M 69 24184 NASA CR-66756

NASA CONTRACTOR REPORT

EFFECTS OF ATMOSPHERE, WIND, AND AIRCRAFT MANEUVERS ON SONIC BOOM SIGNATURES

by Rudolph C. Haefeli

Prepared by

AERONAUTICAL RESEARCH ASSOCIATES OF PRINCETON, INC.

Princeton, N.J.

for Langley Research Center

APRIL 1969

EFFECTS OF ATMOSPHERE, WIND, AND AIRCRAFT MANEUVERS ON SONIC BOOM SIGNATURES

bу

Rudolph C. Haefeli

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the authors or organization that prepared it.

Prepared under Contract No. NAS1-8490 by
AERONAUTICAL RESEARCH ASSOCIATES OF PRINCETON, INC.
50 Washington Road, Princeton, New Jersey 08540

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

April, 1969

CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
SYMBOLS	3
GENERAL DESCRIPTION AND PROGRAM INPUTS	5
COMPUTER PROGRAM MODIFICATIONS	11.6
RESULTS	17
Level Uniform Flight	18
Signature distortion during propagation	27
Effects of aircraft altitude	32
Effects of Mach number	38
Temperature effects	38
Wind effects	45
Variations off the ground track	45
Level Accelerating Flight	51
Parametric results	51
Flight test comparison	56
Pullup Maneuver	61
Pushover Maneuver	63
Turn Maneuver	77
Porpoising Maneuver	83
CONCLUDING REMARKS	86
REFERENCES	88
TABLES	89

EFFECTS OF ATMOSPHERE, WIND, AND AIRCRAFT MANEUVERS ON SONIC BOOM SIGNATURES

Rudolph C. Haefeli Aeronautical Research Associates of Princeton, Inc.

SUMMARY

Sonic boom propagation in a horizontally stratified atmosphere is computed for a broad scope of atmosphere and flight conditions, using both a fighter-type (F-104) and an SST-type (SCAT 15-F) aircraft. Atmospheric conditions include various temperature inversions, lapse rates, and wind profiles. Flight conditions include variations in aircraft altitude and Mach number, together with maneuvers of steady flight, longitudinal acceleration, pullup, pushover, and circular turns.

A computer program is used which was developed using geometric acoustic theory, accounting for nonlinear effects by means of an appropriate age variable. The program therefore yields the entire sonic boom signature, with its proper distortion (aging) in either uniform or nonuniform atmospheres with winds, and accounting for any specified aircraft maneuver. This program gives output in both tabular and graphical formats, including plots of the resulting sonic boom pressure signature with shock waves properly located.

Results of the calculations are presented and discussed. Comparisons with data from other sources are shown. Important effects near ray focusing and for maneuvers are described, including large overpressures and major changes in the shape of the pressure signatures for specified flight conditions.

INTRODUCTION

The development of a new analysis technique for computing sonic boom pressure signatures was reported in reference 1. This analysis offers a unique capability to calculate the sonic boom propagation through variable, horizontally stratified atmospheres with winds from any direction and for general aircraft maneuvers. The maneuver parameters affect the strength and aging (distortion) of the signature, and are completely included in the ray-tube area equations. There is no restriction, then, as to the type of maneuver; it may be specified for any steady or accelerating flight

path, including banked turns out-of-plane. The analysis of the propagation of the sonic boom is based on linear geometric acoustic theory, employing an age variable to define essential nonlinear effects on the shape of the pressure signature. Effects of atmospheric turbulence are not included in this analysis, nor are the special nonlinear effects near ray focusing (caustics) where in the present theory the pressure becomes infinite. The analysis provides equations for the sonic boom which have been incorporated in a versatile computer program written in ASA FORTRAN IV (ref. 1).

This analysis and computer program provide means for calculating the sonic boom signatures for more general variables than with previous programs, without asymptotic or uniform atmosphere assumptions, and for arbitrary maneuvers. As examples of previous work, reference 2 has presented methods for calculating the ground locations of sonic booms for a specified atmosphere from maneuvering aircraft, but does not give the sonic boom signatures. Reference 3 has presented a digital program for obtaining sonic boom shock-overpressures and restricted to maneuvers in a vertical plane. Overpressure results from this and other previous analyses have been conflicting, even for level uniform flight with and without winds, leading to confusion and lack of confidence in predictions of sonic boom overpressures. The present study, therefore, was undertaken to establish a sound basis for sonic boom predictions using the developments of reference 1, and to provide a broad scope of results for understanding various effects on overpressures and signature shapes (wave forms).

This study provides calculations and interpretations for sonic boom propagation through various stratified atmospheres and winds from maneuvering aircraft. The atmospheres include the 1962 U.S. standard, three variations of temperature, and three wind profiles. The maneuvers include level flight at various altitudes and Mach numbers, accelerating flight, pullups, pushovers, and circular turns. Two aircraft were used in this study. The fighter aircraft class was represented by the F-104 and the supersonic transport class (SST) was represented by the SCAT 15-F, a hypothetical aircraft defined and used in analytical studies at NASA, Langley Research Center.

This report describes the computational study and its results in detail. Modifications to the computer program are mentioned which enabled rapid computer processes using the IBM 1130, Model 2B computer. The input data are presented, including aircraft characteristics, atmosphere and wind data, maneuver corrections, and the selected altitude and Mach number variations. Results are then presented in tabular and graphical form for both aircraft. Comparisons are made with previously available data, in particular that of reference 4. Important changes in over-

pressure and pressure signature shapes caused by atmospheric refraction leading to ray focusing and maneuvers are described.

SYMBOLS

a	speed of sound, $(\gamma_e^{RT})^{1/2}$
A	ray-tube area cut by horizontal plane
$\mathtt{C}_{\mathtt{D}}$	drag coefficient
$^{ extsf{C}}_{ extsf{L}}$	lift coefficient
${\tt C}_{ m T}$ - ${\tt C}_{ m D}$	net axial force coefficient
D	drag
g	gravitational acceleration
h	altitude of aircraft above sea level
hg	altitude of ground above sea level
HAS	high altitude shear, wind profile
ITAH	high altitude temperature inversion
^K A	atmospheric correction factor applied to UNW results
$^{\rm K}_{ m R}$	reflection factor
L	lift; for F-function, distance along aircraft axis; for signature, length parameter
$\mathtt{L}_{\mathtt{a}}$	aircraft reference length
L ₁	signature length between leading and trailing shocks
LAS	low altitude shear, wind profile
LATI	low altitude temperature inversion
M	Mach number of aircraft, V/a
MAS	medium altitude shear, wind profile

n_{t.}, n_T normal and axial load factors

p pressure

Δp pressure increment; maximum overpressure

pressure at reference Mach number, SNW

p_{std} pressure at M = 1.25, SNW

s distance

S_{ref} reference wing area for force coefficients

SLR summer lapse rate, temperature profile

SNW 1962 U.S. standard atmosphere; no wind

t time along ray

t time along aircraft trajectory

T absolute temperature; thrust

UNW uniform atmosphere, no wind

v aircraft velocity relative to atmosphere, Ma

W weight of aircraft

x,y,z fixed coordinate system, east, north, and

above ground, respectively

lateral distance to cutoff (horizontal ray)

 γ aircraft climb angle

 γ_{a} ratio of specific heats

Δ perturbation from undisturbed value

η wind heading angle (whence wind blows)

 μ Mach angle, $\sin^{-1}(1/M)$

 τ age

φ azimuth angle of wave normal from vertical

plane

$\phi_{\mathbf{a}}$	aircraft bank	angle	
$\phi_{\mathtt{r}}$	azimuth angle aircraft	e of wave normal relative to)
ψ	heading angle	e of aircraft	

GENERAL DESCRIPTION AND PROGRAM INPUTS

The main objective of the current study was to obtain an understanding of sonic boom overpressures and pressure signatures resulting from representative light-weight and heavy-weight aircraft types with a variety of maneuvers, wind profiles and atmospheres. The plan for achieving this goal included establishing a schedule of variations of parameters summarized in table I. The set and run numbers given on this table were used to identify the specific variations shown in other columns of this table and the corresponding computational results. The symbols and abbreviations used in this table are defined in the following paragraphs and in the list of SYMBOLS.

Two aircraft used in this study were the F-104 and SCAT 15-F with the following characteristics:

		F-104	SCAT 15-F
Weight W	$egin{cases} ext{lbs} \ ext{Mg} \end{cases}$	15 600 7.06	450 000 204
Length L _A	{ft m	50 15.3	250 76 . 2
Wing area S _{ref}	ft ² m ²	173.2 16.1	5000 465
Wing loading W/S _{ref}	$\begin{cases} 1b/ft^2 \\ kg/m^2 \end{cases}$	90 439	90 439

Each aircraft has the same wing loading and, therefore, the same lift coefficient for the same flight condition. This commonality may be helpful when comparing signatures of the two aircraft at the same flight condition, as any differences must then be attributed to other parameters.

The F-functions (ref. 5) for these aircraft, which represent the pressure signature near (several spans from) the air-

craft are required inputs to the sonic boom computer program. The form for the F-functions, calculated at NASA, Langley Research Center, was given as

$$F = F_f (F_A + F_B)$$

where

$$F_A = F_{A1} \sqrt{2L}$$

$$F_{\rm B} = F_{\rm Bl} \left(\frac{\beta}{2} c_{\rm L} s_{\rm ref} \right) / (2L)^{3/2}$$

and

$$\beta = \sqrt{M^2 - 1}$$

$$F_{f} = M^{2} / \sqrt{2\beta}$$

Reference 6 describes a numerical procedure for calculating the F-functions. The contributions from the aircraft volume distribution and from the lift distribution, F_{Al} and F_{Bl} , respectively, were given at specified aircraft stations E_a . Tables of F_{Al} and F_{Bl} were input to the program and taken to vary linearly between the specified stations.

The input parameters F_{Al} and F_{Bl} are implicit functions of Mach number. They were only available, however, for M=1.4 (both aircraft) and M=2.7 (SCAT 15-F), and only for the azimuth directly under the aircraft ($\phi_r=0$, fig. 1). For the present study, then, these parameters were varied with Mach number only when the SCAT 15-F F-function derived at M=1.4 was replaced by the one derived at M=2.7. The lift term F_B , however, is explicitly dependent on Mach number through the factors

$$\beta = \sqrt{M^2 - 1}$$
 and $C_L = \frac{2(W/S)}{(aM)^2}$. For the present study, then,

the F-function does vary with Mach number. Also, the term F_B is proportional to the lift coefficient (load factor), so that the F-function changes when the maneuver load factor n_L is changed, and also varies with aircraft altitude and weight. The F-functions for M=1.4 were used for all calculations in this study, except for SCAT 15-F runs at M=3 for which the M=2.7 data were also used. The consequences of the change in F-function for SCAT 15-F solutions at M=3 are shown later to be small, lending substance to the belief that in general F_{A1} and F_{B1} are weakly dependent on Mach number so that they may be used over a suitable range of Mach numbers. Also, it is felt that they vary

Figure 1. View looking forward along flight axis showing acceleration components, bank angle, and azimuth angle.

slowly with $\phi_{\mathbf{r}}$ near $\phi_{\mathbf{r}}=0$, so again may be used throughout a range of azimuth angles without serious discrepancy. In this study the F-functions, computed and input for $\phi_{\mathbf{r}}=0$ only, were therefore used at all azimuth angles, but recognizing that there may be in reality significant changes, particularly at the larger angles (above 30 deg, say).

Figure 2 shows the two F-functions for flight at M=1.25 and $h=40~000~\rm{ft}$ (12.2 km). A linear variation is assumed between data points. They are given at increments of $0.025~\rm{L_{3}}$ and $0.020~\rm{L_{3}}$ for the F-104 and SCAT 15-F, respectively, from the station at the nose of the aircraft to a station in the wake. These curves, shown for L/L_{3} up to 2, were extended farther aft to approximately $8~\rm{L_{3}}$ in the input table for the sonic boom program. The extended part of the F-function was taken to be essentially zero. This added length, although representing near-zero values, was needed for some calculations to determine the location of the trailing shock in the pressure signature.

The aircraft maneuvers designated in table I for this study included horizontal steady and accelerating flight, pullups, pushovers and circular turns. Figures 3, 4, and 5 define nomenclature pertinent to the aircraft maneuvers, ray paths, and azimuth angles (from ref. 1). Flight path and heading angle variations used in the computations are shown for reference in figures 6 and 7.

Atmospheric characteristics selected for this study are shown in figure 8 in terms of the temperature variations with altitude. Pressure variations for an equilibrium atmosphere were computed and used with each of these temperature profiles. high altitude temperature inversion (HATI) is characteristic of a frontal inversion (Atm D-3 of ref. 4). The low altitude temperature inversion (LATI) is characteristic of smog (Atm B-4 of ref. 4). The summer lapse rate (SLR) atmosphere is characteristic of a hot ground temperature (Atm A-3 of ref. 4). The 1962 U.S. standard (SNW, standard no wind) is from reference 7. Uniform atmospheres were also used herein for some calculations for comparisons, since other reports have made wide use of the simplifications to propagation calculations thereby introduced. The uniform atmospheres (UNW, uniform no wind) are defined to have constant temperature and density everywhere as determined using the 1962 U.S. standard atmosphere at the altitude of the aircraft.

Wind profiles selected for this study are presented in figure 9. The high altitude shear (HAS) profile is the wind profile which is exceeded less than 1% of the time in the northeastern United States. It represents a high-speed jet-stream at an altitude of 35 000 ft (10.7 km). The medium altitude shear (MAS) profile represents a jet-stream at 20 000 ft (6.1 km) with constant wind speeds above 22 000 ft (6.7 km) and below 17 000 ft (5.2 km). The low altitude shear (LAS) profile represents a jet-stream at 3000 ft (0.9 km). These winds were used with the 1962 U.S. standard atmosphere (SNW) temperature and density.

The abbreviations introduced here for the atmospheric conditions are used in the remainder of the report for simplicity. In summary, they are identified in figures 8 and 9 using the following nomenclature:

UNW: Uniform atmosphere, no wind

SNW: 1962 U.S. standard atmosphere, no wind

LAS: Low altitude shear, wind profile

MAS: Medium altitude shear, wind profile

HAS: High altitude shear, wind profile

LATI: Low altitude temperature inversion

Figure 3. Schematic of flight path and ray path

a) Horizontal acceleration

Figure 4. Sketch of velocity, force and acceleration vectors for maneuvers

Figure 5. Acceleration diagram for maneuvering aircraft.

