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The effects of the axial load variations on the seismic response of bridges isolated with
friction pendulum systems (FPS) are investigated. A series of parametric time history
non-linear analyses are performed for different bridge configurations, defined after an
extensive investigation on typical existing cases. The influence of both horizontal and
vertical components of the ground motion is considered. The behaviour of the pier-
isolator-deck system is predicted using two analytical models characterised by hysteretic
loops sensitive or insensitive to axial force variations, in order to compare the different
responses. Level of axial force, maximum displacements and induced bending moment are
investigated, as well as shear and torsion demand, caused by different shear actions acting
on the isolator devices. A comparison between demand and resistance capacity of the
bridge piers is performed, in order to investigate possible non-conservative approaches
in the current design methods and to raise controversial issues on the subject.
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1. Foreword

The importance of the vertical seismic input in the structural response of bridges

has been investigated by various authors [Ambraseys and Douglas, 2000; Ghobarah

and Elnashai, 1998; Elnashai and Papazoglou, 1997]. The damaging effects of the

vertical component of an earthquake are more evident in the near field since the

vertical motion attenuates faster than the horizontal one; in this case ground mo-

tions from large earthquakes (Ms > 7) can produce significant horizontal and

vertical components and the ratio of the vertical to horizontal maximum PGA

may exceed 1.
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The energy content of the vertical component is concentrated in a narrow high

frequency range. This results in a possibly dangerous match with the vertical pe-

riods of common bridges, usually belonging to the higher frequency range. Fur-

thermore, several records indicate that the maximum vertical response occurs 1 or

2 seconds earlier than the transverse one, others show a coincidence in time. A

compendium of field observations and analytical results indicates that certain fail-

ure modes are convincingly attributable to high vertical earthquake-induced forces,

which, in addition to the possible overstressing in compression or tension, may

induce shear or flexure failure.

In bridges, a reduction of earthquake effects is often obtained using seismic

isolation techniques. The actual technologies include various types of rubber and

sliding bearings, in particular the friction pendulum systems (FPS), which have

found several applications in the recent years, will be examined in this research. A

standard FPS device is based on the well-known principles of the sliding pendulum.

Its main peculiarities are the re-centring capacity (in terms of restoring forces by

gravity) and the use of geometry and gravity to achieve the desired isolated response

of the structures.

Since friction pendulum systems may be strongly influenced by the axial load

level acting at a given time, a variation of the axial force results in corresponding

variations of equivalent yielding level and in the post-yielding stiffness in the non-

linear phase of the hysteretic response. Numerical models insensitive to axial force

variations may not appropriately predict the real response of isolated bridges. In

particular these models do not take into account possible increments in the shear

force demand and potential torsional effects on the piers. The axial force variation

on an isolation device is not only affected by the vertical acceleration, but also de-

pends on a combination of effects due to horizontal input (because of the necessary

dynamic equilibrium to the horizontal forces) and to the geometrical configuration

(plan and elevation irregularities).

In this study, a first contribution to the definition of the relevant aspects of

the problem is presented, based on a large number of dynamic analyses of two

fundamental bridge configurations (straight and curved bridges with piers of the

same height of 10 m and 30 m).

2. Objectives

The objectives of the research presented in this paper are:

• To develop and test an analytical model of FPS, that takes into account the

effect of axial force variations on the isolators. Existing formulations and analyt-

ical models are based on bilinear hysteretic loops with constant yielding shear

value and constant post-yielding hardening, while yielding shear value and post-

elastic stiffness of FPS depend on acting axial force, resulting in hysteretic loops

characterised by non-linear post-elastic branch.
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• To explore the geometrical parameters of typical deck cross sections that define

cases sensitive to axial force variation, for which the prediction of the overall

response of the structure is particularly influenced by the characteristics of the

model.

• To perform systematic evaluation of the axial load and shear actions on the

isolation system and on the piers for different bridge configurations subjected

to both horizontal and vertical input, as a function of the characteristics of the

model.

• To evaluate and quantify the effect of the axial force variations on the global re-

sponse of the bridge, in order to investigate possible non-conservative approaches

of the current design methods and to raise controversial issues deserving a more

specific study.

3. Methods

The objectives of this research will be pursued using numerical approaches only.

The analytical model will be tested using single pier models, on which static and

dynamic parametric non-linear analyses will be performed. The factors influencing

the axial force variation in the devices (such as deck aspect ratio, structural geome-

try and consideration of the vertical input) will be quantified. The structural system

examined includes foundation, pier, isolation devices and deck section; all elements

are modelled assuming a linear elastic response, with the exception of the isolators,

represented by non-linear radial elements, whose response may be sensitive to axial

force variations (AM model) or may not (NAM model).

The second objective stated above requires an exhaustive investigation of the

most common deck cross sections. The fundamental geometrical parameter to clas-

sify the different cases has been identified in the deck aspect ratio β = d/H , where

d is the distance between two vertical bearings (in our case the two FPS) and H

is the vertical lever arm, equal to the distance between the centre of gravity of the

deck mass and the FPS base. The expected axial force variation in the devices is

directly related to β, as shown in Figs. 10 and 12.

Several different parameters have been considered to perform the parametric

analyses required to evaluate the effects of considering axial force variation on the

bridge response, such as the type of analysis, bridge configuration, number of spans,

span length to pier height ratio, radius of curvature, deck aspect ratio, consideration

of vertical input ground motion and the type of FPS analytical model. The assumed

range of variation of these parameters will be justified and their influence on the

results will be evaluated and discussed. The analytical model that will be adopted

in this work concerns more properly the case of single pier bridges; the response of

frame or wall-type piers is not considered in this step of the research.

