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Abstract

Background The combination of low-load resistance training with blood flow restriction (BFR) has recently been shown 

to promote muscular adaptations in various populations. To date, however, evidence is sparse on how this training regimen 

influences muscle mass and strength in older adults.

Purpose The purpose of this systematic review and meta-analysis was to quantitatively identify the effects of low-load BFR 

(LL-BFR) training on muscle mass and strength in older individuals in comparison with conventional resistance training 

programmes. Additionally, the effectiveness of walking with and without BFR was assessed.

Methods A PRISMA-compliant systematic review and meta-analysis was conducted. The systematic literature research was 

performed in the following electronic databases from inception to 1 June 2018: PubMed, Web of Science, Scopus, CINAHL, 

SPORTDiscus and CENTRAL. Subsequently, a random-effects meta-analysis with inverse variance weighting was conducted.

Results A total of 2658 articles were screened, and 11 studies with a total population of N = 238 were included in the meta-

analysis. Our results revealed that during both low-load training and walking, the addition of BFR elicits significantly greater 

improvements in muscular strength with pooled effect sizes (ES) of 2.16 (95% CI 1.61 to 2.70) and 3.09 (95% CI 2.04 to 

4.14), respectively. Muscle mass was also increased when comparing walking with and without BFR [ES 1.82 (95% CI 1.32 

to 2.32)]. In comparison with high-load training, LL-BFR promotes similar muscle hypertrophy [ES 0.21 (95% CI − 0.14 

to 0.56)] but lower strength gains [ES − 0.42 (95% CI − 0.70 to − 0.14)].

Conclusion This systematic review and meta-analysis reveals that LL-BFR and walking with BFR is an effective interven-

tional approach to stimulate muscle hypertrophy and strength gains in older populations. As BFR literature is still scarce 

with regard to potential moderator variables (e.g. sex, cuff pressure or training volume/frequency), further research is needed 

for strengthening the evidence for an effective application of LL-BFR training in older people.
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Key Points 

The results of the present systematic review and meta-

analysis suggest that blood flow restriction (BFR) is an 

effective strategy for increasing the effects of low-load 

(LL) resistance training and walking on muscle mass and 

strength in older adults.

In comparison with high-load (HL) resistance training, 

LL-BFR training produces comparable changes in mus-

cle mass but lower increases in muscular strength.

The addition of BFR to LL resistance training or walking 

is an effective exercise alternative for older populations, 

for whom a traditional HL training might be contraindi-

cated due to comorbidities or high mechanical stress to 

bones and joints.

1 Introduction

In recent years, blood flow restriction (BFR) training has 

gained increasing attention in the scientific community 

[1–3]. By applying tourniquets or inflatable cuffs at the prox-

imal portion of the limb, low-load BFR (LL-BFR) training 

(20–30% one repetition maximum, 1RM) has been shown 

to promote muscular hypertrophy and strength increases 

comparable to what is typically seen following high-load 

(HL) training programmes with 70–85% 1RM [4–6]. The 

advantage of low loads and thus reduced mechanical stress 

for joints and bones [7] is of particular interest for popula-

tions who are not capable of lifting near-maximum loads 

or for whom high loads may be contraindicated, such as in 

clinical rehabilitation.

In this context, particularly in elderly subjects, HL resist-

ance training is often not feasible due to comorbidities such 

as coronary heart diseases, diabetes mellitus or musculoskel-

etal impairments [8–10]. With advancing age, the skeletal 

muscle mass decreases by as much as 3–8% per decade after 

the age of 30 [11]. The coexistence of both, a decrease in 

muscle mass and strength is termed sarcopenia [12] and has 

major functional and metabolic consequences, including an 

increased risk of falls and mortality [13, 14]. With regard to 

demographic changes, especially in Western societies [15], it 

is increasingly important to identify suitable evidence-based 

interventions that counteract the functional decline occur-

ring with progressive age.

To maximize the span of effective functioning with 

advancing age, exercise and nutritional interventions have 

been suggested as the cornerstones in the management of 

sarcopenia [12, 16]. In particular, the prescription of long-

term HL resistance training programmes has been shown 

to maintain and increase both muscle mass and strength 

[17–20]. However, these training regimens do not consider 

the high prevalence of comorbidities [8] and the decreased 

tolerance of mechanical stress in older individuals.