Figure 6. Flight path angle variations for pullup and pushover maneuvers

Figure 7. Heading angle variations for turn maneuvers

Figure 8. Temperature profiles

HATI: High altitude temperature inversion

SLR: Summer lapse rate, temperature profile

Another input for the present calculations was an arbitrary choice of ground reflection factor $K_R=1.9$. Theoretically the K_R value should be 2 for a sensor at the ground where the incident signal (shock-waves) is reflected. The reduced value of 1.9 used here may be considered a temporary compromise with considerations of possible surface conditions on the alleviation of the peak pressures of sonic boom shock waves. Some data were computed at altitudes other than sea level, and for these data the reflection factor $K_R=1.9$ was maintained. It should be noted, however, that the pressures should be calculated with $K_R=1$ if data are desired with no ground reflection. This also applies if the shock waves happen to be normal to the ground (i.e., if ray paths are horizontal at the ground).

COMPUTER PROGRAM MODIFICATIONS

The development of the sonic boom analysis and computer program is reported in reference 1. The computer program was modified for the current study to expedite the calculations on an IBM-1130, Model 2B computer as follows:

- 1. The calculation time using the IBM-1130 was reduced by a factor of 1/3 by incorporating various changes to the computational flow diagram logic. For example, disk files were created for storing input data such as atmosphere specifications, wind profiles, F-functions and maneuvers. These data are read into the computer only once, and thereafter are called by file name, thus saving repetitive read-in requirements. Also, simplifications were made to integration subroutines and requirements were eliminated for calling interpolation routines repetitively.
- 2. A subroutine was added to obtain the shock locations automatically. This includes a new algorithm which examines an integral of the pressure function (y-curve of ref. 1) and determines where shocks are located. The computer program then investigates the appropriate branches of the distorted pressure signal to find the values of pressures at each shock location. These pressure values and the corresponding pressure jumps are included in the output listing.
- 3. A capability was added to obtain automatic plotting of the pressure signatures at the same time they are listed by the printer. Plotting scales are adjusted automatically to keep the curve within a specified size (thereby providing a standardized format).

This sonic boom computer program is too large to be formulated for an IBM-1130, Model 2B without splitting it into logical computational units connected by programmed links. Five links are used in the present IBM-1130 program connecting input, maneuver, ray tracing-area-age, shock location, print-plot, and ground intersection modules. The computer flow was revised from that of the original program (ref. 1) so that each link computes and stores all data for a given run before proceeding to the next Thus, for example, the complete maneuver is calculated and stored at the beginning of the program. This process of linking avoids time-consuming transfers back and forth between links and saves about 1/4 of the machine time that might otherwise be required. It also enables the computer to call a second set of aircraft characteristics and determine its pressure signature and shock locations without redoing input, maneuver and ray-area-age calculations.

The overall machine time using this computer program on an IBM-1130, Model 2B tied in with a digital incremental plotter varies between 1 and 3 minutes per signature. This time depends on the maneuver time duration, the number of rays called for, and the complexity of the F-function.

RESULTS

This section presents data derived for the various maneuver and atmospheric conditions selected for this study. Each subsection presents tables and graphs for a particular type of maneuver, starting with level uniform flight and progressing through level accelerating flight, pullups, pushovers, turns and porpoising maneuvers. Overpressures and complete signatures are shown pertaining to each of these flight conditions, together with certain significant comparisons to previous calculated results, to flight test measurements, and to reference conditions.

A summary tabulation of results for all runs is presented in table II for the use of the reader who may wish to make further analyses of results. This table shows overpressures, signature lengths, and ray ground intersection data for selected maneuver times t_a and azimuth angles ϕ . Table I provides the run number for a specified calculation condition; with this run number, table II provides the resulting overpressure and ray-path data. Figures 6 and 7 may be required to obtain maneuver condition information using the aircraft maneuver time t_a given in table II. The results are shown in other chart and graph formats to be presented in the following discussion of results, so that the general reader need not interpret table II.

Level Uniform Flight

Pressure signatures and overpressures. - Pressure signatures for the F-104 and SCAT 15-F are shown in figure 10 for an aircraft at M = 1.25, h = 40 000 ft (12.2 km) and for a standard no-wind (SNW) atmosphere. These signatures are computed at sea level on the ground track of the aircraft ($\phi = 0$). The particular flight and atmosphere conditions selected here are often used as reference values in this report, and therefore these signatures (fig. 10) are termed nominal. The ordinate Δp is the pressure variation from its ambient value, whereas the abscissa may be considered a distance phase which is proportional to a time phase (ref. 1, eq. (41)), so that the signature also represents pressure fluctuations with time such as would be measured by a stationary microphone with a nonturbulent atmosphere. The zero value of L/La corresponds to the phase which originated at the nose of the aircraft (or its equivalent body of revolution). The signature length, defined as L_1 , is the distance between the leading and trailing shocks. The station L or length L_1 is obtained from L/La and L1/La by multiplying by the aircraft length La. The SCAT 15-F is five (5) times as long as the F-104. Its nominal signature length L1 is therefore 306 ft, compared to 133 ft for the F-104. The different characteristics of the signatures for the two aircraft result from their considerable difference in configuration which is input through their F-functions (fig. 2). They have not become fully developed N-waves for this reference condition.

The sonic boom overpressure is taken as the maximum value of pressure on the compression side of the signature. Thus, in figure 10 the overpressure for the F-104 is equal to the jump of the leading shock, whereas that for the SCAT 15-F is the peak value at the third shock. The overpressures are given in table III at various Mach numbers for level uniform flight at 40 000 ft (12.2 km) altitude. These values are used as reference values in subsequent data presentations.

Pressure signatures for several Mach numbers are shown in figures 11 and 12 for level flight at 40 000 ft (12.2 km) altitude. Signatures are shown for each aircraft using both the uniform atmosphere (UNW) and a real atmosphere (SLR). (The signatures for the standard atmosphere (SNW) would be essentially the same as for the SLR atmosphere). The results using UNW are considerably lower than for SNW, and should be multiplied by an atmospheric correction factor $K_{\rm A}$ to obtain realistic pressure values. In the presentation of these and subsequent pressure signatures, the scales were determined by the format for the digital incremental plotter, and therefore are not always consistent; they are properly identified, however.

a) F-104

b) SCAT 15-F

Figure 10. Nominal pressure signatures for F-104 and SCAT 15-F; M = 1.25, h = 40 000 ft (12.2 km), SNW

Mach number effects on signature at sea level; FlO4, h = 40~000~ft (12.2 km) Figure 11.

SLR, Summer lapse rate

Figure 11. Concluded

Figure 12. Mach number effects on signature at sea level; SCAT 15-F, h = 40~000~ft~(12.2~km)

The Mach number dependence of overpressure is plotted in figures 13 and 14 for various atmosphere and wind conditions; here the overpressure is shown relative to its nominal value at M=1.25, SNW (table III). The wind data normally refer to a headwind, unless stated otherwise. The HAS headwind is shown here to yield very large overpressures near M=1.3 as a result of ray focusing caused by the large wind decrement between the aircraft altitude and the ground. The ray-tube area calculations show that this focusing occurs just above ground level for M=1.3, $h=40\,000\,$ ft (12.2 km). The overpressure deviations in other atmospheres (compared to SNW) are small, except, of course, for the uniform atmosphere (UNW).

Using factors $K_{\mbox{\scriptsize A}}$ which were derived (ref. 4) to correct UNW solutions to SNW values, the curve labeled UNW x $K_{\mbox{\scriptsize A}}$ in figure 13 results. It is a good match to the correct SNW values for this set of input data.

In figure 14 are indicated the data calculated at Mach 3 (dashed curve faired into the original curve at Mach 2) using both the M=1.4 and the M=2.7 F-functions of the SCAT 15-F. The M=2.7 F-function yields only slightly larger overpressures. Also, the signatures appear quite similar. Thus, there is some confidence that an F-function computed at a particular Mach number in this range can be accepted as a good approximation at other Mach numbers in this range.

Further comparisons of the influence of atmospheric conditions are indicated in the bar charts of figure 15. As mentioned before. the HAS headwind is critical for this flight condition. The value of the data point shown at an overpressure ratio of 2.0 is not especially unique; it is a value for a flight condition (M,h) where the headwind results in a grazing flight path at a caustic near the ground. The overpressure is sensitive to flight condition here, so that small changes in M or h cause large changes in the overpressure results. The type of wind profile used in this study, where wind speed is lower at ground level than at aircraft altitude, causes larger overpressures in a headwind than with no wind (when the Mach number is small). Tailwinds, on the other hand, result in lower overpressures. The M = 2 data shown here are relative to the M = 1.25, SNW condition to point out the Mach number effect. Further effects of wind speed and direction are discussed later.

 $^{^1\!\}mathrm{At}$ grazing the wave front is perpendicular to the ground so that no reflection occurs and $\mathrm{K_r}$ should be taken as unity. For present calculations, $\mathrm{K_r}=1.9$.

Figure 13. Mach number effects on overpressure ratios; F-104

Figure 14. Mach number effects on overpressure ratios; SCAT 15-F

Figure 15. Winds and temperature effects on overpressure

Signature distortion during propagation. Near the aircraft the acoustic signal has essentially the form of the F-function. As the acoustic signal propagates away from the aircraft (along a ray path (fig. 3)), it is distorted because of a weak nonlinear effect caused by differences in propagation speed. These differences are dependent on the local signal strength (pressure level above or below ambient) which is a function of phase. The distortion is a cumulative effect which results in formation and merging of shock waves. The amount of distortion is governed by an age variable τ defined in reference 1 (eq. 46). The age variable is an integral which is, in part, proportional to the distance traversed and inversely proportional to the half-power of atmospheric density times the ray-tube area; that is,

$$\tau \propto \int dz \sqrt{\rho A}$$

Thus the age of the signal increases with distance, but at a slower rate if the rays are propagating downward into a region of larger density. If ray focusing is approached $(A \rightarrow 0)$, the age variable tends to increase; in other words, the pressure signature tends to be more distorted. An analogous statement is that the phase shift of the signal becomes greater as the age increases. The distortion of the signature (phase shift) also tends to increase with Mach number (ref. 1, eqs. (45), (46), and (49)).

The results of calculations of the pressure signature as it propagates downward from the aircraft are shown in figures 16 and 17 for flight at 40 000 ft (12.2 km) and in figure 18 for flight at 25 000 ft (7.6 km). The altitudes (hg) for displaying the signatures were selected to illustrate the rapid formation and merging of shock waves near the aircraft. For example, in figure 18a the signature only 500 ft (150 m) below the aircraft has developed six shock waves. During the next 500 ft (150 m) (fig. 18b) two pairs of shocks have merged, leaving four shocks. The two trailing shocks here later merge, so that the signature at ground level (fig. 18c) contains three shocks. So that comparisons with ground signatures are consistent, the midfield solutions are shown here with $K_{\rm R}=1.9$.

The major effects of aging (distortion) occur within 5000 ft (1.5 km). The rapid increase in the age variable near the flight altitude is shown in figure 19 along with the ray-tube area for aircraft altitudes of 40 000 and 80 000 ft (12.2 and 24.4 km). Results for uniform atmospheres (UNW) are shown for comparison with those for the standard atmosphere (SNW). In the uniform atmosphere, the ray-tube area increases linearly as the ray-path altitude decreases to sea level (z = 0). The age variable continually increases with $(\sqrt{z_0} - \sqrt{z})$. In the standard atmosphere the area deviates from linearity with z because of the density increasing

Figure 16. Signature during descent from aircraft at $40~000~\rm{ft}$ (12.2 km); F-104, M=1.25

Figure 17. Signature during descent from aircraft at 40~000~ft (12.2 km); SCAT 15-F, M = 1.25

c) $h_g = 0$ Figure 18. Signature during descent from aircraft at 25 000 ft (7.6 km); F-104, M = 1.25, LAS

at lower altitudes. The age variable increases but tends towards an asymptotic limit. For propagation from high altitudes (fig. 19b) the age variable approximately one scale-height below the aircraft ($z = 50\ 000\ ft$) (15.2 km) is close to the asymptotic value of the age variable ($\sim z = 0$) for the standard atmosphere. This is an illustration that the asymptotic age in a real atmosphere has a finite limit (ref. 1). The signature distortion, then, need not develop to the extent of the classic N-wave. In the uniform atmosphere, on the other hand, the age variable is not limited, and the asymptotic solution always yields an N-wave.

The overpressure ratios for both aircraft are presented in figures 20a and 21a as a function of the altitude of the signature for nominal flight conditions (M=1.25, h=40~000 ft (12.2 km)). As mentioned before, the rays focus before reaching the ground for the high altitude wind shear (HAS) environment as a headwind. Thus, high overpressures are realized near the ground for aircraft flying near 40~000 ft (12.2 km) at Mach numbers near 1.3 for this wind.

The variations of signature length ratio L_1 for the above flight conditions are shown in figure 22a. The ray-path travel time t from the aircraft to the stated altitude h_g is given in figure 23a, and the ground distance y traversed in this time by the ray path is given in figure 24a. The ray path is independent of the aircraft type.

Effects of Aircraft Altitude. Overpressure, signature length and ray-path results are shown in figures 20b through 24b as functions of aircraft altitude. These data are for M=1.25 except where noted otherwise.

In figures 20b and 21b, solid curves present the variation of the overpressure ratio for three atmospheres, UNW, SNW, and HAS. Data points are shown for SLR. In addition, a dashed curve shows the overpressure ratio obtained by multiplying the UNW values by the altitude-dependent atmospheric correction factor K_A of reference 4 (UNW times K_A). In figure 20b, this curve agrees well with the SNW curve, indicating that these K_A factors applied to UNW results yield good approximations to the realistic atmosphere (SNW) results for this F-104 flight condition. In figure 21b, the corresponding comparison for the SCAT 15-F is not as good, the actual overpressures (SNW) being as much as 10% lower than the approximation (UNW times K_A).

The changing curvatures in these curves, including the dip

²⁾ Density scale height is the altitude increment in which the density changes by a factor e=2.718...; it is about 21 000 ft (6.4 km) in the standard atmosphere.

