mass matrix), BBB is the dis-

cretization matrix arising from the boundary conditions, and QQQ

denotes the discretized heat release operator. [5] contains more

details on finite element discretizations of the thermoacoustic

Helmholtz equation.

High order adjoint perturbation theory is an incremental pro-

cedure and, thus, requires accurate solutions of the baseline solu-

tion to mitigate the error propagation through the different orders.

Therefore, the nonlinear eigenvalue problem is solved using a

Newton-type iteration, known as the generalized Rayleigh quo-

tient iteration [17, 18], which is generally faster than the fixed-

point iteration proposed in [5]. For the system solved in this

study, the Newton-type method converges to machine-precise so-

lutions within 3 up to 7 iterations. It is also adjoint-based and

therefore poses the same mathematical requirements to the model

as the adjoint perturbation theory. This also makes it easy to be

integrated in a software framework that is already designed to

perform adjoint perturbation theory such as PyHoltz1 – the open-

source Helmholtz solver used for this study.

Adjoint perturbation theory

The aim of adjoint perturbation theory is to find asymptotic

approximations for the dependence of the eigenvalues and eigen-

functions on the parameters of the eigenvalue problem. This

mathematical tool is successfully deployed in the field of quan-

tum mechanics to find solutions to the Schrödinger equation. Be-

cause the Schrödinger equation has some mathematical similar-

ities to the Helmholtz equation, quantum mechanics techniques

can be useful for the study of thermoacoustic instabilities (e.g.,

[6,11]). The main advantage of adjoint perturbation theory is that

good approximations of the actual solutions are found at very low

computational costs. This section summarizes the main concepts

of the theory.

The discussion starts with a single-parameter third-order

theory, which can be turned into a multi-parameter theory by

means of a global scaling parameter. Starting from a known so-

lution of the eigenvalue problem of interest

L(ω0;ε0)p̂0 = 0, (7)

it is assumed that the change of the eigenmodes due to a change

of the parameter ε0 by a small perturbation ∆ε can be described

by asymptotic power series

ω(ε) = ω0+ω1(∆ε)+ω2(∆ε)2+ω3(∆ε)3+O((∆ε)4) (8a)

p̂(ε) = p̂0+ p̂1(∆ε)+ p̂2(∆ε)2+ p̂3(∆ε)3+O((∆ε)4). (8b)

Note, that this assumption implies that the solution is analytic

in ε. To find the coefficients appearing in these power series, the

ansätze (8) have to be substituted into the eigenvalue problem (1).

Thence, the linear operator itself is to be expanded into bivariate

Taylor series in ω and ε, and the result must be sorted by powers

of ∆ε. For each order k, this procedure yields an equation of the

form

L0,0 p̂k = −rk −ωkL1,0 p̂0, (9)

where

Lm,n ≡
1

m!n!

∂m+nL

∂ωm∂εn

∣∣∣∣∣∣ω = ω0
ε = ε0

(10)

1http://fd.tu-berlin.de/forschung/projekte/thermoakustik/pyholtz/
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For the first three orders the rk are explicitly given by

r1 ≡L0,1 p̂0 (11a)

r2 ≡L0,1 p̂1+L0,2 p̂0+ω1
(
L1,0 p̂1+L1,1 p̂0

)
+ω2

1L2,0 p̂0 (11b)

r3 ≡L0,1 p̂2+L0,2 p̂1+L0,3 p̂0+ω1
(
L1,0 p̂2+L1,1 p̂1+L1,2 p̂0

)

+ω2
1

(
L2,0 p̂1+L2,1 p̂0

)
+ω2
(
L1,0 p̂1+L1,1 p̂0

)
(11c)

+2ω1ω2L2,0 p̂0+ω
3
1L3,0 p̂0.

By definition, L0,0 is not invertible because it is evaluated at

the eigenvalue ω0. Therefore, for the linear system (9) to have

solutions, solvability conditions have to be fulfilled at each order

〈
p̂
†

0

∣∣∣∣−rk −ωkL1,0 p̂0

〉
= 0, (12)

where p̂
†

0
denotes the adjoint solution of the eigenvalue prob-

lem (7) and 〈·|·〉 is an inner product. This condition is also known

as the Fredholm alternative.