Although recent reviews have investigated the effects 

of LL-BFR training in athletes [21] and individuals with a 

clinical musculoskeletal condition [2], there is currently no 

systematic review summarizing the effects of LL-BFR in 

older adults. Thus, the aim of the present systematic review 

and meta-analysis is to assess the effects of LL-BFR train-

ing on muscle strength and muscle mass in older subjects 

and provide practical implications for the prevention and 

treatment of the age-induced decline in muscle mass and 

strength.

2  Methods

2.1  Search Strategy

This systematic review and meta-analysis followed the 

guidelines provided in the PRISMA statement [22] (Pros-

pero registration number: CRD42018089980). For identifi-

cation of relevant studies, a systematic literature search was 

performed by two researchers (CC & PW). The following 

electronic databases were searched from inception to 1 June, 

2018: PubMed, Web of Science, Scopus, CINAHL, SPORT-

Discus and CENTRAL. The search string was created with 

two sections: the first encompassed synonyms for LL-BFR 

training while the second was composed of synonyms for 

the topic of aging. To ensure that at least one search term 

within one section was included in the results, all synonyms 

were connected with the operator ‘OR’ and both sections 

were connected with the operator ‘AND’. Moreover, trun-

cations and adjacency searching were used to find varia-

tions of the corresponding term and to restrict the results to 

specific ordered terms. Database searching was performed 

with no restrictions (‘All field/All text’ search) except in 

Scopus where the search was restricted to ‘Title, Abstract, 

Keywords’.

The search was conducted independently by the two 

researchers using the following search string for all data-

bases: “blood flow restriction” OR “occlusion training” OR 

“vascular occlusion” OR KAATSU OR “ischemi* training” 

AND old* OR elder* OR sarcopeni* OR “musc* atrophy”.

Study information, including title and abstract, were 

exported from the databases and stored in a citation man-

ager. Before further processing of the studies all duplicates 

were removed (for search process see Fig. 1).
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2.2  Inclusion and Exclusion Criteria

All studies were screened and assessed for eligibility with 

regard to our inclusion and exclusion criteria, which were 

based on the PICOS principle (i.e. extracting population, 

intervention, comparison intervention, outcome measures 

and study design information) [23, 24]. Studies were con-

sidered relevant if (1) subjects were healthy older people 

(aged > 50 years), (2) the study design allowed compari-

sons between resistance training with and without vas-

cular occlusion [HL (> 70% 1RM) or LL (< 50% 1RM) 

resistance training] or between walking with and without 

simultaneous BFR, (3) muscle mass and/or strength were 

assessed pre- and post-training.

Studies were not considered relevant if (1) participants 

had received a substance previously shown to result in 

muscle gains or (2) the manuscript was not written in the 

English language. Additionally, quality of reports was 

determined using the Physical Evidence Database (PEDro) 

scale, which is based on the Delphi list [25] (Electronic 

Supplementary Material Table S1). Studies with a score 

< 4 were excluded from this systematic review. For each 

of the 11 items of the PEDro scale, two reviewers (CC & 

PW) assessed the studies independently. In case of any 

discrepancy, a third reviewer (DK) evaluated the study to 

find a consensus.

2.3  Data Extraction and Assessment of Reviewer 
Agreement

After screening of the studies, all relevant considered arti-

cles were assessed for eligibility based on their full texts. 

At this stage, we extracted information about (1) population 

characteristics, (2) primary outcome measures, (3) methods, 

(4) exercise/interventional characteristics and (5) the main 

result of the study. When intervention effects were assessed 

at multiple time points, only the very last time point was 

considered (as post-training value). In case of incomplete 

raw data availability, we contacted the corresponding author 

of the manuscript or extrapolated the data from figures, if 

the authors could not be reached. All studies were assessed 

for inclusion in this systematic review independently by two 

researchers (CC and PW) based on the extracted informa-

tion. If there were any disagreements about inclusion of a 

study, a third reviewer (DK) was consulted. The extracted 

data of included studies are depicted in Tables 1, 2, 3 and 4.

2.4  Risk of Bias

Following the instructions in the Cochrane Handbook for 

Systematic Reviews of Interventions [26], risk of bias was 

assessed using six criteria that were individually rated for 

each study. In this context, selection bias, performance bias, 

Fig. 1  Flow chart presenting the search process and study selection
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detection bias, as well as attrition and reporting bias were 

considered by the reviewers (Electronic Supplementary 

Material Figure S1). Additionally, to assess the evidence 

of publication bias, funnel plots were visually inspected for 

each outcome criterion (Electronic Supplementary Material 

Figures S2–S6).