Figure 20. Effects of altitudes of signature and aircraft on overpressure ratios; F-104

Figure 21. Effects of altitudes of signature and aircraft on overpressure ratios; SCAT 15-F

Figure 22. Effects of altitudes of signature and aircraft on signature length

Figure 23. Effects of altitudes of signature and aircraft on ray travel time

Figure 24. Effects of altitudes of signature and aircraft on ray ground distance

in the SCAT 15-F curves at 65 000 ft (19.8 km), arise from the manner of development and merging of the shock waves in the complete signature. These would not become evident if only the strength of the leading shock (an N-wave approximation) had been calculated. These results show that one should calculate overpressures without the uniform atmosphere or N-wave assumptions for specific aircraft flight considerations.

For the high altitude wind shear (HAS), large overpressures occur for aircraft altitudes between 30 000 and 50 000 ft (9.2 and 15.2 km). In this altitude range the aircraft are flying into a high speed wind and the rays converge significantly as they propagate towards the ground where the wind speed is much smaller. The two branches of the HAS curves occur because of the effect of the jet stream on the ray paths. For the aircraft altitudes just above the jet stream, the ray paths become horizontal before reaching the ground.

In figure 22b, the signature length L_I is shown to be larger for UNW than for the realistic atmospheres (SNW and others) throughout the range of aircraft altitudes. This difference is larger for the higher altitudes as can be expected because of the larger difference in age between UNW and SNW atmospheres, as shown in figure 19.

The pressure signatures at sea level for several aircraft altitudes are presented in figures 25 and 26. The older age of the high altitude signatures is evident by their longer length and smaller strength, together with the merging of the shock waves.

Effects of Mach number .- Variations of pressure signature and overpressure ratios with Mach number have already been introduced in figures 11, 12, 13, and 14, and in table III. The signatures of figures 11 and 12 illustrate the greater distortion exhibited by those of the larger Mach numbers. This is a result of the phase shift increasing with Mach number, mentioned previously. Summary curves showing the Mach number effects on signature length, ray travel time, and ray-path ground distance are given in figures 27, 28, and 29, respectively. As indicated in figure 27, and supported by further data in table II, signature lengths obtained using UNW are significantly longer than signature lengths calculated using a realistic atmosphere (e.g., SLR or SNW) over the entire range of Mach numbers (and altitudes, see above). This difference is larger at the higher Mach numbers because the signature aging (distortion) increases with Mach number.

Temperature effects. - Some effects of varying the temperature environment were shown in figure 15. Additional data are presented in table IV and figure 30 for various Mach numbers. Results which are presented in reference 4 are compared with

Figure 25. Signature at sea level for several aircraft altitudes; F-104, M=1.25

Figure 26. Signature at sea level for several aircraft altitudes; SCAT 15-F, M = 1.25, SLR

Figure 27. Mach number effects on signature length

Figure 28. Mach number effects on ray travel time

Figure 29. Mach number effects on ray ground distance

Figure 30. Temperature effects on overpressure

present data. In figure 30, overpressure boundaries taken from reference 4 are also shown. The open symbols are present results; the closed symbols are from reference 4. Both the F-104 and the SCAT 15-F show essentially the same overpressure ratios. The data of reference 4 are in agreement with present data except for HATI where they are 2 to 5% smaller. The general agreement is excellent, particularly for the LATI and SLR atmospheres where the pressure ratios from reference 4 are close even near the cut-off Mach number of 1.16.

Wind effects. Some effects of winds have been introduced in the previous discussions. A summary of overpressure ratios for the several wind environments is shown in table V and in figure 31. The overpressure ratios for both aircraft are essentially the same. Data from reference 4 again are shown for comparison. The wind profiles in reference 4 are essentially the same as those used here, except for variations in the MAS and LAS profiles. The overpressure results of reference 4 are within 2% of the present results, except for the HAS near cutoff (M = 1.3). Here the present results show about twice the overpressure of reference 4. It should be noted, however, that the flight altitudes of the referenced data are not stated, and these results may apply at an aircraft altitude other than 40 000 ft (12.2 km).

The medium altitude wind-shear profile (MAS) was used to investigate in detail the effects of wind direction on pressure signatures. The SCAT 15-F was used, flying at M = 1.5 at an altitude of 40 000 ft (12.2 km). Data were obtained for wind directions of 0, 45, 90, 135 and 180 degrees. By varying the initial value of the ray azimuth angle between \pm 30 degrees, lateral effects on both sides of the ground track were also determined. The overpressures are given in table VI and figure 32. The headwind overpressure is largest, except near windward cutoff. For ϕ = 0, it is 5% more than the tailwind overpressure. For η = 45 and 90 degrees cutoff occurs for ϕ \approx - 30 degrees (windward rays); here the overpressure is 10 to 15% less than near the ground track $(\phi$ = 0) .

Ray-path and signature parameters are shown in figure 33 as functions of wind heading angle $\,\eta\,$ for $\,\phi=0\,$. The overpressure ratio varies from 1.07 for a headwind to 0.98 for a tailwind. The ray-path travel time $\,t\,$ changes by 6 seconds and the ray-path ground distance $\,y\,$ changes by 900 ft (0.27 km). The signature length $\,L_1\,$ is essentially unchanged for this wind and flight condition. Representative signatures are shown in figure 34.

Variations off the ground track.— In a standard atmosphere, the overpressure decreases with distance from the ground track, as illustrated by the empirical curve of figure 35 (from ref. 4). Present data for nominal conditions at M=1.25 and 2.0 are

Figure 31. Wind effects on overpressure

Figure 32. Wind direction effects on overpressure; SCAT 15-F in MAS wind profile

Figure 33. Wind direction effects

Figure 34. Wind direction effects on pressure signature; SCAT 15-F, MAS wind profile

Figure 35. Lateral distance effects on overpressure ratio; $h = 40~000~{\rm ft}$ (12.2 km), SNW

also shown here. The lateral distance parameter x/h varies with azimuth angle ϕ as shown in figure 36 for two flight conditions. The cutoff values $x_{\rm C}/h$ and $\phi_{\rm C}$ are defined to be the values for which the ray parameterized by $\phi=\phi_{\rm C}$ becomes horizontal ($\theta=0$) at the ground (ref. 1). The cutoff azimuth angle $\phi_{\rm C}$ is, of course, the same for all aircraft, since the ray path is taken to be independent of the F-function.

Depending on flight and atmospheric conditions, cutoff may occur near a region of ray focusing, in which case larger overpressures will occur there. The lower two curves of figure 37 for level uniform flight show the normal falloff of the overpressure with azimuth angle for the SNW atmosphere and the increasing pressure near cutoff for the SLR atmosphere. The four upper curves apply for maneuvering aircraft to be discussed later; they are shown here for comparison and to emphasize that there are circumstances for which much larger overpressures can be obtained laterally off the ground track than immediately below the aircraft on the ground track. The ray paths off the ground track are longer, so that the tendency to focus the rays has a longer time to develop prior to intersecting the ground.

Changes in signature between the ground track and the lateral cutoff are shown in figures 38 and 39 for the F-104 and SCAT 15-F, respectively. These curves are for uniform flight in the standard atmosphere (SNW) with $h=40\,000\,\mathrm{ft}$ (12.2 km). It is noteworthy that the signatures are generally shorter near cutoff than on the flight track (e.g., fig. (38b)), sometimes resulting primarily from the trailing shock moving to the left in phase L/La (e.g., fig. (39b)). The data of table II (set number 7) show, on the other hand, that the signatures are longer near cutoff for the uniform atmosphere (UNW) calculations.

Level Accelerating Flight

Parametric results.- Discussions of characteristics of sonic boom propagation for aircraft in maneuvering flight, together with flight test data, have been presented in references 4, 8, 9 and 10. As shown there, an important aspect of accelerating flight, particularly near Mach 1, is the tendency for ray focusing. In level supersonic flight, rays leaving the aircraft at some reference time and azimuth angle have a larger initial inclination angle (downward relative to horizontal) than the corresponding rays which were initiated earlier at lower speeds, and therefore neighboring rays may intersect. At small supersonic speeds and normal flight altitudes, this ray focusing leads to higher overpressures, commonly termed superbooms.

Another important aspect of maneuvering flight is the

Figure 36. Lateral distance variations with azimuth angle

Figure 37. Lateral distance effects on overpressure

Signatures under ground track and at cutoff; F-104 Figure 38.

occurrence of multibooms (e.g.,refs. 2,8,10) wherein at certain ground locations two or more sonic booms may occur successively. Although not studied here, the present digital program (ref. 1) can be used to yield such ground locations and the pressure signatures for each sonic boom there (unless a focus or caustic has occurred). Of course, the pressure signatures which occur as parts of the multiboom set are exactly the same (for a specified flight and atmospheric condition) as those that occur singly and that are to be presented in the following sections of the report.

Overpressures calculated for uniformly accelerating flight are presented in figure 40 for axial load factors $n_T=0.15\,$ and 0.30. Data for nonaccelerating flight $(n_T=0)$ are also shown for comparison. The effects of acceleration, as expected, are large at the smaller Mach numbers where ray focusing is predominant. For an aircraft flying at 40 000 ft (12.2 km) above sea level with $n_T=0.3$, the ray paths just reach a focus at the ground $(h_g=0)$ when the aircraft has a Mach number of 1.3. At faster aircraft speeds, the rays do not focus before reaching ground level, whereas at slower speeds they do. The value of this critical Mach number varies with load factor, altitude and atmospheric conditions, as the data in figure 40 indicate.

Some pressure signatures are shown in figures 41 and 42 for a variety of accelerating flight conditions. In comparison with the nominal signatures of figure 10, these signatures with 0.15 and 0.30 g's acceleration have, in general, the same characteristic shapes.

Flight test comparison. - Measurements of the sonic boom signature of an F-104 in accelerating flight were made at Edwards AFB in 1964 (ref. 8). The aircraft accelerated from M = 0.9 to 1.5 at approximately 0.08 g's in level flight at an altitude of 37 200 ft (11.339 km). Results of the overpressures measured at the ground (altitude 2200 ft (670 km)) during these tests are shown in figure 43, together with calculated results obtained in the present study. The calculated results were obtained using the F-function for the F-104. An aircraft weight equal to the flight weight of 16 700 lbs (7580 kg) was used ($\overline{W}/S = 96.5 \text{ psf } (470 \text{ kg/m}^2)$) along with the atmospheric temperature and wind profiles measured during the morning of the flight. The solid curves of figure 43 are the calculated results (using a reflection factor of 1.9) for the tailwind condition of the test, and also for a no-wind condition. Large overpressures (superbooms) are calculated for locations about 6 miles (10 km) from the reference station. These occur during the acceleration of the aircraft in the Mach number range 1.20 to 1.22. At lower supersonic speeds, the calculated ray-tube area becomes zero (rays focus) before the signal reaches the ground. culated ray paths for the ground focus condition apparently intersect the ground about 2 miles (3 km) in front of the actual raypaths, since a large overpressure was measured at a ground station

Figure 40. Acceleration effects on overpressure

Signatures for accelerating aircraft; F-104, LAS Figure 41.

Figure 42. Signatures for accelerating aircraft; SCAT 15-F, LAS

Typical signatures

Reference: Figure 12 of reference 8

Figure 43. Overpressures for accelerated flight; F-104

8 miles (13 km) from the origin. For this condition the rays are nearly horizontal, glancing the ground, and therefore their location is very sensitive to atmospheric effects. A two mile dispersion between experiment and calculation is not felt to be excessive here.

The Mach number increases from 1.23 for the signature measured at 8 miles (13 km) from the reference station to 1.40 at 17.5 miles (28 km). The calculated overpressures for these locations are about 12% larger than the measured values. The dashed curve of figure 43 is the calculated data shifted to the right 2 miles (3 km) and adjusted vertically to match the M=1.40 data (corresponding to reducing the reflection factor from 1.9 to 1.6). This curve fits the flight data well, indicating the validity in general of the calculated pressure variation along the ground.

In summary, for this comparison for accelerated flight, the calculated location of the superboom is 2 miles (3 km) short, whereas the predicted shape of the overpressure variation along the ground is excellent. Further comparisons between calculated and measured data are needed to develop bases for explaining and predicting deviations from calculated data.

Pullup Maneuver

Definitions and input data for the pullup maneuvers were presented in the preceding section entitled General Description and Program Inputs, figures 4 and 6. Characteristics of the pullup maneuver are that the load factor exceeds unity $(n_L>1)$, the flight path angle rate $\dot{\gamma}$ is positive, and neighboring ray paths along the flight path are divergent. The ray-tube area tends to increase faster than for level uniform flight, and therefore the sonic boom overpressure tends to be alleviated. The steepness of the flight path, measured by γ , also affects the overpressure, as an airplane in a dive, for example, has the axes of its Mach conoids tilted towards the ground giving shorter ray paths between the aircraft and ray-ground intersection.

Figure 44a shows overpressure ratio variations with flight path angle γ at two values of load factor and at two Mach numbers. The reference overpressures Δp_{ref} are the overpressures for uniform level flight at the Mach number considered (table III). At M = 1.25 for horizontal flight ($\gamma=0$), the overpressures with pullup load factors of 1.5 and 3.0 are only about 30% of the reference values (no pullup, $n_{\rm L}=1$). At angles of -10 deg., the overpressures for these pullup load factors are increased to about 95% of the reference values. At Mach 2, the overpressures for $\gamma=0$ are 27% larger than the reference values. Here the SCAT 15-F curves are slightly different than the F-104 curves because of details in their signature shapes.

Figure 44. Overpressures for pullup maneuver

Figures 44b and 44c show effects of atmosphere on the pullup overpressures for dive angles near -4 deg., and for M=1.25 and 2.0, respectively. Figure 45 shows similar data for a dive angle of -10 deg. Again, these data are obtained for the aircraft at 40 000 ft (12.2 km) altitude and for overpressures calculated at sea level. The headwind HAS here causes the pullup overpressures to decrease, whereas the inversion HATI causes them to increase slightly above nominal (SNW) values.

Signatures for a load factor of 1.5 are shown in figures 46 and 47. When these data are compared with the nominal signatures (fig. 10), it appears that the effect of the positive load factor on pressure signature at the ground is to move intermediate shocks to the left. This tendency is further shown in figure 48 for $n_L = 3$.