If the problem is not degenerate, i.e., the eigenvalue ω0 has

algebraic multiplicity 1, Eq. (12) can be readily solved for ωk.

Then, the result can be substituted back into (9) in order to ob-

tain the eigenfunction correction, p̂k. Instead, if the system is

degenerate with multiplicity D > 1 (D is an integer) and the al-

gebraic and geometric multiplicities coincide, D solvability con-

ditions have to be fulfilled simultaneously. This gives rise to an

auxiliary algebraic eigenvalue problem

XXXkzzz−ωkYYYzzz = 000, (13)

where XXXk and YYY are matrices whose entries are given by the fol-

lowing scalar products

[XXXk]i, j ≡
〈
p̂
†

0, j

∣∣∣∣−rk,i

〉
and [YYY]i, j ≡

〈
p̂
†

0, j

∣∣∣∣L1,0 p̂0,i

〉
. (14)

It can be shown that the bases for the direct and the adjoint

eigenspaces – span
(
p̂0,1, . . . , p̂0,D

)
and span

(
p̂
†

0,1
, . . . , p̂†

0,D

)
re-

spectively – can be chosen such that YYY becomes the identity ma-

trix III, see e.g. [18].

If the auxiliary problem is degenerate at kth order, no split of

the degenerate eigenspace is detected by the asymptotic theory

and the computation involves an auxiliary eigenvalue problem

at the next order. Otherwise, the degenerate eigenspace unfolds

into subspaces corresponding to different eigenvalues; and the

eigendirections of the subspaces are obtained from the eigenvec-

tors zzz of the first non-degenerate eigenvalue problem.

Mode degeneracy is a relevant problem for annular and can-

annular combustors because it is induced by their discrete rota-

tional geometry. The multiplicity of the degeneracy induced by

this symmetry is usually D = 2.

Up until now the perturbation theory has accounted for one

parameter only. However, several parameters are relevant in

practical combustor design. By introducing a scaling parame-

ter, multiple parameters can be tuned at once. For example, if

there are two design parameters ε1 and ε2 such that the eigen-

value problem reads

L(ω,ε1, ε2) p̂ = 0, (15)

and the change from the parameter tuple (ε1,0, ε2,0) to the tuple

(ε1,0+∆ε1, ε2,0+∆ε2) has to be computed, then the problem can

be rephrased as

[
L(ω,ε1,0, ε2,0)(1−µ)+L(ω,ε1,0+∆ε1, ε2,0+∆ε2)µ

]
p̂ = 0.

(16)

The parameter µ serves as a scaling parameter. For µ = 0 the

base-line problem is obtained, while the equation amounts to the

fully perturbed problem when µ is set to 1. Hence, the parame-

ter µ can be taken as a single perturbation parameter to spur the

asymptotic analysis described above [19]. Alternatively, it would

be possible to derive a fully multi-parameter perturbation theory

– see e.g. [12] for a first-order multi-parameter theory with ap-

plication to thermoacoustics.

APPLICATION

The MICCA Annular Combustor

The theory described in the previous section is applied to

a laboratory-scale annular combustor configuration, which was

designed and built at Laboratoire EM2C, CentraleSupelec (for-

merly Ecole Centrale Paris) and is referred to as MICCA [20].

Since its introduction it has been the topic of various experimen-

tal and numerical studies, e.g. [21, 22, 23, 24]. The geometry

features 16 burners and is depicted in Fig. 1.

The combustor has been investigated in many recent stud-

ies, both experimentally and numerically. The geometry is dis-

cretized using a mesh featuring 14032 points, which form 59840

tetrahedra. Special care was taken to guarantee that the mesh-

structure still features the discrete rotational symmetry. Unlike

the real geometry, the mesh is not modeling the pressure trans-

ducer holes in the plenum. The mesh is shown in Fig. 2 , together

with the speed-of-sound field. The latter was set to be identical

to the one presented in [23]. Also, the boundary conditions were

chosen to be the same as the latter study: a 41 mm end correction

was added to the the combustion chamber length, so that a pres-

sure node can be set at the outlet and all other boundaries were
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FIGURE 1. Annular combustor geometry used for the present study.