The bridge response will be investigated in terms of displacement at the top of

the piers, relative displacement between piers and isolators, shear demand at the

isolation level and at the base of the pier, bending and torsional moment demand
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on the piers. Clearly, the influence of adopting either one of the two FPS models

will be carefully examined, to compare the variation of displacement and strength

demand as a function of the FPS model and to evaluate the need of more complex

modelling.

4. Friction Pendulum Analytical Model

A standard friction pendulum system (FPS) device is based on the principle of the

sliding pendulum motion. It consists of two sliding plates, one of them (indifferently,

the bottom or the top one) is characterised by a concave spherical surface. The two

plates are connected by means of an articulated friction slider and PTFE bearing

material, as schematically represented in the cross section depicted in Fig. 1(a).

Typically a FPS device may provide equivalent dynamic periods of vibration in the

range from 2 to 5 seconds and displacement capacities greater than 1 m. Detailed

descriptions of the basic principles of the FPS devices can be found in literature in

relatively recent works [Almazan et al., 2002; Wang et al., 1998; Tsai, 1997].

The FPS finite element idealisation adopted in the present research and de-

scribed in detail in the following pages is shown in Fig. 1(b). In particular, the

model developed in this study is characterised by a restoring force V and by a

PTFE Bearing 

material
Articulated 

Friction Slider

Spherical Concave Surface of hard 

dense Chrome over Steel

(a)

1

j

i3 2

(b)

Fig. 1. (a) Radial section and (b) finite element representation of the FPS device (see also Fig. 2).
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relative displacement ∆s between the top and the bottom plates of the FPS (Figs. 2

and 3) where both V and ∆s are radially-directed vectors, as discussed later.
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V

s
i

i
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r  

Fig. 2. Plan view (from the bottom) of a possible displacement of the articulated friction slider
and description of the shear force components along the local axes 2 and 3 in the plane tangent
to the spherical surface.
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Fig. 3. Radial section r − r (see Fig. 2) of the FPS model.

The behaviour of the isolator is described by the V -∆s non-linear constitutive

law and its main characteristic is to be sensitive to the axial load variations ∆N

(AM model) (Figs. 4 and 5); for this reason the proposed model has a variable yield
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point and a post-elastic stiffness that depend on the actual axial force, resulting in

a non-linear post-elastic branch. It seems worth underlining that the majority of

the models that can be found in literature depend on the initial axial load level, but

they are usually insensitive to ∆N (NAM model), that is the post-elastic branch

of the constitutive law remains linear.

In Fig. 4 the different features of the two models are shown; in particular the

continuous lines are associated to the responses of the two isolators (AM model),

one subjected to a progressive increase in compression and the other to a progressive

decrease of axial load. On the opposite, if the NAM model is considered (dashed

line), the response is insensitive to axial force variations.
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Fig. 4. Constitutive laws of FPS models sensitive (AM) and insensitive (NAM) to axial load
variations.
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initial axial forces.
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The model of the isolator has been implemented by means of a 2-joint finite

element [Fig. 1(b)]. The local axis 1 connects the joint i to the joint j; the two

orthogonal local axes 2 and 3 lie in the plane perpendicular to the axis 1 and, for

simplicity, they are always considered in this research oriented according to the

transversal and the longitudinal directions of the bridge.

All the vectors used to describe the model lie in a plane tangent to the sliding

surface which coincides with the local plane 2-3 (Figs. 2 and 3).

The fundamental equation describing the FPS radial shear V is the following:

V = Ks · (∆s − ∆sp) , (1)

where:

V = radial shear of the FPS;

Ks = shear stiffness, constant value;

∆s = relative radial displacement;

∆sp = relative radial plastic displacement.

The inelastic behaviour of the friction pendulum is described through the following

equation:

F = |V − Hk · ∆sp| − Vy , (2)

where:

Hk = post-elastic stiffness;

Vy = yielding shear.

The post-elastic stiffness and the yielding shear are assumed to be both functions

of the axial load acting on the isolator, i.e. we set:

Hk = Hk0 + ch · N , (3)

Vy = Vy0 + ct · N , (4)

where:

Hk0 = initial post-elastic slope;

Vy0 = initial yielding shear;

ch = curvature of the sliding surface (= 1/R);

ct = coefficient of friction;

N = axial load on the isolator (N > 0, compression; N < 0, tension).

The temporal variation of the relative radial plastic displacement ∆sp is expressed

by:

∆ṡp = γ̇
V − Hk∆sp

|V − Hk∆sp|
, (5)
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where:

γ̇ = 0 if F < 0 or F = 0 and Ḟ < 0 ,

γ̇ > 0 if F = 0 and Ḟ ≥ 0 .

The resolution of the finite element problem of the FPS model is provided by means

of time integration techniques. The fundamental quantities are computed through

the integration of Eq. (5), assuming the solution at the time tn is known and the

relative radial displacement ∆s in the time interval [tn, t]:

∆sp − ∆sn
p = λ

V − Hk∆sp

|V − Hk∆sp|
, (6)

where:

λ = γ − γn .