Pushover Maneuver

In a pushover maneuver (figs. 4 and 6), the load factor is less than unity ($n_L < 1$), the flight path angle rate $\dot{\gamma}$ is negative, and neighboring ray paths along the flight path are convergent. The rays tend to focus, leading to large sonic boom overpressures. As with other maneuvers, the flight path angle γ also has an effect on overpressures in a pushover maneuver.

Figure 49 presents some general results of overpressures obtained for the pushover maneuver at Mach 2.0, 40 000 ft (12.2 km) altitude, and a load factor $n_L=-0.5$. This is a rather large negative load factor, and at Mach 1.25 the ray-tube area focuses (A = 0) before the rays intersect the ground. Figure 49a shows variations with climb angle γ and azimuth angle ϕ for both aircraft in the standard atmosphere. At $\phi=30$ deg , the rays focus before intersecting the ground. The reference Δp_{ref} is again taken from table III. For this large negative load factor (n_L=-0.5) the overpressure ratio is 50% larger when $\gamma=10$ deg than when $\gamma=0$, on the flight track ($\phi=0$). The ratio is even larger off the flight track, as the rays then have a longer path length in which to progress towards focusing. The variation of overpressure with azimuth angle is shown in the previous figure 37. The larger values of the F-104 data in figure 49 are discussed later

Figure 49b shows effects of the overpressure on the ground track for various atmospheres for a selected climb angle $\gamma=4.3$ deg. The variations with atmosphere are small except for the headwind HAS. This headwind causes the rays to approach a focus near the ground and yields large overpressures compared to the results for other atmospheres. In figure 50 the overpressure variations with load factor are presented. These data highlight the sensitivity of the overpressure for negative load factors.

Figure 45. Overpressure ratios for dive-pullout maneuvers; ϕ = 0, γ = -10 deg

1.5, $\dot{\gamma} = 0.48 \text{ deg/sec}$, SNW Signatures for pullup maneuver; M = 2.0, $n_{\rm L} =$ Figure 47.

Figure 48. Signatures for pullup maneuver; M = 1.25, $n_{\rm L}$ = 3, SNW

Figure 49. Overpressures for pushover maneuver; M = 2, $n_{L} = -0.5$

Figure 50. Overpressures for pushover maneuver, variation with load factor; M=2

Further effects of atmosphere on the overpressure emanating from an aircraft in a pushover maneuver are given in figure 51 for a climb angle $\gamma=10$ deg . Data for an additional aircraft altitude of 25 000 ft (7.6 km) are also shown here. The F-104 overpressure ratios are larger than the corresponding SCAT 15-F ratios because the negative load factor affects the signature shape near the leading shock in a different manner for each aircraft. This is dependent on their F-function variations with lift coefficient and signature aging. The overpressures ratios for h = 25 000 ft (7.6 km) compared to h = 40 000 ft (12.2 km) are substantially less in the HAS, as expected, because the aircraft is below the high-speed jet-stream. On the other hand, the inversion HATI has a larger overpressure ratio for the lower flight altitude.

The magnitudes of the overpressure ratios are substantially larger for the F-104 than for the SCAT 15-F, as shown in figures 49, 50 and 51. The reason for this is demonstrated in figure 52 which compares the signatures for each aircraft in the pushover ($\dot{\gamma}=-1.4$ deg/sec, $n_L=-0.5$) with their respective signatures in level flight ($\dot{\gamma}=0$, $n_L=1.0$). The level flight values of overpressure are used as the reference values in figures 49, 50 and 51. For the F-104, the leading shock is much stronger in the pushover than in level flight, whereas for the SCAT 15-F the leading shocks are nearly the same strength. For both aircraft, however, the shapes of the signatures are affected greatly by the pushover. This figure is an exhibit of the sensitive effect of $\dot{\gamma}$ terms in the equation for the ray-tube area (ref. 1, eq. (26)) and its influence on the age variable and phase distortion (ref. 1, eqs. (46) and (49)).

The marked effect of $\dot{\gamma}$ on the signatures is shown further in figures 53 to 56. Figures 53 and 54 show that the signatures are similar at climb angles of approximately 10 degrees and zero for the same value of $\dot{\gamma}$, but there are large changes in the signatures for $\dot{\gamma}=-1.4$ degrees/second compared to $\dot{\gamma}=0$. The effects of changing $\dot{\gamma}$ are shown in figure 55 where increases from -1.4 degrees/second to zero cause intermediate shocks to progress from the vicinity of the trailing shock to the vicinity of the leading shock. These signature variations for further in creases in $\dot{\gamma}$ are presented in figure 56 where data are shown at various values of $\dot{\gamma}$ corresponding to load factors between $n_L=0.5$ and $n_L=1$.

An important general conclusion is that the overpressure ratios (or amplification factors) are not always independent of aircraft type. A ratio obtained for a light-weight fighter in a pushover, for example, may not apply for a heavy-weight transport.

Figure 51. Overpressure ratios for climb-pushover maneuver; ϕ = 0, γ = 10 deg, M = 2.0

Signatures for pushover maneuver compared with level uniform flight at $M\,=\,2$, SNWFigure 52.

Figure 53. Signatures for pushover maneuver; M = 2.0, SNW, F-104

Figure 54. Signatures for pushover maneuver; M = 2.0, SNW, SCAT 15-F

Figure 55. Signatures for pushover maneuver, increasing $\dot{\gamma}$; M = 2

Figure 56. Signatures for pushover maneuver, increasing $\dot{\gamma}$; M = 2, γ = 0

Turn Maneuvers

Sonic boom propagation was calculated for constant altitude, circular turns at load factors n_L of 1.5 and 3.0 and Mach numbers of 1.5 and 2.0. (Figures 1, 4 and 5 again are referred to for nomenclature; in particular, ϕ_a is the bank angle and ψ is the heading (relative to north) of the aircraft.) The two load factors are achieved in equilibrium flight with aircraft bank angles ϕ_a of -48.19 and -70.53 degrees, respectively. The aircraft altitude is 40 000 ft (12.2 km). Overpressure ratios are summarized in figure 57 for the F-104 and SCAT 15-F aircraft for rays parameterized by ψ = 90 degrees and ϕ = 0 . For these values, the wind LAS is a headwind which increases the overpressures approximately 8% (above SNW) at M = 1.25 , but has essentially no effect at Mach 2.0. The inversion HATI causes small changes in overpressure amounting to an increase of 2% for M = 2.0 and $n_{\rm T}$ = 1.5 .

Variations of overpressures with changes in azimuth angle are presented in figure 58. Positive values of ϕ parameterize rays which leave the aircraft in a direction towards the inside of the turn circle; these are termed inner rays. Rays propagating outward (ϕ negative) are termed outer rays. For M = 1.25, the inner rays give large values of the overpressure ratios, rising from 1.2 at $\phi = 0$ to about 7 at $\phi = 10$ degrees. Farther in $(\phi > 10$ degrees), the inner rays focus before reaching the ground. Figure 59, to be discussed in detail later, shows the loci of the ray-ground intersections for $\phi = 0$ and 10 degrees. These form approximate boundaries of a "superboom ring" where large overpressures occur; ray focusing exists inside this ring. The radius of the superboom ring, for this maneuver only, is about twice the radius of aircraft turn circle (ground track). This superboom ring does not develop at Mach 2.0, as shown by the moderate overpressures in figure 58a, because the load factor $n_L = 1.5$ is not large enough to cause ray focusing even at large ϕ 's . As mentioned earlier, the ray-path and focusing characteristics are independent of aircraft type and therefore these features apply here to both the F-104 and SCAT 15-F.

Figure 58b shows how the overpressure varies in an LAS eastwind situation. The aircraft heading of $\psi=90$ degrees corresponds to a headwind, and as ψ reduces to zero the wind becomes a sidewind from starboard. For this maneuver and wind, all of the inner rays which were calculated at $\phi=15$ degrees focused before reaching the ground. This figure therefore shows data only for negative ϕ 's . The rays parameterized by $\phi=-30$ degrees become horizontal before reaching the ground for this LAS wind environment when $\psi>0$.

A detailed summary of this turn maneuver (M = 1.25, n_L = 1.5) is given in figure 59. First, the aircraft locations are shown on

Figure 57. Overpressure ratios for turn maneuver; $\phi = 0$, $t_a = 0$

Figure 58. Overpressures for turn maneuvers at various azimuth angles

Figure 59. Overpressures and ground intersections for turn maneuver; $n_{\rm L}$ = 1.5, M = 1.25, SNW and LAS

its ground track for several maneuver times, t_a . The center of the turn circle and ray loci circles, for ϕ = constant, is at x=0, y=41 000 ft (12.5 km). The ground intersections of rays are plotted for each t_a and intersection times for selected rays are given. Displacements of the ground track and ray-ground intersections caused by an east wind (LAS) are also indicated. Along the ray-ground intersection line for $t_a=0$, the overpressures are as follows:

Location	ı 🐣	Overpressure - psf (N/m²) F-104 SCAT 15-F
SNW	a b c d e	6.7 (320) 15.1 (722) 1.4 (67) 3.1 (148) 1.0 (48) 2.3 (110) 0.6 (29) 1.4 (67) 0.4 (19) 0.9 (43)
LAS	e † d †	1.1 (53) 2.4 (115) 0.7 (34) 1.5 (72) 0.4 (19) 0.9 (43)

It is coincidental that at point c (SNW, ϕ = 0), the overpressure for the F-104 is 1.0 (psf units). These overpressures (for SNW) apply at corresponding ray-ground intersections throughout the maneuver, as it is a steady turn.

For this plot, advantage was taken of the ground intersection interpolation subroutine in the digital program. This provided a set of values of overpressure, time, and ray location common to two ray-ground intersection curves for plotting the shock-ground intersections (dashed curves). These latter are the loci of the shock wave on the ground at given times. This shock location curve has a cusp at the ray-ground intersection where $\phi=0$. One end of this curve terminates within the superboom ring when ray focusing occurs; the other end, shown here, is terminated at approximately the location where the rays are horizontal, beyond which no boom can occur.

Similar detail is given in figure 60 for M=2.0 and $n_L=1.5$. The turn radius here is almost identical to the radius of the ray locus $\phi=0$. Also, as mentioned before, no superboom ring exists for this flight condition; the lateral extent of the boom is limited for both the inner and outer rays by their refraction beyond grazing (beyond ray horizontal). Overpressures for locations on the ray-ground intersection lines for this flight condition are as follows:

Overpressures and ground intersections for turn maneuver; $n_{\rm L}$ = 1.5, M = 2.0, SNW Figure 60.

Location	Overpr F-l	essure 04		(N/m ²) 15-F
a	1.3	(62)	3.0	(143)
\mathbf{b}_{γ}	1.3	(62)	2.9	(138)
С	1.2	(58)	2.8	(134)
d	1.1	(53)	2.5	(119)
е	0.9	(43)	2.1	(100)

These results illustrate important effects of flight conditions on ground overpressures in turn maneuvers. A superboom ring can exist for combinations of altitude, Mach number and load factor which cause ray focusing. If a given overpressure limit were to be prescribed, aircraft maneuver constraints on rate-of-turn (or bank angle) as functions of Mach number and altitude should be determined.

Porpoising Maneuver

Reference 11 reports a flight experiment designed to show effects of changing the vertical load factor n_L . The pilot cycled the elevon with a period of 1 sec. to obtain load factor increments of \pm 0.5. This yields a porpoising maneuver wherein the aircraft undergoes small cyclic changes in flight path angle, altitude, angle-of-attack and attitude. For the aircraft flying at M_+ = 1.5 at h = 37 200 ft (11.2 km) above Edwards AFB (with $\Delta h \approx \pm$ 20 ft (6 m)), no important effects on overpressure were measured, surprisingly. Reference 12, for example, indicates that significant changes in overpressure may result from such a maneuver; as shown there for M = 1.1 , h = 15 000 ft (4.5 km) and $\Delta h \approx \pm$ 100 ft (30 m). The preceding results in this report for pullup and pushover also imply that strong effects may be expected.

The present study included calculations of a porpoising maneuver, similar to the flight test condition, sketched in figure 61. For these calculations the load factor was taken as constant over each half-cycle of the maneuver, and the flight path angle and rates were calculated for a flight path consisting of circular arcs.

Results from the porpoising maneuver calculations are shown in table VII for maneuver points selected to show effects of changing flight path angle $\,\gamma\,$ and its rate $\,\dot{\gamma}\,$. Data are presented for both a uniform atmosphere (UNW) and the 1962 U.S.

Figure 61. Porpoising maneuver

standard atmosphere (SNW) with an aircraft altitude of 40 000 ft (12.2 km). Further data, corresponding to the flight experiment, are shown for an aircraft altitude of 37 200 ft (11.2 km) over Edwards AFB. The uniform atmosphere data are shown multiplied by the atmospheric correction factor $K_{\mbox{\scriptsize A}}$ (ref. 2) and by new factors $K_{\mbox{\scriptsize A}}$ and $K_{\mbox{\scriptsize A}}$ required to adjust Δp (UNW) to Δp (SNW) at the first maneuver point.

These tabular data point out that the UNW results cannot be modified by a simple correction factor to get SNW results for maneuvering flight. These are again, as described previously in the section Pushover Maneuver, essential differences in the signatures which results from the variation of ray-tube area caused by the rate terms in the area equation, and from the aging of the signal.

Table VII shows that Δp at maneuver point 3.1 is larger than at 4.1 in the uniform atmosphere, but smaller in the standard atmosphere. Evidently the aging in the two atmospheres is significantly different. This is shown clearly in figure 62 where the signatures are shown for these maneuver points and atmospheres.

Also, variations in $\dot{\gamma}$ have a strong effect on the overpressure. Changing $\dot{\gamma}$ from -0.634 to + 0.634 deg/sec reduced Δp by 44%. On the other hand, changing γ from -0.1425 to + 0.1425 deg had essentially no effect. The F-function, it may be noted, changes with $\dot{\gamma}$ because it depends, in part, on the

Figure 62. Signatures for porpoising flight at $n_{T} = \pm 0.5$

lift coefficient C_L which varies with load factor n_L . The pressure variation with $\dot{\gamma}$, however, is much larger than would be expected simply because of the variation of F with C_L .

These calculation results indicate strong effects of the flight path angle rate on overpressures at the ground. It would appear necessary to perform further flight experiments to generate such overpressures experimentally and to uncover atmospheric and flight condition effects and reasons for differences between measurements and computations.