The combustor is referred to as MICCA [20]. The domain of heat release

is highlighted in orange and is defined as in [23].

specified to feature pressure anti-nodes. The flame transfer func-

tion data are also taken from the measured data given in [23].

However, the FTF incorporation into the model is different, due

to the special requirements imposed by the adjoint analysis. This

will be discussed in the next chapter.

Flame Transfer Function

For the perturbation theory to work, all coefficients should

be differentiable with respect to the eigenfrequency ω, which

generally is complex-valued. However, the FTF data are mea-

sured experimentally only for purely real eigenfrequencies, i.e.

with zero growth rate. Hence, an appropriate modeling tech-

nique is needed, which reproduces the discrete data samples

to a satisfying degree and is analytic. Analyticity is a prop-

erty required to extrapolate the data into the complex plane in

FIGURE 2. Discretization mesh used in this study (left) and mean

speed of sound c0 (right). The color scale ranges from 348 m/s (pur-

ple) to 784 m/s (yellow).

a unique and smooth way. For the present study the flame dy-

namics in the complex plane is modeled by a state-space model.

More precisely, measurement data from [23] (operating point B)

have been used to fit a linear, six-dimensional state space model,

shown in Fig. 3.

The state-space model is described by the following system

of differential equations:

d

dt
sss = SSS 1sss+SSS 2u (17)

q = SSS 3sss+SSS 4u (18)

Following the terminology of state space models, u and q

denote the input and output to the system, i.e., the reference ve-

locity and corresponding fluctuation of the heat release rate, re-

spectively. Moreover, sss is the state vector of the system, SSS 1 the

system matrix, SSS 2 the input matrix, SSS 3 the output matrix, and SSS 4

the feedthrough matrix.

In the complex frequency space, the explicit dependence of

the heat release rate q on the velocity fluctuations at the reference

point, u, is expressed by

q̂ =
(
SSS 3 (iωIII−SSS 1)−1 SSS 2+SSS 4

)
︸                           ︷︷                           ︸

FTF

û. (19)

The matrices SSS i have been computed with the identification al-

gorithm described in [25, 26]. Importantly, the derivatives of

(19) with respect to the eigenfrequency, which are needed in the

adjoint-based analysis, can be expressed in closed form and be

efficiently and accurately evaluated when the transfer function is

expressed in state space form. In particular, by introducing the

Kronecker delta δi, j we can write

∂k

∂ωk
FTF(ω) = (−i)kk!SSS 3 (iωI−SSS 1)−(k+1) SSS 2+SSS 4δk,0 (20)
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FIGURE 3. Comparison between the state space model approxima-

tion of the flame transfer function evaluated at purely real values of ω

(orange line) and the data measured from experiments [23] (blue dots).

As explained in the introduction, the perturbation methods

proposed in this paper can be also used for uncertainty quantifi-

cation [8, 9, 10] of the MICCA combustor.