The solution of Eq. (1) ÷ Eq. (5) in their discrete form is done with a “return map”

algorithm [Simo and Hughes, 1998]. Assuming zero increment of the plastic sliding,

a trial shear V trial has to be firstly computed and used to derive V cfr as follows:

V trial =

{

V trial
2

V trial
3

}

=

{

Ks · (∆s2 − ∆sn
p,2)

Ks · (∆s3 − ∆sn
p,3)

}

(7)

V cfr =

{

V cfr
2

V cfr
3

}

=

{

V trial
2 − Hk∆sn

p,2

V trial
3 − Hk∆sn

p,3

}

(8)

if the condition ‖V cfr‖ ≤ Vy is not satisfied, the sliding ∆sp is corrected by a factor

λ, which is calculated by enforcing the yielding condition F = 0 at the current time

t. In particular expressing ∆sp as follows:

∆sp = ∆sn
p + λ

V cfr

‖V cfr‖
= ∆sn

p + λN cfr (9)

Equation F = 0 can be written as:

|Ks(∆s − (∆sn
p + λN cfr)) − Hk · (∆sn

p + λN cfr)| = Vy . (10)

Since the vectors of Eq. (10) are all parallel, it is possible to work only in term of

modules instead of vectors to compute the unknown λ:

λ =
‖V cfr‖ − Vy

Ks + Hk

. (11)

The formulation of the tangent matrix required for the solution of the global prob-

lem using Newton algorithms is classically obtained from a consistent model lin-

earisation [Simo and Hughes, 1998]. Details can be found in Ceresa [2002].

The proposed numerical model has been implemented in Feap, a computer code

for static and dynamic non-linear analyses [Taylor, 2001]. Presently, the simulation
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does not include possible uplift of the deck, therefore a tensile force in the isolator

is permitted. This may result in an increase of compression on the other isolator

on the top of the same pier and in an increased bending moment and shear. While

this aspect may be easily taken into account in future studies, its relevance will be

discussed whenever appropriate.

5. Seismic Input

The selection of the input ground motions to be used in this study was based on

several requirements:

• the need of adopting natural records, in order to avoid possible bias related to

abnormal frequency contents, number of cycle, duration and input energy;

• the necessity of a relatively high horizontal peak ground acceleration, to fully

trigger the expected phenomena and to avoid large scaling that may affect the

properties of the records;

• the importance of using a consistent set of two horizontal and one vertical com-

ponents — more specifically the fundamental relevance of the vertical input is

evident, since the focus of the study is on axial force variation effects;

• the wish of having a consistent, though relatively wide representation of magni-

tude, source mechanism, epicentral distance, duration, soil type.

On this basis, a set of five natural accelerograms (three components) was se-

lected, as shown in Table 1.

All components of each one of them were scaled with a single factor, selected

in such a way that the higher horizontal peak ground was set to 0.8 g. As a con-

sequence, the pseudo-acceleration spectra of the horizontal components with the

higher ground acceleration (plotted for a 5% damping in Fig. 6) are all showing

the same level of acceleration for periods equal to zero, with significantly different

amplification at different periods of vibration.

The difference between different ground motions is even more evident in Fig. 9,

where the corresponding displacement spectra are depicted. Typical ratios of dis-

placement demands at corresponding periods are in the order of four, with values

typically ranging between 0.2 and 0.8 m.

In Figs. 7 and 8 the acceleration components in the second horizontal and ver-

tical directions are depicted.

Given the fact that this study is not concentrating on seismic input issues, the

set of ground motion is considered to be adequately representative.

6. Numerical Analyses

6.1. Preliminary investigations on deck geometry and results on

single pier models

As previously pointed out, a rather extensive bibliographic investigation was carried

out [Chen and Duan, 2000; L’industria Italiana del Cemento (IIC), 1996–2001;



196 G. M. Calvi et al.

Table 1. Properties of the natural original accelerograms (not scaled).

Filter Scale 

factor 

Magnit.   

Mw 

Arias 

intensity 

Trifunac-

Brady 

duration 

PGA PGV PGD 

HP LP 

Soil 
Earthquake Record 

  [m/s] [s] [g] [cm/s] [cm] [Hz] [Hz] USGS 

TCU84 V 2.342 18.70 0.340 25.3 11.94 0.09 

TCU84 N 3.898 25.10 0.417 45.6 21.27 0.10 

50 

C
h
iC

h
i,

 

T
ai

w
an

 

1
9
9
9

/0
9
/2

0
 

T
C

U
8

4
 

TCU84 W 

0.692 7.6 

20.495 14.70 1.157 114.7 31.43 0.20 30 

B 

KJM up 1.88 10.40 0.343 38.3 10.29 

KJM000 8.475 9.94 0.821 81.3 17.68 

K
o
b

e 

1
9
9
5

/0
1
/1

6
 

K
JM

A
 

KJM090 

0.974 6.9 

5.486 10.60 0.599 74.3 19.95 

0.50 null B 

HPVY UP 1.587 10.20 0.353 16.1 2.35 31 

HPVY 

045 
4.176 8.59 0.592 60.2 8.77 40 

C
o
al

in
g
a 

1
9
8
3

/0
5
/0

2
  

  
  
  

 

P
le

as
an

t 
V

al
le

y
 

P
.P

. 
Y

ar
d

 1
1
6
2

 

HPVY 

135 

1.348 6.4 

3.883 10.30 0.551 36.4 3.96 

0.20 

31 

- 

NWH-UP 2.897 7.46 0.548 31.5 16.27 

NWH-090 4.407 6.26 0.583 75.5 17.57 

N
o
rt

h
ri

d
g
e 

1
9
9
4

/0
1
/1

7
 

N
ew

h
al

l 
F

ir
e 

S
ta

ti
o
n

 