CONCLUDING REMARKS

The analysis and computer program of reference 1 has provided a means for calculating sonic boom pressure signatures for arbitrary flight conditions and for atmospheric conditions with horizontal stratification. These techniques have been used to obtain results, presented herein, for a wide variety of aircraft maneuvers and atmospheres. The present results covered a broad scope of variation of parameters to point out significant effects and parameter sensitivities, and to provide a general source of data for sonic boom evaluations. Both a fighter-type aircraft (F-104) and an SST-type (SCAT 15-F) were used as a basis for these calculations. Complete F-functions were used as input for determining their overall pressure signatures as distorted by nonlinear propagation effects. These signatures included all of their shock waves.

Parametric data have been presented which show the sonic boom overpressure, the length of the signature, the ray-travel time and the ray-ground distance for various atmospheres, winds, aircraft Mach numbers and altitudes. Features of the digital program were demonstrated showing where ray-ground intersections and shockground intersections occur for turn maneuvers, along with other geometric and sonic boom characteristics.

Comparisons of overpressures with previous analytic results have been made. These are restricted basically to uniform flight inasmuch as previous analyses did not include capabilities for calculating overpressures for general aircraft maneuvers. They did, however, include variations of atmospheric temperature profile, wind speed and direction, and aircraft Mach number. The agreement with the results of reference 4 for those uniform flight conditions which were examined is remarkably good, although differences were shown for some conditions near ray focusing.

Several comparisons of overpressures with previous experimental results for accelerating and porpoising flight were also made. For the accelerating flight, good agreement with measured

overpressures was shown, except a displacement of about 2 miles in ground location remains unexplained. For the porpoising flight, significant effects of the flight path angle rate on the signature shape and overpressure were calculated, although not realized in the flight measurements.

A very important part of the present results has been the pressure signatures and their variations with both atmospheric and flight conditions. Among the various features illustrated by these results, the following are particularly noteworthy:

- a) The variation of the signatures with aircraft altitude and propagation distance were shown. A large part of the aging of the signal occurs within the first few thousand feet of propagation distance. The pressure signature represented by the initial F-function distorts very rapidly and, for such complex F-functions as used here, multiple shock waves quickly appear. Some of these shocks merge as the wave front continues to travel through the atmosphere, but the signature at the ground need not be a fully developed N-wave. In general, aging in a standard atmosphere exhibits an asymptotic limit whereas in a uniform atmosphere aging increases indefinitely.
- b) Overpressure ratios are not independent of aircraft type, so that detailed evaluation of sonic boom characteristics may require data to be generated for each specified aircraft. Also, realistic atmospheres (such as the 1962 U.S. standard) and complete signatures should be used for specific sonic boom analysis.
- c) The lengths of the signatures calculated with realistic atmospheres, such as SNW, are shorter than the lengths calculated with uniform atmospheres (UNW).
- d) Effects of wind-speed profile and wind direction were also analyzed. It was shown that highest overpressures occur with the headwind for ray paths, both on and off the flight track.
- e) Large overpressures may result from longitudinal acceleration, pushover and turn maneuvers.

With these generalized results at hand, studies related to specific aircraft can be more adequately defined. These studies can, for example, result in useful performance characteristics related to sonic boom constraints, such as maneuver limitations as functions of speed, altitude and wind conditions. In addition, flight experiments can be defined to establish pressure measurements under superboom conditions, using the present computer program to determine ray paths and overpressure variations along the ground.

REFERENCES

- 1. Hayes, Wallace D.; Haefeli, Rudolph C.; and Kulsrud, H.E.: Sonic Boom Propagation in a Stratified Atmosphere, with Computer Program. NASA CR-1299, 1969.
- 2. Lansing, Donald L.: Application of Acoustic Theory to Prediction of Sonic Boom Ground Patterns from Maneuvering Aircraft. NASA TND-1860, 1964.
- 3. Friedman, Manfred P.: A Description of a Computer Program for the Study of Atmospheric Effects on Sonic Booms. NASA CR-157, 1965.
- 4. Kane, Edward J.; and Palmer, Thomas Y.: Meteorological Aspects of the Sonic Boom. FAA SRDS Report No. RD-64-160, Sept. 1964 (Available from DDC as AD-610463).
- 5. Whitham, George B.: The Flow Pattern of a Supersonic Projectile, Comm. Pure Appl. Math., vol. 5, 1952.
- 6. Carlson, Harry W.: Correlation of Sonic Boom Theory with Wind Tunnel and Flight Measurements. NASA TR R-213, 1964.
- 7. U.S. Standard Atmosphere, 1962. U.S. Government Printing Office, Washington, D.C., 1962.
- 8. Maglieri, Domenic J.; Hilton, David A.; and McLeod, Norman J.: Experiments on the Effects of Atmospheric Refraction and Airplane Accelerations on Sonic Boom Ground-Pressure Patterns. NASA TN D-3520, 1966.
- 9. Hubbard, Harvey H.; Maglieri, Domenic J.; Huckel, Vera; and Hilton, David A.: Ground Measurements of Sonic Boom Pressures for the Altitude Range of 10 000 to 75 000 Feet. NASA TR R-198, 1964.
- 10. Lansing, Donald L.; and Maglieri, Domenic J.: Comparisons of Measured and Calculated Sonic Boom Ground Patterns Due to Several Different Aircraft Maneuvers. NASA TN D-2730, 1965.
- 11. Garrick, I.E.; and Maglieri, Domenic J.: A Summary of Results on Sonic Boom Pressure-Signature Variations Associated with Atmospheric Conditions. NASA TN D-4588, 1968.
- 12. Randall, D.G.: Methods for Estimating Distributions and Intensities of Sonic Bangs. A.R.C. Technical Report R&M No. 3113, 1959.

TABLE I Schedule of Solutions

Maneuver	Set no.	Run	no.	<u> </u>	Atmosphere Wind	Temperature	Initi	al Mac	n no.	Initial a	ltitude
		F-104	SCAT 15-F	No wind	variations LAS MAS HAS	variations LATI HATI SLR	1.25	1.3	2.0	40 000 ft (12.2 km)	25 000 ft (7.6 km)
Steady flight, $\phi = 0$ only	1	123456	7 8 9 10 11 12	X X	x x	x x	Ĭ	х		X V	
Steady flight, vary altitude of signa- ture. hg = 30K; 20K; 10K ft (9.1; 6.1; 3.0 km) \$\phi\$ = 0 only	2	13-15 16-18 19-21	22-24 25-27 28-30	x	x	x	X X	х		Ĭ	¥
Steady flight, vary Mach no. M = 1.3, 1.5. 2.0, 3.0 $\phi = 0$	3	31-34 35-38 39-42 43-46 63-67	47-50 51-54 55-58 59-62	X X	x	x x	Vario	8		×	
Steady flight, vary aircraft altitude. h = 25 000; 50 000; 80 000 ft (7.6; 15.3; 24.5 km) $\phi = 0$	4		76 A-77A-7 8 79-81 82-84 85-87 88-90	x	x x	x	Ĭ			Various	
Steady flight, tailwind $\phi = 0$	5	91 92 93 94-96	97 98 99 100-102	Repeat a	X X X bove group		ţ		x	Ĭ	
Steady flight, vary wind direction $\phi = 45$, 90, 135° $\phi = 0$	6		103-105 103B		x		x x			x x	
Steady flight, lateral range effects near cutoff	7	106 107 108 109 110-113	114 115 116 117 118-121	X X	X X	x	Ť		x	×	
Horizontal acceleration, n _T = 0.3 g's	8	122 .123 .124 .125 .126 .127 .128 .136-142	129 130 131 132 133 134 135 143-149	x	X X X	x x	X		x	X	
Dive-pull up, n _L = 1.5 g's	9	150 151 152 153 154 160-164	155 156 157 158 159 165-169	X X Repeat	X .	x x	X		x	X	
Climb-pushover, n _L ==0.5 g's	10	170 171 172 173 174 180-184	175 176 177 178 179 185-189	X X Repeat	x abowe group	x x	х		х	Ĭ	·
90° turn, n _L = 1.5 g's	'n	195 196 197 201-203	198 199 200 204-206	X X Repeat a	ibove group	x	х		x	X	
Low altitude, horizontal acceleration, n _T = 0.3 g's	, 12	207 208 209	210 211 212	X X		x	Ĭ				Ĭ
Horiz, acceleration, n _p = 0.15 g's	13	213 214 215	216 217 218	X X		x			Ĭ	Ĭ	
Dive-pullout ¹) Climb-pushover ²) 90° turn ¹)	14	219-221 222-224 225-227	228-230 231-233 234-236	Repeat a	bove group	4	Į. Į			Ĭ	
Flight test, acceleration Short period	15 16	237 - 240 241		x			Mach 1		1.51	37200 ft. 35000 ft.	

 $n_{L} = 3.0 \text{ g/s}$ $n_{L} = -0.25 \text{ g/s}$

				·····
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	an relieve	, e		
	kш	୷୰ଡ଼ଡ଼୰୰୳୷୰୰ଡ଼୰୳ ୷୰୷ୠ୷୰୷୰୷୰ ୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷୷	+®4000404404040040404 484490040484490040	457484 8894484
intersection y	t.	######################################	######################################	500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ϋ́	0	6	Ö
Ray-ground	££		0	o
4	8608	0	ユッジュッジュッジュッジュッジ ドラジップトドキキ アジジジンド・キャ ッグ・グィュュッグラップ・グラップ	\$0.0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
I. /I.	_ 1′ -A	ลดดดดดนนนนนน นุกษณะผู้กับกับกับ	ลอดลอดลอลลลลลลลลล น่าเกลาใจอนุการเกลา	ดเมนาณ ช่องร ⁺ ช่องช่า
ΔΩ	Apref			
ďζ	∆Pstd	0111111 111111 8000000000000000000000000	4003-444-0400000-4400 4003-444-0400000-4400	ид 4 й000 ил 2 иой
Peak over- pressure)	N/mS	4 2007 4 4 2009 4 4 2007 6 4 4 200 6 8 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ซื้อผู้หน้า ซู้นำ วี่ รู้ของ วี่ ชู จี่ วี่ ชู ชุ บริษัท รับ รู้	444004 2000004 2000000
∆p (Peak press	1b/ft2	o i iawua waanaakounagi unanaakounuon	$\frac{1}{100}$ $\frac{1}$	www. nawwana
Azimuth angle, ф	deg	0	0	0
Maneuver time	secs	o	О	0
Aircraft		F-104 SCAT 15-F	F-104	F-104
Run	1)	10 v≠ vv r∞ v2111	74774386487748888	エロアサガガ
Set		A ·	N	v

	Remarks	ng = 219ft(66m) {F-function at M = 2.7 M = 2.7 N = 2.7 N = 2.7 F-function at (F-function at M = 2.7 LATI,M=1.2 LATI,M=3.0 HATI,M=3.0 SLR,M=1.2 HATI,M=3.0 SLR,M=1.2
	ka	
intersection	1,1	SOLUTION OF THE TOTAL THE PROPERTY OF THE PROP
	5) o
Ray-ground	ţ;	°
-	8908	้า นานร่าง เพรารด พรารด พรารคด พรารคด พรารคด พรารคด พวนร่าง นานตาม พรารคด พรารคด พรารคด พรารต พัฒธ์ พัฒธ์ พรารคด จำพับสารคด พัฒธ์ พับพัฒธ์ พับพักษ์ พับพับพักษ์ พับพัทษ์ พับพัทษ์ พับพัทษ์ พันษ์ พันษ์ พับพักษ์ พันษ์ พันษ
į	Y _T ,T _T	ではららかけること は、 はっしょうさいはいい できょう はっしょう はっしょう はっしょう はっしょう はっしゃ でき できてい はっしょう はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん はっぱん
ďδ	Apref	- -
ď∇	Apstd	440444444 48849888484486884888488848888888
Peak over-	N/m2	नेतनवर्षे नेवन नेत्वन
ď	1.6/2	очч ч ччччииии и и и и и и и и и и и и и
Azimuth	1	0
Maneuver	Secs	0
A 1 wo was 6+		F-104 F-104
Run	number	たなから しゅうよう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ
Set	number	91

		T	(mo)	
	Remarks		hg=600ft(180m)	
		Ř	ੑੑਫ਼ਫ਼ਸ਼ਜ਼ੑਲ਼ਖ਼ੑਖ਼ਫ਼ਖ਼ਜ਼ਖ਼ਫ਼ਸ਼ਲ਼ਲ਼ੑਖ਼ਫ਼ਲ਼ਖ਼ਜ਼ਲ਼ਲ਼ਖ਼ਖ਼ਖ਼ਖ਼ਸ਼ਖ਼ਫ਼ਸ਼ਲ਼ਲ਼ ਜ਼ਲ਼ਜ਼ਜ਼ਜ਼ਫ਼	0000001100 004115004 0041150004
intersection	Ŋ	t.	### ##################################	0044444 0000 00000 00000 00000 00000 00000 0000
		Æ	٥	0
Ray-ground	×	r.	•	0
Ц	¢	8908	๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	トレのキュキトトの トユトルルルトユト ユ ルシのトレイルシ
,	ار بر	4	awaa waa aw aantii i i i i i i i i i i i i i i i i i i	ดดดพพพ น หน่ายของ พ
αV	315	ref	- × · · · · · · · · · · · · · · · · · ·	44.000 44.000
QΩ	1	-Fatd	4 4 44 4 44 4 4 4 4 4 6 6 6 6 6 6 6 6 6	444 9000449000 400000000
k over-	pressure)	N/m ²	11	ည်းသည် အဆုတ် တို့ အဆုတ် အဆုတ် တို့ သည် သို့ သို့ သို့ သို့ သို့ သို့ သို့ သို့
Ap (Peak	pre	1b/ft2	u u uu u u u uuuuuuuuuuuuuu gapurtuuguuugugupugugugugaganiroga gapurtuga	- ទទ <i>ុស្ស</i> ទំនួងខ្នួ
Lmuth	angle, ϕ	geb	.0	0
Maneuver	time	BecB	•	0
70	Aircraft		F-104	F-104 SCAT 15-F
Run	number		\$	999999999 4974-005-89
Set	number		4	rv