Degeneracy of Thermoacoustic Modes

The analysis focuses on three azimuthal modes with fre-

quencies of 176 Hz, 513 Hz, and 725 Hz, which are mode #0,

mode #1 and mode #2, respectively (Fig. 4). Mode #0 is of

quarter-wave type in the longitudinal direction. It is stable, fea-

turing a damping rate of 537.9s−1. The unusually high value

damping rate may be attributed to the lack of FTF data far from

the real axis. Mode #1 is plenum-dominant and unstable, featur-

ing a growth rate of 366.3s−1. Mode #2 is also plenum-dominant

and marginally-stable, with a growth rate of 0.1s−1. Because of

the degree of rotational symmetry (N = 16), a 2π/16 rad rotation

of a solution p̂ would also be a valid solution p̃ to the eigenvalue

problem, with the same eigenfrequency. If the azimuthal mode

order of p̂ is an integer multiple of N/2= 8, the rotated solution p̃

and the non-rotated solution p̃ are linearly dependent. This is be-

cause if the azimuthal order is an odd multiple of 8, the rotation

angle comprises an odd multiple of half of the azimuthal wave-

length of the solution. Thus, the rotation establishes the relation

p̃ = − p̂. If the azimuthal order is an even multiple of 8, the ro-

tation angle comprises an even multiple of half of the azimuthal

wavelength. Consequently, the relation between the new and the

original solution amounts to p̃ = p̂. If, however, the azimuthal

order of the solution is not an integer multiple of 8, the rotated

and the original solution are linearly independent. Hence, the ro-

tational symmetry implies that all modes that do not feature an

#0 #1

#2

FIGURE 4. Pressure mode shapes of the three thermoacoustic modes

considered in this study. They correspond to an axial mode (#0) and

plenum-dominant azimuthal modes (#1 and #2).

azimuthal mode order being a multiple of 8 are (at least) two-fold

degenerate, i.e. there are two linearly independent mode shapes

corresponding to the same eigenfrequency. Because there is no

other relevant symmetry or special feature present in the model,

these modes are expected to have a degeneracy featuring a mul-

tiplicity of exactly 2. Indeed, mode #0 is not degenerate while

mode #1 and mode #2 are two-fold degenerate.

Perturbation Patterns

As test cases, perturbations of the flame dynamics are con-

sidered. These were realized by pre-multiplying the flame trans-

fer functions of the affected burners by the complex-valued scal-

ing factor (1+∆εn), such that gain and phase of the nth flame

transfer functions change accordingly. Variations in the magni-

tude and phase of ∆ε affect the gain and phase of the perturbed

transfer functions. In this study, the gain of the perturbed flame

transfer function is doubled with respect to the baseline configu-

ration. No perturbation of the FTF phase is considered here. This

is accomplished by fixing ∆εn = ∆ε = 1 at all perturbed burners

and ∆εn = 0 at the unperturbed burners, and using the scaling pa-

rameter µ as in Eq. (16). For µ = 0 and µ = 1 the baseline and

fully-perturbed configurations are obtained, respectively.

Three patterns of perturbed burners along the annulus are

studied (Fig. 5). These patterns are chosen because, from the-

6 Copyright c© 2018 by ASME



pattern A pattern B pattern C

FIGURE 5. Perturbation patterns under consideration. We set ∆εn = 1

at the burners highlighted in orange in these patterns, and ∆εn = 0 at the

others.

oretical arguments discussed in more details in the next section

together with the results, one expects that

– pattern A breaks the degeneracy of both degenerate modes,

leaving one of the resulting eigenmodes unchanged;

– pattern B breaks the degeneracy of mode #2 leaving an

eigenmode unchanged, but not that of mode #1;

– pattern C completely breaks the symmetry and the degener-

acy is resolved for both modes #1 and #2.

RESULTS

Figure 6 compares the evolution of the eigenfrequencies

when predicted with the perturbation approach and computed

with a full Helmholtz solver for all considered cases. It can be

generally stated that the higher the applied perturbation order, the

more accurate the predictions are.

Except for case #1B, the degenerate eigenvalues (modes #1

and #2) split into two. In particular, if a single burner is per-

turbed, the degenerate eigenvalue (cases #1A and #2A) split into

two branches, as expected. In particular, one branch departs from

the unperturbed value, but the other does not. This can be ex-

plained by considering that, in the two-dimensional degenerate

eigenspace, one can always construct a mode shape for which

a nodal line exactly crosses the reference point of the perturbed

flame transfer function. Therefore, the perturbation has no ef-

fect on this mode, and its eigenfrequency does not change. The

eigenfrequency associated with the other branch, however, will

vary with the perturbation parameter. Qualitatively, this behav-

ior is already correctly predicted by the first-order theory. For the

considered perturbation strength, the second-order theory yields

quantitatively good results. Only little improvement is obtained

by using third-order corrections. Although doubling the gain

might be considered a nominally strong perturbation, it actually

is not. This is because for this test case only a single burner is

perturbed, while the other fifteen remain unchanged. Thus, per-

turbation theory performs well in this test case.