NWH-360 

1.356 6.7 

5.717 6.04 0.590 97.2 38.05 

0.12 23 C 

SCE-UP 1.572 7.22 0.377 24.3 7.30 

SCE018 4.546 7.29 0.828 117.5 34.22 

N
o
rt

h
ri

d
g
e 

1
9
9
4

/0
1
/1

7
 

S
y
lm

ar
 

C
o
n

v
er

te
r 

S
ta

ti
o
n

 E
as

t 

SCE288 

0.966 6.7 

2.928 7.84 0.493 74.6 28.69 

null null C 

0 .0 0

0 .5 0

1 .0 0

1 .5 0

2 .0 0

2 .5 0

3 .0 0

0 .0 0 0 .5 0 1 .0 0 1 .5 0 2 .0 0 2 .5 0 3 .0 0 3 .5 0 4 .0 0 4 .5 0 5 .0 0

T  [s]

P
S

A
 [

g
]

ξ  =  5%

7&8��B:

1B&6(B���

.-0$B���

&2$/,1*$B���

1B1: +B���

Fig. 6. Elastic pseudo-acceleration spectra scaled to 0.8 g (transversal component).



Effects of Axial Force Variation in the Seismic Response 197

0 .00

0 .50

1 .00

1 .50

2 .00

2 .50

3 .00

3 .50

4 .00

0 .00 0 .50 1 .00 1 .50 2 .00 2 .50 3 .00 3 .50 4 .00 4 .50 5 .00

T  [s ]

P
S

A
 [

g
]

ξ  =  5%

7&8��B1

1B&6(B���

.-0$B���

&2$/,1*$B���

1B1: +B���

Fig. 7. Scaled elastic pseudo-acceleration spectra (longitudinal component).

0 .00

0 .50

1 .00

1 .50

2 .00

2 .50

3 .00

0 .00 0 .50 1 .00 1 .50 2 .00 2 .50 3 .00 3 .50 4 .00 4 .50 5 .00

T  [s ]

P
S

A
 [

g
]

ξ  =  5%

7&8��B83

1B&6(B83

.-0$B83

&2$/,1*$B83

1B1: +B83

Fig. 8. Scaled elastic pseudo-acceleration spectra (vertical component).

0.00

0.20

0.40

0.60

0.80

1.00

0.00 1.00 2.00 3.00 4.00 5.00

T [s]

D
is

p
la

c
e
m

e
n

t 
[m

]

 = 5%

TCU84_W

KJMA_000

N_NWH_360

COALINGA_045

N CSE 018

 

Fig. 9. Displacement spectra of transversal component scaled to 0.8 g.



198 G. M. Calvi et al.

Deck

FPS 
isolators

Pier

d

G

H
F = m.ag WR

WV

Fig. 10. Causes of the axial force variations on the isolators at the top of the pier.

3,5

5

9

0,
2

3,51

0,
2

0,
3

60,2

1

1,5

3,51 3,5 13,53,5

9

6

1

17

3,51 3,5 1

10
,4

5

sezione trasversale sulla pila

4,
4

9
3,53,51 1

11,2

7,2

7,2

19,24

6,7

3,5

3
,5

0

1,25

1,01

3,5

0,
35

0,45

3,831,01

3,5 1,6

6,7

3,5 1,25

1
,2

0
,2

1,98

10,950,6 1,85

13,4

133,243,31 3,24 3,31

2
,2

5

0
,2

526,1

2,15 6,1 2,4 6,1

0
,2

5

1
,3

6

3,35

18,3

3
,2

8

7,77,7 0,3

 

Fig. 11. Examples of existing deck cross sections.
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Leonhardt, 1979; O’Connor, 1971] in order to identify the bridge deck cross sections

most commonly used in the design practice. Some examples of common cases are

depicted in Fig. 11, clearly showing that the aspect ratio may vary quite signifi-

cantly. Within the scope of this study, the deck cross-section is characterised as a

function of the geometrical parameter β, given by the ratio between the relative

distance d of two bearings and the vertical distance H between the centre of gravity

of the deck mass and the FPS base (Fig. 10).

This parameter controls the axial force variations ∆WR due to the rotational

equilibrium to lateral seismic load, characterised by opposite signs. A second axial

force variation ∆WV may be produced by the vertical component of the seismic

input, this being characterised by the same sign on both bearings.

As shown in Fig. 4, an axial force variation results in a variation of the shear

force transmitted by the bearing, and consequently in a different global shear at the

pier top, in a possible torsional moment and in general in a different response under

the earthquake motion. It has to be noted that the sum of the force variations on

the two bearing may not be equal to zero even if the axial component of the input

ground motion is neglected, depending on the plan geometry of the bridge.

Considering a static equilibrium and the horizontal component alone, to have

a feeling of the relevance of the problem, the dimensionless axial force variation

η = ∆WR/Wo (where Wo is the initial gravity action) may be computed as a

function of deck aspect ratio β and of the dimensionless horizontal acceleration

α = ag/g as:

η =
α

β
. (12)

This equation is graphically depicted in Fig. 12, together with the occur-

rence of section geometries found in the literature. It may be noted that β varies

approximately between 1 and 10, with a concentration of cases between 1 and 3.

While some care should be used in drawing general conclusion, because of the lim-

ited scope of the investigation, it is clear that axial force variation of the order of

30–40% may occur, even without taking into account the vertical component of the

input ground motion.

On the basis of these results, the numerical simulations have been performed

considering three values of β: 1.0, 2.5 and 5.0, the first value being typically repre-

sentative of railway bridges, the second and third ones being more common for road

bridges and viaducts. Considering that a limited axial force variation due to simple

static equilibrium was expected for β = 5, this value was used only in case of curved

configurations in plan where additional axial force variation may be produced by

geometrical effect.