TABLE II. - SUMMARY OF SONIC BOOM RESULTS - continued

	Renerra		HAS, M=1.2, n=0 HAS, M=3.0 HAS, M=3.0	HAS,M≈1.2.1≈90 HAS,M≈3.0,1≈90		NO RAY-GROUND			i m	NO RAY-GROUND INTERSECTION
		Ē	88988 888	10104 10104 001040 000400	16.26 22.99 79.01	0 0	400 400 644 644	40.44 0.44 0.40	28.7 4.75 86.37	
oction		ţ;	200110 200110 2004 2004 2004 2004 2004 2	688 68998 69873 7773 15873 15873	0 20 20 20 20 20 20 20 20 20 20 20 20 20	68729 77784 119740	70850 87403 074703	24094 24576 28990	25401	-
und intersection		Ē	0	11 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 0 208.90	26.08 15.08	0.52 6.52 6.49	0 + ##. 69.14	4.50 9.50 1.50 1.50	
Ray-ground			ó	1.25600 1.25580 1.25580 2.9600 2.9600 2.9600	39999 685380	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14558 226840	0 16259 106010	
,	,	8908	キャマ ひとす いいいしょ の トレ のの レ	2022 2020 2000 2000 2000	68.9 97.4 1182.0	76.6 86.4 129.7	7811 1912 17211	47.7 50.8 274.8	11 14 14 14 14 14 14 14 14 14 14 14 14 1	
$_{1}^{L_{1}/L_{A}}$		4	44 884 88 555 88 586	HHHMA WWWWW WWWWW	004 604	000 000	22.2	wwa 5-98	2000 1000	
Δp	٥٧	16 79 1	1.00.1 0.00.1 0.00.1	1.99						
đ⊽	ν.	Fetd	4444 4 66666666666666666666666666666666	11 11 00000 8000 7	ည် <u>ဖွဲ့ဝဲ့</u> ထိုတိုက်	00. 200	1.07	977 44.7	44 2007	}
(Peak over-	2 7 7 2 2	N/mS	444 4444 8880 600 600 600 600 600 600 600 600 60	ಎಎಎಟ್ಟ ಬ್ರಸ್ತರ್ಗಳು ಬ್ರಸ್ತರ್ಯಯ	444 640	884 964	444 000	57.50 5.50 5.50	3 4 6 4 6 6 0 10 10	
∆p (Peal	2	1b/ft ²	44.000 H	പപ്പ് ഉള്ളൂർ സെന്റേ	2	8,50	<u> </u>	ጀጸብ	200°4	
Azimuth	- 1	deg	0	0	86.66 86.66	200 33.44	25.78	° 2,8	50 75 75 75 75 75 75 75 75 75 75 75 75 75)
Maneuver +1me	OTTO	Secs	.0	o	0					
A4 wo wo fet.	ATTOTA		SCAT 15-F	SCAT 15-F F-104	F-104					
Run	number		1001	0011100 00011 00001	106	107	109	110	111	112
Set	number		ın	vo	r	· · · · · · · · · · · · · · · · · · ·				93.

	Remarks					NO RAY-GROUND INTERSECTION				NO RAY-GROUND INTERSECTION			
		km	20.12 20.12	16.26 22.99 279.01	888 866 875 875		28.5 24.5 64.1	1600 1600 1600 1600	7.8.5 7.5.0	9	20.72	16.46 16.57 17.04	17.92 25.98 30.99
ection	7	19 C‡	22 22 25 25 25 25 25 25 25 25 25 25 25 2	0 7777 0 77071 0 7400 0 0	68729 77784 119740		70850 87407 105470	22092 32655 537780	25401	8	66-74 66-74 66-74 66-75 76-76 76-76 76-76	いいらい からい のうなの いっと いっと	58787 75728 101670
Ray-ground intersection		кж	4 5 24 6 24 6 24 6	12.19 208.90	15.08 0.08 0.08		0.01 0.04 0.04	12.19 283.64	06.		0 4 0 9 6 4 9 6 4 9 6 4 9 6 4 9 6 4 9 6 9 9 9 9	0	0
Ray-gro		rt	0 16266 89381	239999 685380	19952	•	212994 24405	939999 930610	16259	21000	0 16266 89381	0	0
	إ	8908	44 ป เของ อำณัฒ	68.9 1182.0	76.6 129.4		78.1 91.2 7.21	47.7 67.5 11111	## i	0.00	2 4 4 4 12 4 4 12 6 6 12 6 6 13 6 6 14 6 6 15 6 6 16 6 6 16 6 6 16 6 6 16 6 16	400 810	982.2 982.2 982.2
,	ין ∕די	•	גימים קטני אסני	11.9 9999	1111 2008		H P P P P P P P P P P P P P P P P P P P	111 713 700	44.) i	444 866 866	8.89 7.79	7.08 7.08 7.08
QΩ	9	rer			· · · · ·								
ďΣ	2	- std	11 100 200	360	ы 0000		111 909 1200	ณ ้า o	1.1 28.1	5	1.26		
(Peak over-	27000	N/m ²	4 4 4 4 6 4 6 70 6 70 6 70 6 70	25.74 29.34	2000 2000 2000 2000	-	101.0	\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	22.8		117.8	115.9 81.4 62.7	644 663 740
ď√		1b/ft2	9.00 r.	10	111		2.11 2.07 2.19	1.03 1.05 1.0	9.9. 3.5.	,	22.46 4.26 4.1	2.42 1.70 1.31	1.33
Azimuth	_	deg	20 51.41	o 44 86.66	20 44	``````````````````````````````````````	25.78	0 45 87.54	0 01		0 20 51.41	0	
Maneuver	aliro	secs	0		. —							owo	9300 0000
40			F-104	SCAT 15-F								F-104	
Run	number		511	11.	115	116	117	118	119	120	121	122	123
Set	number		7									ω	

	Remarks					·	halayaya a	<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•
		Æ	722. 722. 70.7. 6.7. 6.7. 6.8.	221.11 27.69	22.45 27.80 37.80 87	128.17 73.60 73.60	23.40 27.88 31.91	126.57					
ection	2	ť	9978 9978 9978 9978 9978	62454 69270 90843	60659 104560	59423 77429 104100	61249 78350 104700	0.00 0.00 0.00 0.00 0.00 0.00 0.00		· · · · · · · · · · · · · · · · · · ·			
Rey-ground intersection		Ē	0										
Ray-gro	\mathbb{H}		•										
	,,	8908	7-80 1-100 01-1-1-1	5.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	5.00 6.00 6.10	0000 0000 646	0000 0000 0000	\$000 \$100 \$15					
$^{\rm L_1/L_A}$,	987 087 748	4 0 0	997 7-50 7-7-80	9.9.9.9 9.9.9.9	900 0877 0877	444	uuu Kw a	444 284 284 284 284 284 284 284 284 284	다니니 없이클	444 884	ччч У <u>уч</u>
αV	Į.	-				·			<u></u> ,	· · · · · · · · · · · · · · · · · · ·	·		
α∇	Į	ir atd				wayina,	· · · · · · · · · · · · · · · · · · ·	<u>-</u> -					
(Peak over-	sseure)	N/m5	644 668 644	60.24 7.00	486 487 644	2000 0000 0004	884 44 6	288 202.1 154.7	157.0	168.1 120.7 119.2	157 1851 1850 187 187	444 444 644	444 1284 22.50 24.50
∆p (Pe	pre	1b/ft2	1.01	11 509 1009	1.28 1.09	444 800 804	44 800 480	04 v 099	2002 2002	2000 2004 1000	2000 864 77	พูตต นุญญั	2010 2010 2010
Azimuth		deg	0										
Maneuver	time	8008	986	9 W.D.	180 000	980 000	000 000	owo	935 000	11 WIU 000	000 000	180 000	0000 0000
	Aircraft		F-104					SCAT 15-F					
Run	number		124	125	126	127	128	129	130	131	132	133	134
Set	Set		ω										95

	Remarka					NO DATA	3, - 1, - 1, - 1, - 1, - 1, - 1, - 1, -					
	Ę		7-0-11 1-0-0-1	~ o c 당국 &	24.75	4 W 100 W4	25.64	25.79 25.79	25.05 25.06 40.06			
sction	, t		252 252 2655 260 260 24	229 200 200 24 200 200 200 1	2235 2345 81187 81187	14849	8625 8729 848 8484 874 874	24047 62242 84614	8623 873 8487 870 0			
ind intersection	Ę	o										
Ray-ground	+	o										
4	2 0 0		##! ### ### ###	44 rv rv 0 ri 84 vi	407 200 2004	72.5	700 1700 1700 1000	466 466 466	407 200 200			
4	Α'', L''	1111 784	2000 2003	2000 2000 2000 2000 2000 2000 2000 200	₩.₩. ₩.₩.₩.	74.86 1.5	<i>ພ</i> ພ≄ ທີ່ສີ່ມີ	ww.≠ w.e.i w.c.o	るです でです	rigit.	444 848	1.52
Δb	Apref		······································								ole standard	
ďζ	Apstd											<u></u>
(Peak over-	N/H 2	163.3 121.6 119.7	744 044 044	444 666	044 046	6.9 6.7	1100 7-00 000	# 02.02 8 6.04 8 6.04	04 to	224 242 243 243 240	123.1	128 128 128 8
∆p (Pes	14/6+2	2000 1400	888	<u> စုံစုဲစုံ</u> အဆဆ	11. 00.11 00.05	1.00	111 000 000	1.002	.11 90.10 10.02	9.9.9 6.68	999 7509	99.9 99.99
Azimuth	de de de	0										
Maneuver	D C C	58.8	υ ‡⁄0	O40	၁၀၀င္က	988	၁၀၀င	ပစ္တစ္က	၁၀၀င္က	0 40	040	20 30
40 000 000		SCAT 15-F	F-104							SCAT 15-F		
Run	number	135	136	137	138	139	140	141	142	143	†#T	145
Set	number	ω					-,:					

TABLE II.-SUMMARY OF SONIC BOOM RESULTS - continued

		-											
	Remarks						7 1 1 1 7 7 4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u></u>		opensje i saisaanse ge	······································	
	l	Æ					ยยน ผลาน ดามเบ	12.64	18.91 18.08 1.868	18.81 17.64 83.30	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
intersection	χ	1.7 8.8					43318 60068 80598	41465 57783 77774	42358 59317 71716	42028 57864 76439	4734 60606 80506 80509		
		Ē	0								·		
Ray-ground	×	t.t	0										
	٢	Secs					800 0 00 0 00 0 00 0 00	800 000 000 000	62.0 76.4 87.5	0000 0000 0000	000 000 000 000 000 000 000 000 000 00		
L ₁ /L _A			111 87.00 80	1111 8.778 9.60	444 869	444 860	2000 2000 7-000	600 600 600 600 600	აი.ი გეგე	აფფ 0.899 0.899	2000 2000 2000	444 664 684	
αV	90	rer							1.				
αγ	8	Ir std					2.8.8.8 8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	278 278 573 875	85. 77.	1 0 20 10 10 10 10 10 10 10 10 10 10 10 10 10	0.00.00 7.00.00 7.00.00	വയ്യ വൃദ്ധ	
(Peak over-	ssare)	N/m ²	1111 222 240 240	1255 1739 1739 1739	1227 1327 134.16	122 222 226 106	89.49 80.49	200 200 200	ക്ഷ് ക്ഷ്	88.69 8.60 6.60	ക്ല ക്യൂര് ഫര്മ	88.7 76.6 63.7	
₫	_	lb/ft2	ดดด 4.เบ้อ 2.5-น	944 945	2.00 18.77 18.41	000 000 000	565	866	5:07	858	888	444 206	
Azimuth		geb	0								·.		
Maneuver	TTM9	8908	000	ဝဂ္ဂဇ္ဂ	ဝ၀ွင္က	၁၀၈	୦୭୯	092	0+0	092	092	1260	
	Aircrart		SCAT 15-F				#-10#					SCAT 15-F	
Run	number		146	242	148	149	150	151	152	153	154	155	
Set	number		ω				o						
		1											97

	Remarks				•		M=2, y=10deg y= -4.16deg y= -0.28deg						
		Æ					13.04	125.4 18.594 20.20	111.022	128.73 18.93 18.65	13.04 18.79		
	Ä	£					15752 42793 61644	14451 41156 59725	100554 36254 5424 548	15526 42453 61199	15736 42777 61633		
und intersection		Ē	0										
Ray-ground	×	ft	o										
	۲3	secs					4 80.0 1 81.1 7.4 7.	400 1001 1040	41.00 62.7	4 7.00 4 6.41 0.80	4 0.00 4 0.4 6 0.06		
	L ₁ /LA		1111	1.57	1.52 1.42	1.52	33.4 33.788 32.88	3.38 3.38	4 ww 97.8	4 ww 00.00 00.00	4 k k 9 k k 9 k k	1.80	1.79 1.57
4	Ap ra f	Tar					1.17	1.12	1.03				
Ę	∆p a+d	200	.96 .84 .735	.835 .67 .565	898.5 12.12.12	283.5				·			
(Peak over-	۵L	N/mc	88.7.88 68.60 7.7.7.7	78.0 62.2 52.7	91.9 67.79	89.1 78.0 65.1	527.0 52.10 51.00	53.0 53.1 50.8 8	0.44 0.00 0.00 0.00				
Δp (Pes	pre	lb/ft	1.87	11.63	1.92	411	11.1 91.7	41.19 61.19 10.06	1.0.1	11.1 22.1	1.18	2.76	22.70
15	angle, ø	deg	0										
Maneuver	time	secs	1260	C40	500	098	35 20 20 20 20	025	0250	0 20 20	0 12 20	0220 2020	15 20 20
1.	Aircraft		SCAT 15-F				F-104		-		<u> </u>	SCAT 15-F	
Run	number		156	157	158	159	160	191	162	163	164	165	166
Set	number		σ					<u>, , , , , , , , , , , , , , , , , , , </u>					