Also in case #2B one of the degenerate eigenvalues is unaf-

fected by the perturbation, whereas the other is affected. Since

mode #2 is of second azimuthal order, there is always a solu-

tion in the 2-dimensional eigenspace for which all four perturbed

burners of pattern B align with nodal lines. Thus, perturbation

pattern B does affect this mode (blue branch). However, for the

linearly independent solution (orange branch), there is no such

alignment. Hence, the corresponding eigenvalue changes with a

change in the perturbation parameter.

In case #1B, since the applied perturbation pattern only

reduces the degree of rotational symmetry, the degenerate

eigenspace does not unfold. In particular, one can always choose

one of the two modes to be aligned with two opposite perturbed

burners (left-right), and the other mode to be aligned with the re-

maining two perturbed burners (top-bottom). Although these two

solutions are linearly independent, for symmetry reasons there

can be no difference between their eigenvalues – a rotation of

90◦ maps one onto the other. Therefore, the same change for

both branches is expected (and observed) at any order.

Lastly, when the gain of four burners that are arranged

in an asymmetric manner is changed – pattern C – the rota-

tional symmetry is completely broken. Therefore, the degenerate

eigenspace unfolds into two distinct subspaces (for both mode #1

and #2). We note that, in the non-degenerate scenario, the evolu-

tion of the eigenfrequencies of cases #0B and #0C appear to be

identical. This is however not true for other perturbation patterns

(not shown here). Future work will investigate why perturbation

patterns B and C have the same effect on mode #0.

An interesting observation is that the phase (but not the mag-

nitude) of the first-order approximation to the eigenfrequencies

only depends on the mode considered, but not on the applied per-

turbation pattern or the branch considered – ignoring the cases in

which the eigenvalue is unaffected by the perturbation, because

the slope cannot be uniquely defined for these branches. For ex-

ample, the first-order slope of the orange branch of case #1A is

the same as that of all branches in #1B and #1C. This can be

formally explained by exploiting both the rotational and the re-

flection symmetries of the model set-up, and is the topic of the

next section.

INCLINATION OF FIRST-ORDER SENSITIVITY

The test cases have shown that, if the same perturbation is

applied to an arbitrary number of burners, the first-order theory

predicts the change in eigenfrequencies to have the same slope,

regardless of how many burners are perturbed. More precisely, if

one specific mode is considered, the phase angle of the first-order

eigenfrequency correction ∠ω1 is a function of the perturbation

of the FTF only. This section shortly outlines a proof, showing

that the reason for this is the reflection symmetry of the unper-

turbed MICCA model.

Because of the rotational symmetry of the unperturbed

MICCA model, the corresponding eigenfunctions can be repre-
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FIGURE 6. Eigenvalue evolution of various modes (rows) for different perturbation patterns (columns). The black curves with markers denote the

exact results for perturbation parameters µ of 0.00 (✩), 0.25 (#), 0.50 (#), 0.75 (#), and 1.00 (7). The degenerate eigenvalues might split into two

branches – orange line with (x)-markers and blue line with (+)-markers. The darker the shading, the higher the applied order of the perturbation theory.

Note, that for the cases #1A, #2A and #2B, an eigenvalue is unaffected by the perturbations, and therefore it reduces to a single (blue) point.
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sented as Bloch-waves [27], i.e., functions of the following form:

p̂ = exp(ibϕ)ψb(ϕ) (21)

Here, b is the Bloch-wavenumber and ψb(ϕ) is a func-

tion periodic in the angular coordinate with periodicity

ψb(ϕ) = ψb(ϕ+ 2π
N

), where N denotes the degree of rotational

symmetry of the considered, unperturbed system. If the system

features an additional reflection symmetry, as it is the case for

the MICCA, then it can be shown that the two Bloch-waves cor-

responding to the Bloch-wave numbers +b and −b feature the

same eigenfrequency – see [11] for an introduction into Bloch-

wave theory with focus on thermoacoustic systems.