2.5  Synthesis of Results

Percentage changes [((MEANpost  −  MEANpre)/MEAN-

pre) × 100] of muscle strength and muscle mass were calcu-

lated for each study. In case of multiple assessment methods, 

the minimum and maximum mean value of each method 

were reported (Tables 1, 2, 3, 4).

2.6  Statistical Analyses

Statistical analyses were performed using RevMan (Review 

Manager Version 5.3, The Cochrane Collaboration, 2014). 

For calculating the standardized mean difference (SMD), the 

difference in pre- and post-intervention mean and standard 

deviation values of muscle mass and strength for all groups 

in each study were used. Since we partially observed con-

siderable between-timepoint differences in  SDpre and  SDpost, 

 SDchange was defined as  SDchange = root square [(SDpre
2/

Npre) + (SDpost
2/Npost)] [27]. A forest plot was created to pre-

sent the SMD and 95% confidence intervals (CIs) of muscle 

mass and muscular strength for all respective comparisons. 

All analyses were conducted using a random effects model 

to account for measurement variability and heterogeneity 

among the studies. For each comparison, pooled effects 

sizes (ES) were calculated. Alpha level was therefore set to 

p < 0.05. Data are reported as mean ± standard deviation.

The assessment of the between-study heterogeneity was 

verified with the I2 method, with an I2 of 0–40% represent-

ing a low heterogeneity, 30–60% representing a moderate 

heterogeneity and 50–90% and 75–100% representing a 

substantial or considerable heterogeneity, respectively [26].

In total, five meta-analyses were conducted. First of all, 

the effects of LL-BFR training on muscle mass and strength 

were compared with HL training and LL training (analy-

ses 1–3). A fourth and fifth comparison were performed to 

Table 2  LL-BFR training and changes in muscle mass

a Values are only reported for the quadriceps muscle, since data for other muscle groups were not available

1RM one-repetition maximum, CON control group, CSA cross-sectional area, DEXA dual x-ray absorptiometry, HL high-load, LBM lean body 

mass, LL-BFR low-load blood flow restriction, MRI magnetic resonance imaging, wk week/s, y years

Study Subjects Protocol N Exercise 

mode

Duration/

frequency

Muscle mass 

assessment

Percentage 

increase

Conclusion

Cook et al. 

[81]

Older adults 

(≥ 65 y)

LL-BFR (30–50% 

1RM)

HL (70% 1RM)

12

12

Leg curl

Leg exten-

sion

Leg press

12 wk; 2 

days/wk

MRI LL-BFR: 

7%

HL: 6%

No significant 

between-group 

differences

Libardi et al. 

[82]

Older adults 

(> 60 y)

LL-BFR (20–30% 

1RM)

HL (70–80% 

1RM)

10

8

Leg press 12 wk; 2 

days/wk

MRI LL-BFR: 

8%

HL: 7%

No significant 

between-group 

differences

Thiebaud 

et al. [85]

Older women 

(61 ± 5 y)

LL-BFR (10–30% 

1RM)

HL (70–90% 

1RM)

6

8

Seated chest 

press

Seated row

Seated 

shoulder 

press

8 wk; 3 

days/wk

Ultrasound

    Biceps brachii

    Triceps brachii

    Deltoid

    Pectoralis 

major

DEXA

    Arm bone-free 

LBM

LL-BFR: 

3–17%

HL: − 5 to 

7%

No significant 

between-group 

differences

Vechin et al. 

[86]

Older adults 

(59–71 y)

LL-BFR (20–30% 

1RM)

HL (70–80% 

1RM)

8

8

Leg press 12 wk; 2 

days/wk

MRI LL-BFR: 

6%

HL: 7%

Similar increases in 

both groups

Yasuda et al. 

[33]

Older women 

(61–86 y)

LL-BFR (35–45% 

1RM)

HL (70–90% 

1RM)

10

10

Squats

Knee exten-

sion

12 wk; 2 

days/wk

MRI

    Quadriceps

    Adductors

    Gluteus maxi-

mus

    Hamstring

LL-BFR: 

7%a

HL: 2%a

No significant 

between-group 

differences except 

for quadriceps 

CSA (greater in 

LL-BFR)
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investigate the additional benefit of blood flow restriction 

in combination with walking exercise. In all analyses, mul-

tiple comparisons were included from several studies (e.g. 

dynamic and isometric strength measurements) in order to 

increase accuracy and thus generalization of our analyses. 