Preliminary numerical tests were performed on single pier models, of the type

shown in Fig. 13: the mass distribution was representing the distributed mass along

the pier stem and the concentrated masses at the pier head and at the deck centre

of gravity. The FPS devices were modelled using either two AM and two NAM
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elements located at the appropriate distance (as a function of β). A friction coef-

ficient ct equal to 5% was adopted, together with a pendulum period of vibration

equal to 4 seconds, from which the second stiffness of the model was determined

as:

Hk0 =
Wo

R
where R =

T 2

4 · π2
· g (13)

Quasi-static, pushover and time-history analyses were performed in order to exam-

ine the influence of different parameters (deck aspect ratio, pier height and deck

mass) on the response, obtaining a confirmation of the following expected basic

results.

• The maximum displacement demand on the pier-isolator system is substantially

independent of the numerical model (AM or NAM).

• As expected and shown in Figs. 14 and 15, the response obtained using AM and

NAM models differs significantly in terms of shear demand on each device, as a

function of the axial load variation.

• The energy dissipated by the system does not depend on the model used, as a

consequence of combination of axial force and shear variation with opposite sign

on the two devices; this result should obviously be verified in the presence of deck

curvature, irregularities in elevation and vertical component.

• The time histories analyses confirmed the trends shown in Fig. 12.

• The different shear actions in the longitudinal direction of the two AM elements

may induce torsional demand, not captured by the NAM model (Fig. 14).
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Fig. 14. Plan view: additional torsional action demand on the pier.

6.2. Non-linear dynamic analyses on straight bridge models

The straight bridge models consist of six piers of the same height, neglecting the

effects of elevation irregularities.

The piers were modelled by frame elements fixed at the base, characterised by

linear elastic behaviour and sections, depicted in Fig. 16, and considered cracked.
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Fig. 15. Base shear — Top displacement diagram of a single pier model: Responses of the AM
and NAM models.

Moment-curvature analyses were performed in order to calculate the flexural stiff-

ness joining the origin to the yielding point, this one determined by an equal energy

criterion (Table 2).

The deck was represented by linear elastic frame elements; the stiffness was kept

constant (Table 2), without considering any effect of a variation of span length and

aspect ratio.

Both AM and NAM models were considered to simulate the behaviour of the

isolators at the top of the pier.
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Fig. 16. Details of the pier section (dimensions in mm).
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Table 2. Geometrical data
for pier and deck sections.

Pier Deck

Area [m2] 14.8 23

I33 [m4] 39.1 7.9

I22 [m4] 17.2 355.1

Table 3. Straight bridge configurations.

No. of piers 6

Span length [m] 15, 20, 25, 30, 39, 42, 60

β = d/H 1.00, 2.50

Pier height [m] 30

Accelerogram components long. + transv., long. + transv. + vert.

FPS numerical models Axial model (AM), Non Axial Model (NAM)

The five accelerograms described in Sec. 5 were used. A total of 280 analyses

were performed, as resulting from the combination of the parameters shown in

Table 3. No abutment was modelled, assuming that the model represents a section

of a longer viaduct.

As a preliminary phase, cyclic quasi-static analyses were run applying an increas-

ing deck displacement up to 0.60 m, both in the longitudinal and in the transversal

direction, noting that significant effects become evident only in the second case, as

reported in the following table.

Table 4. Cyclic quasi-static analyses: axial load variations imposing dis-
placements in the longitudinal and in the transversal direction of the bridge;
pier height = 30 m, β = 2.50.

Span length/Pier height ∆WR tot[%] ∆WR transv.

[%] ∆WR long.

[%]

1 16 > 14 < 2

2 14 > 14 < 1

The time history analyses confirmed that bridge geometry, isolator model and

consideration of vertical component do not affect displacement demand and dissi-

pated energy, which remain essentially constant, with variations that never exceed

10%, as shown for some specific exemplificative cases in Figs. 17 and 18. As ex-

pected, the displacement demand is concentrated in the isolators, with negligible

substructure displacements.

On the contrary, significant axial force variation may result on each device, as

shown in Figs. 19 to 23, where the maximum values obtained in a single isolator

during the response are depicted. These results have to be considered with some

care, since a linear elastic model was used for the piers and no uplift was simulated

(in several cases the variation shown is larger than 100%).
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Fig. 17. Maximum displacement demand comparisons, Kobe event; (a) aspect ratio equal to 1.00
and span length of 42 m; (b) aspect ratio equal to 2.50 and span length of 42 m.
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Fig. 18. Maximum displacement demand comparisons, ChiChi event; (a) aspect ratio equal to
1.00 and span length of 25 m, (b) aspect ratio equal to 2.50 and span length of 60 m.

However, it may be noted that the presence of the vertical component is of the

outmost importance, with negligible variations in case of responses to horizontal

components only. The results are affected to a much lesser extent by a variation of

the deck aspect ratio and by the model used (only in the case of the AM model

this results in a different response though).

In Figs. 24 and 25 typical time histories of the axial force variation in time and

typical force-displacement cycles of the isolator are shown, comparing the cases of

2 and 3 components input and of AM and NAM models.

Figure 25 confirms a result that is already pointed out, i.e. that the displacement

demand is essentially the same in all cases. In absence of vertical input (Figs. 25(a)

and 25(b)), similar displacements imply similar shear demand on the pier, as result-

ing from the combination of the contributions of the two devices, while in presence

of vertical input [Figs. 25(c) and 25(d)] the axial force variation has the same sign

on both isolators, possibly causing a significant increase of the total shear demand

on the pier.