It can be seen that a scalar multiple of a Bloch-wave is also a

Bloch-wave with the same Bloch-wave number b. Furthermore,

the angular derivative reads

∂ϕ exp(ibϕ)ψb(ϕ) =ibexp(ibϕ)ψb(ϕ)+ exp(ibϕ)∂ϕψb(ϕ) (22)

=exp(ib)
[
ibψb(ϕ)+∂ϕψb(ϕ

)
]

︸                   ︷︷                   ︸
ψ̃b(ϕ)

. (23)

Because the function ψ̃b(ϕ) is also periodic with period 2π
N

, the

angular derivative is still a Bloch wave with Bloch-wavenumber

b. As the linear operator L0,0 and all its derivatives Lm,0 are lin-

ear combinations of scalar-multiplications and rotationally sym-

metric spatial derivatives, the product Lm,0 p̂ is a Bloch wave of

Bloch-wavenumber b if p̂ is Bloch wave of Bloch-wavenumber

b.

It can be easily shown that Bloch waves featuring different

Bloch-wavenumbers are pairwise orthogonal. Thus, for a degen-

erate mode, the appropriate Bloch waves of Bloch-wavenumber

+b and −b can be chosen as bases for the direct and the ad-

joint eigenspace, { p̂b, p̂−b} and {p̂
†

b
, p̂†
−b
} say. They are already bi-

orthogonal with respect to the inner product
〈
p̂
†

i

∣∣∣∣L1,0 p̂ j

〉
. Hence,

they can be scaled such that the auxiliary matrix YYY in Eq. (13)

equals the identity matrix and the deployed bases are of Bloch-

wave type. With this choice of basis-functions, the diagonal ele-

ments of the first-order auxiliary matrix XXX1 are

〈
p̂
†

±b

∣∣∣∣L0,1 p̂±b

〉
=

N−1∑

n=0

〈
p̂
†

±b

∣∣∣∣L0,1 p̂±b

〉
n
, (24)

where the notation 〈·|·〉n denotes the contribution to the scalar

product 〈·|·〉 from the sector covering an angle from (n− 1
2
) 2π

N
to

(n+ 1
2
) 2π

N
– a so-called unit cell. Analogously,

〈
p̂
†

∓b

∣∣∣∣L0,1 p̂±b

〉
=

N−1∑

n=0

〈
p̂
†

∓b

∣∣∣∣L0,1 p̂±b

〉
n

(25)

is found for the off-diagonal elements.

For a single perturbation parameter, i.e., when the same per-

turbation ∆ε is applied to any number of burners, the operator

derivative in sector n is either L0,1 = −
γ−1

ρ0
FTF(ω)∇(·)ref · ~nref

(identical in all perturbed burners) or L0,1 = 0, depending on

whether the unit cell contains a perturbed burner or not. Con-

sequently, only sectors containing a perturbed burner contribute

to the scalar products. Moreover, because of the point support of

the flame response, only a single point of each of these sectors is

actually relevant. The Bloch waves featuring Bloch-wavenumber

of opposite sign can be converted into each other by reflection

across a symmetry line. This symmetry line can be chosen to

cross the reference point in sector 0 so that the values of the di-

rect eigensolutions at this point are identical. The same is true

for the adjoint solutions. Due to Bloch-periodicity the values at

the reference points in the other sectors can then be expressed

as p̂(0)exp(−i[±b]n 2π
N

) and p̂†(0)exp(−i[±b]n 2π
N

). Plugging this

relation into the definition of the auxiliary matrix XXX1 – Eq. (13)

– yields

XXX1 =
〈
p̂†(0)

∣∣∣L0,1 p̂(0)
〉

0

∑

n∈per.

[
1 exp(i2bn 2π

N
)

exp(−i2bn 2π
N

) 1

]

︸                                      ︷︷                                      ︸
χχχ

(26)

Because the matrix χχχ is Hermitian, its eigenvalues are real.

Thus, regardless the number of the perturbed burners, the phase

of ∆ε
〈
p̂†(0)

∣∣∣L0,1 p̂(0)
〉

0
is the same as that of the eigenvalues

of XXX1, modulo phase shift of π if the eigenvalues of χχχ are

negative. Note that χχχ depends on the distribution pattern of

the perturbed burners only, and it can argued that the Bloch-

wavenumber b is equivalent to the azimuthal mode order. Hence,∑
n∈per. exp(i2bn 2π

N
) is the second coefficient of the Fourier trans-

form of the burner arrangement pattern. Thus, the above first-

order splitting theory has analogies with the so called C2n-

criterion presented in [14].