TABLE II .- SUMMARY OF SONIC BOOM RESULTS - continued

_		-		,			·		 		
	Remarks					Level Flight				100 mg 000 000 000 000 000 000 000 000 00	7 = 10 deg 7 = 7 × = 7 × = 7
		Ě				000 W 800 W 900 U			11.97	0.000000000000000000000000000000000000	11. 12. 12. 12. 12. 12.
intersection	y	rt			and the state of t	76581 78575 105300			39284	2404440 44604640 44609844 64609846 64609846	30434 3077024 307770
		Ř		olympia, gamaia	<u>. :</u>	11.21	:			2001 2001 2001 4460 2001 4460	· · · · · · · · · · · · · · · · · · ·
Ray-ground	×	4.	-	•		9291.3 36776.0				128439.0 275757.0 53904.0 128200.0 27117.0	
	د	Secs				83.4 113.9			54.0	2000 10000 2004 100-44 1000 00 100	സസസ ധയസ യ ് ര
	, 7, 7,	4	911 975 903	40.00 7000 7000	911 98.1 1.57	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	പപപ കയർ ചയർ			ลลลลล ผู้นุ้นพูดต่อ	0 0 W 100 W 10 W W
ţ	1	ref	1.02	11.1 11.1 17.0 17.0	011 981	······································	7510100	9.60 9.60	000000 000000	1444800000 1445000000000000000000000000000000	นน อนุ่อ พรค
4		Lr std		<i></i>		· · · · · · · · · · · · · · · · · · ·					
(Peak over-	ssure)	N/mg	125.0	13.00 13.00 14.00	888 83.68 8.48	ക്കു ക്യൂ ഇ	9,90 8,40 9,10	134.5	2012 2018 2018 2016	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1301 1000 143 153
∆p (Pe	pre	1b/ft2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.0.0	0.0.0 0.0.0 4.00 4.00	85%	111 999 400	2.81	ู่ ผู้ผู้เกิด ผู้น่อง	111111 12000 10000	90 719 800
	angle, ϕ	deg	Ö			000	0 1 K	ဝကို	కం సౌకర్గం	HV LVI LONONONON	0
Maneuver	time	8908	0 K O	840	C218	ooo	νον	0	4 V	യയയയയയ	O.700
1	Aircraft		SCAT 15-F			F-104	SCAT 15-F	F-104			· · · · · · · · · · · · · · · · · · ·
Run	number		167	168	169	170	175	180			181
Set	number		:O		() 3	· · · · · · · · · · · · · · · · · · ·				99

	Remarks		γ = 1.47 deg			7 = 10 deg	γ = 4.32 deg	y = 1,47 deg		,	, , , , , , , , , , , , , , , , , , , 				
	l	Ę	10.06	11.33 11.61 12.51	111.65										
ection	1	r.	33002 34766	37180 38105 41045	38225 38731 41489										
und intersection		Ę	0												
Ray-ground	1	ft	0												
	,	Becs	54.8 55.8	ល្លល្លស ឯលល	ເນເນເນ ເນເນເນ ເນເລ ເນ										•
*	L1/17	:	3.07	0 0 W 0 0 W 1 0 0 W	ดดเพ เขียง สาม				1. 2. 2. 2. 2. 3.	 	144c	1111 5373	1.1 950 980	1111 1537 137	1.53
ďγ	ΔΔ	rei	5.05	99.00 99.00	6.00 6.00 7.000	1.46	100	100 100	 		1000	# #000 # #000	2.38 0.945	1.00	1.59 1.09 0.975
ďζ	- α∇	- 8tg													
(Peak over-	Dingg	N/mg	227.0	108 7.03 7.03 7.03	147.0 103.4 43.1	243.7	126.0	111. 20.4 00.4	000 000 000	118 188 198 198 198 198 198 198 198 198	100	1284:1	280.6	138.9	187.7 127.8 114.9
∆p (Pea	2	1b/ft2	4.74 98.	22.1 1.99 7.99	2.07 2.16 90	ار بر وي وي	2.2 66.6	ที่ อาน อาน	100 14 14 16 16	01.00 4.00 7.40	ימימי יאייי יאייי	ับ เบื่อรู้	5.86 2.32	000 044 000 000	₩αα 9⁄0'4 αΓ-0
Azimuth		deg	0	0	0	oដីដែ	yςΩ	Хоñ	J S z	5±0	1 1 2 2 5 4 2 2 5 4	. 0		0	<u>o</u> ,
Maneuver +1me	OTHE	secs	ဖထ	040	C.≠.®	0	4	9	.0	٥٥٥	ဝထထထ) O≠∞	~ 98	0#8	O≄:®
+402024			F-104			SCAT 15-F		•							
Run	number		182	183	184	185	 					186	187	188	189
Set	number		10												

				······································	, <u>, , , , , , , , , , , , , , , , , , </u>				 	, , , , , , , , , , , , , , , , , , ,
кешагка							*			
ĸ	27.7.00 0.1.4.0 0.00	0 0 0 0 0 0	85.0 80.0 80.0	97.8 200 7.00	6.73 9.73 2.73	500 500 500 500	014 867 480	1100 1100 2100 2010 2010	7777 7778 77879 00000 4	
ft	888 888 988 1188 1198 1198 1198 1198 11	22243 32381	21851 26129 31200	888 888 888 888 888	22146 26719 31980	24191 279797 179797 179693	4.0020 4.0020 4.0000	11 1 4000 4000 6000 8000 8000 8000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	-14/1 0.00 tv k	<u> </u>					22.12 20.10 20.00 20.00	1888 1888 1888 1889	ชลชน อเซเซล เนเนชน เนเชเชน เนเชเชน	
	0.0440 0.0440 0.0440 0.0400 0.0400	6				······	70714 69211 68729	70000 70700 70700 70700 70700 70700	85618 85682 759822 1159	
8908	ษผน นุต±น ฒณ์ดั	%¥% ••••	24.58 44.00	พพพ พพพ พพพ	24 K	345 345 345 645	74.8	81.01.1 07.01.1 07.6.0	20014 64666 52016	
Ψ, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111 1110	144 204	444 464 500	111 122 201	1111 1104 200	444 404 800	989 189	2226	00000 72777	
Apref	4444 4999	- - - - - - - - - - - - - - - - - - -	444 848	444 944 970	111 1201 1207	ч ч 8824 8				
Apstd						,	84.4 262 27-22	11. 22.42. 22.42.	4 444 25000 300004	
N/m2	2011 2014 4017 000	7.5. 7.6. 7.6. 7.6.	153.7	171.9 169.0 171.4	155.6 184.0 8.0 184.0	162.3 61.8 175.2	22 655.7 9	244 2867 7700	700004 700000 70007 7	
1b/ft2	22.00 23.00 28.00	หมม อูเกล	22.5 122.5	www www www	2000 2000 2000 2000 2000	ичи 8999	6.75 1.00 1.00	86.00	ч чч 800000	
de	01.2	, ,	Ó	0	0	.0	5 rv	มี เมื่องจ	၁က္က၁၀၀	
Secs	0	≠ ∞	040	O=τ ω	o≠∞	040	o	0020	00000	
	SCAT 15-F						F-104			
numper	190B		191	192	193	194	195A	195	196	· · · · · · · · · · · · · · ·
number	10			-1	· · · · · · · · · · · · · · · · · · ·		A			101
	number secs deg 1b/ft2 N/m2 Apstd Apref 1/A secs ft km ft km	number first secs deg lb/ft2 N/m2 Apstd Abref 1/A secs ft km ft km 190B SCAT 15-F 0 0 3.22 154.2 1.29 1.12 31.8 0 0 0 22911 6.98 7.10 2.0 3.07 147.0 1.29 1.07 34.6 18497 7.10 2.7178 8.28	190B SCAT 15-F 0 0 3.22 154.2 1.29 1.15 31.8 0 0 22911 6.98 7.10 1.29 1.17 1.09 34.4 32.39 1.31 1.29 34.4 32.39	190B SCAT 15-F O O 3.22 154.2 1.31 1.15 31.8 5.76 22911 6.98 7.10 5.27 1.27 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27 1.00 3.18 1.27	190B SCAT 15-F O O 3.22 154.2 1.23 1.15 31.8 1.493 2.4589 7.49 7.49 1.25 1.25 1.15 31.8 1.493 3.70 3.291 5.96 3.291 5.96 3.291 5.96 3.291 5.96 3.291	190B SCAT 15-F O	190B SCAT 15-F O	1908 80AT 15-77 0 100 100 100 100 100 100 100 100 100	1908 SCAT 15-F Co. Co.	# 1

	Remarks						ف مود شده به پایده و پر پاید	ya da aya da aya aya aya aya aya aya aya
	Ę	4 0,04 0,000 0,000 0,000 0,000 1,000					2002174 600174 600474 6006640	20000014 30000014 818488
intersection w	7 +	11 8508 1008 1008 1008 1008 1008 1008 10	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85,647 66,047 66,047 64,46,46 64,46,46 64,46,46 64,46,46 64,46,46 64,46
	Į.	22 22 22 22 22 22 22 22 22 22 22 22 22					2,000,000 2,000,000 2,000,000 2,000,000 2,000,000	000000 600000 600000000000000000000000
Ray-ground	;	00000000000000000000000000000000000000					00044880 000408000 000080000 0000800000000	00000000000000000000000000000000000000
	2000	488444 00100					100000000 0000000000000000000000000000	# \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Į,	A ⁻¹ /1 ⁻⁴	0,0,0,0,0 5,0,0,5,5 2,4,0,0,5,5	1111 2224 244	4444 4800	4444 90000	44444 44644	พพพพพพพ ล่ล่าค่อต่อล่ ล้นค่อต่อล่	<i>とうそろうと</i> サルルのストル・カルトのストル
Δp	Apref						44496244 4486244	uuuuuuu Kuuowak uuouwak
Δp	Apstd	1 11 25.5544	1.18	45.11 1188 1188	1.25	1 16 1 16 1 16 1 16		
Peak over-	N/ES		724.9	68.9 110.1 110.1	118.7 65.1 116.2	108 108 108 208 208	พพพล ๑๑๒๓ ข้อน่อตั้งข้	พพพ±ดดพ ๑๑พพ๚ษพ อ๋อ๋ดที่จ๋นจ๋
∆p (Peak	14/4+2	<i>ბ</i> .რ.‡.ბ.ბ. ბ.რ.ი.ბ.ბ	15.25 25.14 25.30	1. %% 4.0%%	0100 454. 764.	21100 22009 24009	ממין ממים ציטין 20 מיט	111 111 22122243 22122243
Azimuth		011,000	500	11 15000	0 0 0 0	011700	c 0 21 5 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 474
Maneuver	a Ces	00000	C	∴°299	0002	00029	C2222399	°888888°
14 50 50 50		F~104	SCAT 15-F				F-104	
Run	number	197	198A	198	199	200	201	202
Set	number	7						

		<u> </u>						
	Remarks							
	Ž	ህር ህር ተ መመስመው ዕመቱ መቱ ነፃ					ರ <u>ಇಗಳ</u> ಳ್ಳು ಬೆಂಬ್ಲ್ ಕ್ಕಳ ಗೆ ಇಂಬ್ಲ್ ಕ್ಕಳ	
intersection	1	1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					00000000000000000000000000000000000000	
	Ę	<i>ะะงะง</i> ด็ ลูข่อข่อข่ ลูข่อข่อข่					ลเบ ผ± เมษา ต่อ o เกือ o ±	
Ray-ground	e F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, , , , , , , , , , , , , , , , , , , ,	•	77666.4 17582 7222 15897	
#	8808	44 W4 W8 884 W48 408884					ഗപ്പുക്കു ഉപയോഗ യെ ഉപഗ്ഗ	
ţ.	Ψη / Ι _π	พพพพพพ สำนักกระ พักษา	1:1	44444 68664	4444444 449864		4448066 54006	
ď∇	Apref	44444	1.1 51.1	ч ччч 08000ч игоии	444 444 4408444 88875998	ייי יייי הסינעמה הסינעמה		
ď∇	Apstd							
(Peak over-	N/m²	0 m 4 0 0 0 0 m 6 m 4 0 0 m 0 m 0 m 0	133.6	40444 40044 40066 40066	הקקים מקור האטים מפידה קיבים מיפידה	144444 600444 64666	000000 00000 00000 00000 00000	
ď∇	1 P	ייי יייי מייטיייי הפשגוני	2.0	00000 104900 104400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	aaavva &`aa'o'o'& &aavar	0001111 0000000 0000010	
Azimuth angle, d	deg	္က ကိုယ္ခ်က္မွာ	.00	มีชีมชื่อ	00 27 20	ดูเมื่อเมื่อ ดู	٠ ٢٠٠ ٠ ٢٠٠ ٥ ٣٥٥ ٣٥٥	
Maneuver	secs	000000	0 04	20000	022220000	000000	000000	
Aircraft		F-104	SCAT 15-F				F-104	
Run	recumu	203	204		205	506	207	
Set	namper	Ħ					12	
								103

			 					
	Remarks							
		km	004244 004244 002004	44444 004444 000444 46000004	a tanan ya ta in in anan		*	48444 80544 80044 80044
sction	>	r, t	00000 000 000 000 000 000 000 000 000	00000000000000000000000000000000000000			· · · · · · · · · · · · · · · · · · ·	######################################
und intersection		щy	ี พูพ แล 0พุธ (เพ	מים אר מים אף מים אף				4 væ 00.00. 01.00.
Ray-ground	×	ţ.	7736 17510 17510 17510 15861	04 040 04 040 04 041 04 041 04 041				0 13739 11841 26302
	1	8608	0448800 046800 0	2000000 2000000 200045				৮ ເມເນດ ທຸດ ເວດດ ເນື້ອ ວ່າວ່າສັ
	1, 7, 1	4	00000000000000000000000000000000000000	000000 44005W 70000W	dddddd ggggg O±0000	444444 444444 640880	HHHHHH WWWWW	ののひから たたさせの のキキキレ
4	9	Prof						
\$	3 5	or etd						
rk over-	8	N/m2	2111 8011 8011 8010 6011 7011 8011 8011 8011 8011 8011 8011 8	0000000 0000000 0000000 0000000	004886 004886 0098648 508648	888888 8448888 844848 644848	44 44444 99 99 98 7 44 4 90 7 0	& C-4-4-4 & W.O.O.U. & W.W.O.O.U
∆p (Peak	pre	19/ft	000444 6004 6004 70000	4400000	キキキ シック な よっか かいけ	キキキシシシ ドキののトで でもかって	4444 <i>uu</i> 000000 000000	44 40000 40000
Azimuth	angle, ϕ	deg	ານ ດະນິວດະນິວ	o เมือง เมื่อ o เมือง เมื่อ		11 11 0 1100 110	11 11 CNO ONO	် ဝည်ဝည်ပို
Maneuver	time	Secs	000000	000000	000000	000000	000000	44500 44000
	Aircraft		F-104		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Rim	number		208	209	210	211	212	213
Ω. + αΩ.	number		21			, i, j, j, j, , , , , , , , , , , , , , 	- Marine - American -	n,