The peak values of the shear demand variation obtained using the AM model

in presence of the three component of the input ground motion are reported in
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Fig. 19. Kobe JMA, axial load variation with and without vertical input; (a) β = 1.00, (b)
β = 2.50.
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Fig. 20. ChiChi TCU84, axial load variation with and without vertical input; (a) β = 1.00, (b)
β = 2.50.
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Fig. 21. Coalinga, axial load variation with and without vertical input; (a) β = 1.00; (b) β = 2.50.
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Fig. 22. Northridge CSE, axial load variation with and without vertical input; (a) β = 1.00;
(b) β = 2.50.
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Fig. 23. Northridge NWH, axial load variation with and without vertical input; (a) β = 1.00,
(b) β = 2.50.
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Fig. 24. Kobe JMA, axial load variation with and without vertical input, time history.
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(c) (d)

Fig. 25. Hysteretic loops of AM and NAM models, Sakaria event — (a) left isolator without
vertical input, (b) right isolator without vertical input, (c) left isolator with vertical input and (d)
right isolator with vertical input.

Figs. 26 to 30. Negligible variations (less than 5%, not shown in the figures) have

been obtained neglecting the input vertical component, while when it is considered

the effects may be of extreme relevance. All other parameters considered are of negli-

gible importance when compared with the effects of different input ground motions.

Even when considering the Kobe and ChiChi events only (Figs. 26 and 27),

where the response is not biased by possible uplifting effects, the shear demand
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Fig. 26. Shear demand variation between the AM and the NAM models, Kobe earthquake; (a)
transversal and (b) longitudinal component, vertical input considered.
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Fig. 27. Shear demand variation between the AM and the NAM models, ChiChi earthquake; (a)
transversal and (b) longitudinal component, vertical input considered.
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Fig. 28. Shear demand variation between the AM and the NAM models, Coalinga earthquake;
(a) transversal and (b) longitudinal component, vertical input considered.
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Fig. 29. Shear demand variation between the AM and the NAM models, Northridge CSE earth-
quake; (a) transversal and (b) longitudinal component, vertical input considered.

in the transversal direction may increase by 42%, in the presence of relatively low

peak vertical acceleration (ratio of vertical to horizontal peak acceleration equal to

0.30 and 0.41 in the two cases).

The average values of the maximum shear demand variations are shown in

Fig. 31, being equal to 74% and 31% for the transversal and the longitudinal di-

rection respectively. Considering the Kobe and ChiChi events only these values are
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Fig. 30. Shear demand variation between the AM and the NAM models, Northridge NWH earth-
quake; (a) transversal and (b) longitudinal component, vertical input considered.
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Fig. 31. Shear variation between the two FPS models; (a) transversal and (b) longitudinal average
values, vertical input considered.
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Fig. 32. Cases belonging to a given range of (a) transversal and (b) longitudinal shear variation
between the two numerical models; vertical input considered.

reduced to 29% and 19%, being still significant. The number of cases obtained for

peak shear variations below 20%, between 20 and 50% and greater than 50% are

depicted in the pie plots of Fig. 32. It may be shown that for the cases of shear

variation between 20 and 50%, certainly relevant for bridge design and assessment,

no uplifting effect should be expected.

6.3. Non-linear dynamic analyses on curved bridge models

The seismic response of curved bridges isolated with FPS devices has been the sub-

ject of relatively limited studies in the past [Tsai and Huang, 1999]. Consistently
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with the cases of straight bridges, the curved bridge models here investigated con-

sist of six piers with the same height, constant span length of 30 m, variable in-plan

curvature (with radius between 45 and 330 m, as given in Table 5) and piers ori-

ented perpendicularly to local tangent of the deck curved axis. All the assumptions

described for the straight-bridges cases still apply. The deck aspect ratio is now set

to 5.00, therefore the expected axial force and shear variation will be essentially

due to bridge geometry and vertical input.

The radius of curvature have been selected with reference to the limits recom-

mended by the Italian standard [Ministero dei lavori pubblici, 2001] for highways,

main roads and secondary extra-urban roads, as a function of road typology, design

velocity and transversal slope.

Table 5. Curved bridge configurations.

No. of piers 6

Span length [m] 30

Radius of curvature [m] 45, 60, 75, 90, 120, 150, 180, 210, 240, 270, 300, 330

β = d/H 5.00

Pier height [m] 30

Accelerogram components long. + transv., long. + transv. + vert.

FPS numerical models Axial Model (AM), Non Axial Model (NAM)

Again, preliminary and pushover analyses were performed imposing an increas-

ing horizontal displacement in the x and y directions (Fig. 33) up to a maximum

value of 0.60 m. As expected, for curved bridges the axial force variations may be

greater than those obtained for straight bridges, with a general trend to become

negligible for increasing radius of curvature (Fig. 34). The time histories analyses

confirmed the conservation of maximum displacement demand and dissipated en-

ergy, independently of FPS model, bridge geometry and presence of the vertical

ground motion component, with differences lower than 10% (Fig. 35).
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Fig. 33. Curved bridge model: (a) Finite element mesh and mass distribution; (b) position of the
FPS devices.
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Fig. 34. Axial load variation as a function of the bridge radius of curvature, pushover analysis
with imposed displacement along (a) the y and (b) the x axes.
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Fig. 35. Maximum displacement demand comparisons; (a) ChiChi event, radius of curvature =
210 m; (b) Kobe event, radius of curvature = 60 m.