The above rationale can be generalized to predict the first-

order eigenvalue drift for different perturbations of the burners.

An interesting case is obtained when two separate sets of burners

are perturbed in different ways such that the FTF perturbations

have the same phase and average to zero. For these perturbations,

it can be proven that the eigenvalue splits in opposite directions.

We demonstrate this numerically without a formal proof in this

paper; a detailed discussion of this generalized theory is beyond

the scope of the present contribution and left for future work. We

consider perturbation pattern C applied to mode #1; additionally,

to compensate for the change in the total FTF gain due to its

local increase in the burners of pattern C, the gain of the other 12

is reduced at these burners, so that the average FTF gain variation

vanishes. For example, when ∆ε1 = 1 at the 4 burners highlighted

in pattern C, then ∆ε2 = −1/3 at the other 12 burners, so that, on

average, ∆ε = 0.
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FIGURE 7. Eigenvalues evolution for mode #1 when a modified ver-

sion of pattern C is applied such that the average change to the FTFs is

0. As expected, the first-order theory predicts a shift of the eigenvalues

in opposite directions.

The variation of the eigenvalues for increasing values of the

perturbation parameters is shown in Fig. 7. Despite the variation

of the eigenvalues being nonlinear, the first-order theory predicts

the two degenerate eigenvalues to split precisely in opposite di-

rections. It is therefore impossible to make a certain combustor

more stable by applying this type of perturbation: if the growth

rate of one of the split eigenvalues is decreased, as a conse-

quence, that of the other one is increased. This complements

the findings of [28], in which it was shown that, in a weakly cou-

pled, linear limit, the most stable configuration in a combustor

in which two types of flames can be arbitrarily distributed is one

that consists of a single type of flames. Whether this remains

true at higher orders or in a non-weak coupling limit could be

addressed with an extension of the theory outlined above.

CONCLUSIONS

First, second, and third order adjoint perturbation theory was

successfully used to predict the eigenfrequency evolution of ther-

moacoustic modes in a practical three-dimensional combustor

model. In particular, a possible split of the degenerate modes

into two non-degenerate solutions due to the loss of rotational

symmetry can be accurately predicted with this theory. The find-

ings are useful for the fast assessment of the thermoacoustic sta-

bility of multiple combustor variants derived from the same ro-

tationally symmetric baseline configuration. For the presented

model it takes about 24 s to solve the nonlinear eigenvalue prob-

lem for one set of parameters with the current implementation

of PyHoltz. On the contrary, it just takes approximately 5 s to

compute the polynomial coefficients for the power series approx-

imation with perturbation theory from one such solution. Even

though it was not done in this study, as the baseline configuration

features a discrete rotational symmetry, its solution can be fur-

ther accelerated via unit-cell computations facilitated by Bloch-

wave theory. Moreover, the theory is not limited to Helmholtz-

based models because it is a general technique for the approxi-

mative solution of nonlinear eigenvalue problems. The adjoint-

perturbation approach and the effects of asymmetry, thus, analo-

gously apply to network models and models based on linearized

Euler equations. The adjoint perturbation theory can also im-

prove numerical methods for finding solutions of the nonlinear

eigenvalue problem associated with thermoacoustic stability as-

sessment. For example, in the current study, the iterative solver

for the nonlinear eigenvalue problem has been initialized with the

predictions from perturbation theory to find the two branches into

which a degenerate solution splits due to symmetry-breaking, an

otherwise complicated task as the two branches lie closely to-

gether.

Moreover, it was proven that the eigenfrequency of a mode

departs with the same inclination – the phase in the complex

plane – from the expansion point in the complex plane if the

perturbed burners are modified in the same manner, regardless of

how many burners are perturbed. The inclination rule can practi-

cally guide the design process of new gas turbines, and the bene-

fits of adjoint perturbation theory significantly improve the speed

at which a family of annular and can-annular combustor designs

can be assessed. For both reasons the findings of this study can

contribute to the improvement of the industrial design process of

new gas turbines.
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