		1				, · · · · · · · · · · · · · · · · ·		
ĺ	Remarks						•	γ = -20 deg γ = -7.54 deg γ = 0
	mar!	KIII	agaga あるるよ のすが のすが のい	80000004 0000440 00004400			•	8 0 0 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
otton	1	7.T	6000 6000 6000 6000 6000 6000 6000 600	2007 244 244 244 244 244 244 244 244 244 24				2008 2008 2008 2009 2009 2009 2009 2009
ind intersection	1	Ę	4 k/8 4 60 6 044	wo wr oo ivo ow ro ii ii				<i>ดพ</i> พ๋๋÷ ๐๛๎ ≻ ๐๐
Ray-ground	١	7. T	13701 13701 11830 26869	2500 2750 2761 25618 25618				8466.3 17936.0
+	,	8908	25.000 20.000 20.000	5-488000 -488000 -44940		To a susuapen per		44 (000 6-000 6-11-000 7-11-000
*	1, WA		00000 04440	るるるできる でする ではのちょう	44444 84548	44444 24540	HHHHHH MMMFWO MMMFWO	<i>⊌⊌⊌⊎⊌</i> むど∔らど でかだ+ひ
ďΣ	Δpref							
ď∇	Δpato	2						444 80.086. 80.0444
Peak over-	/2 mgg	E/N	77.444 48.000 8.04.07	0,000 0,000 0,000 0,00 0,00 0,00 0,00	4000 4000 4000 4000 4000 4000 4000 400	1123 123 123 123 123 123 123 123 123 123	11000 1200 1200 1200 1200 1200	44 WWG G110WW GG100
Ap (Peak	- 15	TP/II	11 040000	4444 426488	<i>พพดดด</i> พ.ศ.พ.ศ. พ.ศ.พ.ศ.	W+ W W W W W W W W W W W W W W W W W W	พพพตตต 0040พ ต่อ	<u>త్రభాత్రంలో</u>
Azimuth	•	aeg	1 11 0 11 0 11 0 0 11 0 11 0	11 11 0 20 20 20	1 11 0 20 20	1 11 02020	11 11 000000	1.1 o rooo
Maneuver	Diff	Secs	44500 44000	uuunn	라라라 라라라	HHHH	uuu uuu uuu uu	0 0 0 1 00
4402024			F-104					F-104
Run	number		214	215	216	217	218	219
Set	number		13				A second second	त्त <u>.</u>
		•				······································		105

<u> </u>		Т		v: - wi-a-co-y-latery-t-po			,		
	Remarks				γ = 10 deg γ = 2.91 deg				
		Km	のののでは ないないで ないまない	8 2 2 4 4 8 8 2 4 4 6 8 4 9 4 6	นนนนน นนนสสส คู่ดูชนุดีผู้ ผู้ชนุกอีส	144444 1460646 186646	HHHHAA HHHHAA MBWOOW	0 8 8 0 0 8 8 0 0 8 8 0	-15.08
ection	ı	£¢	4 # W P P P P P P P P P P P P P P P P P P	80000 80000 60000 60000 64000 64000	24 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	WWWWY 4 H4 WWW 4 H4 WWW	WWW## 000 004 004 004 004 004	2704 - 12955	88±6±-
und intersection		Ę	<i>ง</i> เข ๐ฒิกั๋ ๐ ๐	งเข อเซ็น อเซ็น	144.0 67.00 05.00	ดก ดก เรื่อง กู้เมื่ ๐๓๓๐ ±น	นุตุลเข อนุนุขอ _อ	22.05 21.05 71.00 17.00 17.00	36.50
Ray-ground	×	t) H	84 179 179 179 00	8288.6 17470 0	4 04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1991 1991 1982 17432 17432	4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	68729 68901 77784	119740
,		8908	14,000 50,000 545,00	キキ (UA) ケ ケシ (UA) か ひがいる ひがいる	ພພພພພພພ ພພະ ພະພະ ພະພະ ພະພະ	กพพพพพพ พ≠ฉพิดข พ่ณณ่น่าน่ั่	ພບບບບພບ ບຸນຈຸດໝຸບ ຈຸດພວດຈ	\$444 \$444 \$444	129.7
	1,714 1,14		とろうさん かでするで あるでする	<i>พพพพ</i> ต ชั่ <i>เ</i> ∓๋๋๋๋๋๋๋๋๋ ชัชขัญชั	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	๚๚๚๚๚ ๗๕๚ฃ๛๎ ๗๛๚๗๚	ดดดดดด เก๋เก๋รฺรฺษ์ขั ผดขั้นโรด	ሥሥሥሳ ቴሮፊዊ	2.87
δ	^D. 00	101			444444 666669 666669	444444 666466 646666	44444 666666 6666666		,
Δρ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20.00	ччч 8000 804 120	444 44686				424 98%5	. 378
k over-	bressure)	N/mz	400000 00000 00000	キャキッと キャーでで いっとうり	ထင်္ကာတ်တွင် ထင်္ကာတို့တို့ ကိုကိုက်ဝဝိယ	828440 888440 riorivivi	77777 774789 7797	27.38 27.80 27.80	14.8
Ap (Peak	2.70	1b/ft	®®® <u>`</u> &	ooorii aurut	44466g	404444 40454	นนนนนน ผู้ผู้ผู้ผู้ผู้ผู้	444 87867	ړ.
Azimuth	:	deg	, ' ' où500	011000	ಂಬರಬರಂ	25000	0 1111 0 2020 0 2020	onno N	-33.44
Maneuver	o True	secs	000#0	000+00	00000	οοοωο	00000 ₀	0000	o
1000000			F-104		3				
Run	number		220	221	222	223	\$25#	225	225A
Set	number		‡t						

TABLE II-SUMMARY OF SONIC BOOM RESULTS - continued

		1		,	, , , , , , , , , , , , , , , , , , , 				· · · · · · · · · · · · · · · · · ·	
1	Kenerks							•		
	1,5	0	6.09	2.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2				•		
ection	٤		-19970	-18824 -53507 -74583						
und intersection	13	20.17	22.92	0.000 0.000 0.000 0.000 0.000						
Ray-ground	1	66180	75202	64404 71048 110990 144630						
12		76.5	86. ¹							
1. 7.	Α'.'.'.'.'.	3.40	2.99	2000 2000 2000 2000 2000 2000 2000 200	00044 60066 60046	889999 889999	000014 600066	444444 444444 446444	444444 844488 406408	1.21 1.20 1.19
ď∇	^pref							444440 888889	444000 99999999	0.975 0.975 0.975
ď∇	Apstd	1,82	8	1.67	စုတ်တွင် စက်တိုက်ဝ ကည	800.00 7.7.10 7.10	1.02. 1.02. 6.03. 6.05.			
(Peak over- pressure)	N /22	1	31.6	0044 4000 4000	20085 4000 1000	00000 0000 0000 0000 0000	000000 004000 00000 00000	0000015 0000015	1111111 0001000 0017.04	4.4.1 1.4.1 1.4.1
Ap (Pes	240/21	1.49	19	H WOWY WOWY	4444 9884 98080	יייייי טממיייי ימיייי	44444 62864 62864	លល់ល់ល់ល ជំមាំជាម៉ាស់លំ	ทดดดดด ซีซีซีซีซีซีซี อันซีซีซีซีซี	N N N
Azimuth angle, d	100	50 C	2,50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o ကိုင်ပဝ ဝ	ဝက်ပိုဝဝ	ဝက်ဝဝဝ	9440 010000	000000	ဝဏဋ
Maneuver		200	0	0000	000±0	೦೦೦ ಸಹ	00040	00000	000000	000
Aircraft		#OL-6	· !		SCAT 15-F			<u></u>		
Run	number	900		227	228	529	23	231	232	233
Set	number	4.	i							107
Set	nampe	4,	i 					anarar (†) Kapanger († 1980)	 	· · · · · · · · · · · · · · · · · · ·

		_							
	Remarks								
		Ę					24.38 24.80 25.53	36.00 36.00 80 80 80	0.1111 0.61111 0.000 0.000 0.000 0.000
intersection		££		·	-4	·	79993 81380 83744	80256 99074 120750	V4 V4 V4 V4 V4 V4 V4 V4 V6 V6 V6 V6 V6 V6 V6 V6 V6 V6 V6 V6 V6
		Ē		····	— <u>incil</u>		<u> </u>		-7.53 -7.53 -7.53 -7.53
Ray-ground	×	ft							-24702 -24702 -24702 -24702
	4	Seca					127 128.5 130.4	148.0 156.7 178.9	ే బ్రామ్ బ్రామ్ దే లు లో లో లే ఇ ట్లా లో లో లో
	L1/LA		111 111 111 111	19895	1.31	4444 80,000	22.2	25.22	aaaaa 641464 641466
ź	Apre f	707	922						
αŞ	Apstd			- 01- 02-40	1.71	1.57			
(Peak over-	ωL	N/m Z		148.0 264.2 115.9	160.0	146 66.63 32.6	108 78.5 68.9	57.57	たのす w ため いっぴょう あん ぱすめん
Δp (Pes	pre	Jb/ffc	000 844	6,0,0,1 6,0,4,0,0 7,0,4,0,0	3.34 1.46	24. 28. 20.	2.57	21.1 24.1 27.1	11 2,4,6,4,4,0,6,4,4,6,6,6,6,6,6,6,6,6,6,6,6
15	angle, ¢	deg	20 0	owwo	-20	07-1-50 07-1-40 14.24-1-40			, %0%0%
Maneuver	таше	secs	000	0000	00	0000	SWS	80 100 120	00 . i.i. wwoo
1 .	Aircraft		F-104				· · · · · · · · · · · · · · · · · · ·		
Run	number		233	23.4 4.0	235	236	237E	237F	A1.42
Set	number		47			·	15		9

TABLE III

Overpressures in Standard, No Wind Atmosphere

Mach No.	F-1		SCAT 15-F
	lb/ft ²	N/m^2	lb/ft ² N/m ²
1.20	0.84	40.1	
1.25	0.82	39.2	1.95 93.1
1.3	0.82	39.2	1.96 93.6
1.5	0.86	41.1	2.10 100.3
2.0	0.94	44.9	2.46 117.4
3.0	1.06	50.6	2.74 130.9
3.0	~	-	2.92 ¹) 142.8

 $[\]frac{1}{1}$ F-function for M = 2.7

TABLE IV

Temperature Effects on Overpressure Ratio

Atmosphere									
Designation	Mach No.	·	Δp/(Δp SNW)					
		Cal	culated	From ref. 2 - fig. 8					
		F-104	SCAT 15-F						
SLR (A-3)	1.20	1.28		1.26					
	1.25	1.09	1.08	1.09					
	1.3	1.06	1.05	1.04					
	1.5	1.01	1.01	1.01					
	2.0	1.00	1.00	1.00					
	3.0	0.99	0.99	0.99					
	3.0		1.05 ¹)						
LATI (B-4)	1.20	0.91		0.90					
	1.25	0.975	0.95	0.96					
	3.0	1.02		1.01					
HATI (D-3)	1.20	0.95		0.915					
	1.25	1.02	1.00	0.95					
	3.0	1.04	,000 July 300	1.03					

 $¹⁾_{F-function for M = 2.7}$

TABLE V Wind Effects on Overpressure Ratio

Wind Designation	Mach No.		Δp/(Δp _{std})(no wind)
		<u>Calc</u> F-104	culated SCAT 15-F	From ref. 2 - fig. 12
Headwind, LAS	1.25	1.06	1.08	
MAS	1.25	1.02	1.03	
HAS	1.25	Beyond	cutoff and	A = 0
	1.3	2.27	2.36	1.16
	1.5	0.98	0.98	1.015
	2.0	0.96	0.96	0.985
	3.0	0.96	0.96	0.98
Tailwind, LAS	1.25	0.94	0.95	0.95
	2.0	1.01	1.01	1.00
MAS	1.25	0.98	0.98	0.97
	2.0	1.01	1.01	1.00
HAS	1.20	0.91		
	1.25	0.98	0.97	
	2.0	1.04	1.04	1.025
	3.0	1.03		1.035
Sidewind, HAS	1.20	0.97		0.95
	1.5	1.00		1.00
	3.0	1.00		1.025

TABLE VI
Wind Direction Effects on Overpressure

φ (deg)	η = 0	45 ⁰	90 ⁰	135°	180°
0	2.01	1.99	1.95	1.92	1.91
10		1.97	1.93	1.90	
20		1.90	1.86	1.82	
30		1.76	1.73	1.67	
-10		1.96	1.92	1.89	
-20		1.86	1.83	1.81	
-27.8		1.70			
-30			1.64	1.66	
			· ·		
0		1.9902			
2		1.9904			
4		1.9886			
6		1.9847			
8		1.9789			
-2		1.9880			
-4		1.9837			
-6		1.9773	,		
-8		1.9687			

Note: Values in the table are overpressures (psf) for given ϕ and η .

TABLE VII Effects of $\dot{\gamma}$ and Atmosphere on Overpressure

				Uniform Ati	Atmosphere		1962 U.S. Standard	ard Atmosphere
				= 40 000 ft (12.2 km)	.		h=37 200 ft (11.3 km)	40 000 ft (12.2 km)
			.d	0			hg= 2 200 ft (670 m)	0
aneuver point	γ, deg	ຳ,deg/sec	Δp psf(N/m ²)	$K_{A}\Delta p$ psf(N/m ²)	$ ext{K}_{A}^{1} \Delta p$ $ ext{psf}(ext{N/m}^{2})$	KA^D psf(N/m²)	Δp psf(N/m ²)	Δp psf(N/m ²)
н. Н	0	-0.634	0.478 (22.8)	1,24 (59,4)	1.503 (71.9)	1.545 (73.9)	1,503	1,545
2.1	-0.1425	0	0.343	0.89 (42.5)	1.078 (51.5)	1.110 (53.0)	0.959 (45.8)	0.859 (41.0)
 	0	+0.634	0.386	1,00 (47.9)	1,212 (58.0)	1,248 (59.6)	0.838 (40.0)	0,851 (40,6)
t.1	+0.1425	0	0.341 (16.3)	0.86 (41.0)	1.07	1.103 (52.7)	0.954 (45.5)	0.854 (40.7)