The maximum axial load variations obtained from the time histories are shown

in Figs. 36 to 38 for the different input ground motions, for the two bearing models
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Fig. 36. Peak values of the axial load variation as a function of the radius of curvature, the
vertical input and the numerical model; (a) Kobe, (b) TCU84.
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Fig. 37. Peak values of the axial load variation as a function of the radius of curvature, the
vertical input and the numerical model; (a) Coalinga, (b) Northridge Converter Station East.
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Fig. 38. Peak values of the axial load variation as a function of the radius of curvature, the
vertical input and the numerical model; Northridge Newhall.
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Fig. 39. ChiChi TCU84, axial load variation (a) with and (b) without vertical input, time history.
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Fig. 40. Hysteretic loops considering and neglecting the effects of the axial force variations
(a) without and (b) with vertical input, Sakaria event, pier #3, right isolator.
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and including or excluding the vertical component. In general, the variations are

significantly larger than in the case of straight bridges, with peak values, of the

order of 150% for the ChiChi event, of 180% for the Kobe event, and much larger

in all other cases. In all cases uplift has therefore to be expected, with the obvious

tendency towards the results of the straight bridges for larger radius of curvature.

It has to be noted that the curved geometrical configuration implies significant

axial force variation even neglecting the vertical component.

In Figs. 39 and 40 typical time histories of the axial force variation in time and

typical force-displacement cycles of the isolator are shown, comparing the cases of

2 and 3 components input and of AM and NAM models; again, the relevance of

including the vertical component is much more evident than in the case of straight

bridges.

Displacement demand and dissipated energy are essentially independent of the

numerical model, the geometry of the bridge, the application of the vertical ground

motion (differences lower than 10%), while peak shear actions may differ signifi-

cantly.
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Fig. 41. Shear demand variation between the AM and the NAM models, Kobe earthquake, (a)
transversal and (b) longitudinal component.
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Fig. 42. Shear demand variation between the AM and the NAM models, ChiChi earthquake, (a)
transversal and (b) longitudinal component.
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Fig. 43. Shear demand variation between the AM and the NAM models, Coalinga earthquake,
(a) transversal and (b) longitudinal component.
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Fig. 44. Shear demand variation between the AM and the NAM models, Northridge CSE earth-
quake, (a) transversal and (b) longitudinal component.
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Fig. 45. Shear demand variation between the AM and the NAM models, Northridge Newhall
earthquake, (a) transversal and (b) longitudinal component.
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Fig. 46. Shear variation between the two FPS models; (a) transversal and (b) longitudinal average
values.
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Fig. 47. Cases belonging to a given range of (a) transversal and (b) longitudinal shear variation
between the two numerical models; analyses with vertical input.

The maximum shear demand variations induced by the effects of axial force are

plotted in Figs. 41 to 45 for all earthquake ground motions, showing the two direc-

tions components and the cases of including and excluding the vertical components;

the average values of the maximum values obtained from all the dynamic analyses

are shown in Figs. 46(a) and 46(b) and, finally, the number of cases obtained for

peak shear variations below 20%, between 20 and 50% and greater than 50% are

depicted in the pie plots of Fig. 47. Although the specific quantitative results may

be biased by non modelled uplifting, the general trend is very clear, and the results

obtained for straight bridges are emphasised.

7. Safety Verifications

In the previous sections, the potential importance of considering the effects of axial

force variations on the seismic response of bridges isolated with friction pendulum

systems was illustrated, showing that this may induce increased shear demands and

possibly unpredicted torsional moment on the piers. To get a feeling of the possible

relevance of these effects with respect to safety, it becomes necessary to consider

capacity as well as demand and this obviously implies the need of designing sample
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pier sections, and considering the actual variation of both demand and capacity as

a function of axial force.

For this purpose, a specific sample case of a straight railway bridge was con-

sidered, characterised by six piers with a constant height of 10 m, span length of

39 m and deck aspect ratio equal to 1.00, designing longitudinal and transversal

reinforcement according to standard code rules and design response spectrum (as

defined in Eurocode 8 for stiff soil). Consistently with the input ground motions

used for the non-linear analyses, a PGA equal to 0.8 g was assumed to anchor the

spectra.

As a function of axial force level, bending, shear and torsional strengths of

each pier were calculated at each time step of the time histories, using a standard

flexural model for bending, a recently proposed model for shear [Kowalsky and

Priestley, 2000], and a model proposed by Collins and Mitchell [1991] for torsion.

The interaction between bending, shear and torsion [Collins and Lampert, 1971;

Collins and Mitchell, 1991; Henry and Zia, 1982] was neglected, for simplicity, and

anyhow consistently with the preliminary character of this part of the study.

The pier were designed assuming hollow rectangular sections with external di-

mensions equal to 3.20 m and 1.70 m and thickness of 0.35 m. The resulting per-

centages of the longitudinal and of the transversal reinforcement were ρl = 3.15%

(1.7% if calculated on the gross area, neglecting the hole), ρh = 0.23% and 0.10%

(inside and outside the critical region). The ratio of the pier mass to the supported

deck mass was taken as equal to 15% and 30%.

The maximum variations of the shear demand at the top and at the base of the

piers, obtained considering and neglecting axial force effects, are presented in Fig. 48

for three ground motions. It is evident that the presence of a relevant pier mass

tends to reduce the effects noted at the pier top (peak values reached at different

time steps). The same trend may be noted if the flexural demand is considered

(Fig. 49). As already pointed out, these peak values may be of little relevance if

they are not compared with the corresponding capacity, examining a time history

response.

This kind of comparison is depicted in Figs. 50 to 53 for the Kobe and Northridge

events. It appears that a shear failure outside the critical region should be predicted

at several instants of some of the time histories, therefore confirming the potential

relevance of the phenomenon.

In the case of Northridge CSE event, the curvature demand exceeds the capacity

(in terms of yielding curvature) in both longitudinal and transversal directions

(Table 6).

The displacement demands at the deck level and at the top of the pier are shown

in Figs. 54 and 55. As expected, most of the displacement demand is taken by the

isolation system, therefore justifying the assumption of linear response of the pier

and confirming that no problem should arise in terms of flexural response.
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Fig. 48. Comparison between the responses in terms of variation of maximum shear demand at
the top and at the base of the piers for pier mass/deck mass = (a) 30% and (b) 15%.
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Fig. 50. Base shear capacity–demand comparison along the longitudinal direction; (a) AM and
(b) NAM demands, Kobe earthquake.
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Fig. 51. Base shear capacity–demand comparison along the transversal direction; (a) AM and
(b) NAM demands, Kobe earthquake.
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Fig. 52. Base shear capacity–demand comparison along the longitudinal direction; (a) AM and
(b) NAM demands, Northridge CSE earthquake.
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Fig. 53. Base shear capacity–demand comparison along the transversal direction; (a) AM and
(b) NAM demands, Northridge CSE earthquake.
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Fig. 54. Global top displacement and pier displacement along (a) the longitudinal and (b) the
transversal direction, Kobe earthquake.
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Fig. 55. Global top displacement and pier displacement along (a) the longitudinal and (b) the
transversal direction, Northridge CSE earthquake.
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Table 6. Curvature capacity–demand comparison at the base of the piers,
Northridge CSE earthquake.

Longitudinal direction

Curvature [m−1] – Demand Curvature [m−1] – Capacity

Time [s] N [kN] AM model NAM model yielding ultimate

4.92 8940 3.297E− 03 2.796E− 03 3.157E − 03 1.560E − 02

Transversal direction

Curvature [m−1] – Demand Curvature [m−1] – Capacity

Time [s] N [kN] AM model NAM model yielding ultimate

5.29 14 700 2.155E− 03 1.186E− 03 1.768E − 03 8.600E − 03

Finally, the maximum torsional demand resulting from the analysis is compared

with the torsional capacity of the pier section considered in the analysis and with

the capacity of a torsionally weaker section for different values of the axial force

(Fig. 56). The torsional demand does not seem to be a problem in all cases consid-

ered, however, this aspect may deserve further attention, because of the interaction

between shear and torsion.

(a)

(b)

Fig. 56. Torsional demand compared with the capacity of different sections as a function of the
axial load inside (a) and outside (b) the critical region. A hollow section of 1.70 m× 3.20 m and
a rectangular thin section of 0.70 m× 3.20 m are considered.
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8. Conclusions

In the research presented in this paper the effect of the axial force variations on

the seismic response of bridges isolated with friction pendulum systems has been

investigated. A series of parametric non-linear time history analyses have been

performed using five ground motion records with the transversal components scaled

to a maximum PGA of 0.8 g. The horizontal and vertical components of each seismic

event have been considered. An analytical model of friction pendulum device whose

yielding force and post-elastic stiffness are sensitive to the axial load variations has

been developed.

The range of parameters considered has been rather ample, with the consequence

that several potentially significant effects have been neglected. These include pos-

sible deck uplifting, bending–shear–torsion interaction, flexural non linear response

of the pier.

Therefore, the conclusions of the study have to be considered as preliminary

results to be further investigated in the future.

Generally speaking, the fundamental result is that the inclusion of axial force

effects may not be significant for what concerns variation of the displacement de-

mand, but may induce important increment of shear, bending and torsional moment

demand on the piers. The fundamental parameters that may amplify, or reduce,

these effects are the ratio between deck and pier mass, the aspect ratio of the deck,

the radius of curvature of the bridge, the intensity of the ground motion and the

consideration of vertical input, as briefly discussed below.

• Ratio between deck and pier mass: a significant variation of the shear force trans-

mitted from the deck to the pier may result in strongly attenuated effect at the

pier base when the ratio of the pier mass to the deck mass is high.

• Aspect ratio of the deck: for the same level of horizontal force, the axial force

variation possibly induced by the horizontal acceleration is higher for a deck

section relatively larger and for devices relatively closer one to each other.

• Radius of curvature of the viaduct: it is shown that a curved bridge may result

in higher effects, due to the interaction of vertical and horizontal response.

• Intensity of the ground motion: relatively high horizontal peak ground acceler-

ations may induce more significant effects, like in the case considered, where a

PGA of 0.8 g is assumed.

• Consideration of vertical input: the inclusion of the vertical component of the

input ground motion may result in being the crucial point to verify whether

important effects have to be expected and considered.

These considerations may be of some help in deciding whether axial force effects

may be neglected or should be considered in the analysis.

A fundamental aspect related to design concept should also be noted. Actually,

when dealing with isolated bridges, it is common practice to assume that possible

pier collapses are capacity protected by the shear capacity of the isolation system.
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This implies that there is no reason to protect a possibly brittle shear collapse

mode with a lower strength flexural yielding of the pier. Clearly, this situation may

not apply if a significantly higher shear force is transmitted from the deck to the

pier. As a consequence, it is felt appropriate to recommend that when using friction

pendulum systems capacity design principles are still applied to protect undesired

failure modes of the pier and foundation system.

A simple and immediate development of this work may consist of non-linear

dynamic analyses with more refined models of the bridge elements (such as piers

with non-linear behaviour), but also new parameters must be investigated (bridge

configuration, irregularities in elevation, different deck types, framed piers, different

isolator devices) in order to confirm the information obtained in this research.
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