This is a common and accepted statistical method for meta-

analysis [28].

3  Results

3.1  Study Selection

In total, from an initial 2658 studies, 11 were included 

in this systematic review and meta-analysis. From 18 

studies, we assessed the full texts (for full search pro-

cess see Fig. 1). After checking for eligibility of these 

articles based on our inclusion and exclusion criteria, we 

Table 3  BFR walking and changes in muscle strength

1RM one-repetition maximum, BFR blood flow restriction, CON control group, HRR heart rate reserve, wk week/s, y years

Study Subjects Protocol N Exercise mode Duration/fre-

quency

Strength meas-

urement

Percentage 

increase

Conclusion

Clarkson et al. 

[66]

Older adults 

(60–80 y)

BFR walking 

(4 km/h)

CON walking 

(4 km/h)

10

9

Walking 6 wk; 4 days/

wk

30-sec sit-to-

stand test

BFR: 28%

CON: 8%

Significantly 

greater 

strength 

increases for 

BFR

Ozaki et al. 

[87]

Older adults 

(57–76 y)

BFR walking 

(45% HRR)

CON walking 

(45% HRR)

13

10

Treadmill walk-

ing (20 min)

10 wk; 4 days/

wk

Isokinetic knee 

extension

Isokinetic knee 

flexion

BFR: 9–15%

CON: 0–3%

Significantly 

greater 

strength 

increases for 

BFR except 

for knee 

extension

Ozaki et al. 

[67]

Older women 

(57–73 y)

BFR walking 

(45% HRR)

CON walking 

(45% HRR)

10

8

Treadmill walk-

ing (20 min)

10 wk; 4 days/

wk

Isometric knee 

extension

Isokinetic knee 

extension

    30°/s; 180°/s

Isokinetic knee 

flexion

    30°/s; 180°/s

BFR: 3–22%

CON: − 4 to 

2%

Significantly 

greater 

strength 

increases for 

BFR except 

for isometric 

knee exten-

sion

Table 4  BFR walking and changes in muscle mass

BFR blood flow restriction, CON control group, CSA cross-sectional area, HRR heart rate reserve, min minutes, MRI magnetic resonance imag-

ing, wk week/s, y years

Study Subjects Protocol N Exercise mode Duration/fre-

quency

Muscle mass 

assessment

Percentage 

increase

Conclusion

Ozaki et al. 

[87]

Older adults 

(57–76 y)

BFR walking 

(45% HRR)

CON walking 

(45% HRR)

13

10

Treadmill walk-

ing (20 min)

10 wk, 4 days/

wk

MRI BFR: 3%

CON: 0%

Significant 

greater 

muscle mass 

increases for 

BFR

Ozaki et al. 

[67]

Older women 

(57–73 y)

BFR walking 

(45% HRR)

CON walking 

(45% HRR)

10

8

Treadmill walk-

ing (20 min)

10 wk, 4 days/

wk

MRI

    Mid-thigh 

(CSA)

    Mid-quadri-

ceps (CSA)

    Thigh (volume)

    Quadriceps 

(volume)

BFR: 3–4%

CON: − 2 to 

0%

Significant 

greater 

muscle mass 

increases for 

BFR
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excluded studies that compared LL-BFR training with 

balance training [29], water-based exercise [30] or a non-

training control group [31, 32]. Additionally, after the 

corresponding author could repeatedly not be contacted, 

muscle mass values from one study [33] and all outcome 

measures from another study were excluded from the 

meta-analyses [5]. Two more studies had to be excluded 

due to insufficient study quality (PEDro score < 4) [34, 

35].

3.2  LL‑BFR versus HL

Six studies comparing the effects of LL-BFR and HL 

training on muscle strength were included in the meta-

analysis (see Fig.  2). Given that several studies had 

multiple treatment outcome measures, a total of 14 com-

parisons were incorporated in the quantitative analysis. 

Between-group comparisons revealed significantly higher 

increases in muscle strength following HL (24.0 ± 16.2%) 

compared with LL-BFR training (14.4  ±  6.3%). The 

calculation of the meta-analysis showed a significant 

(Z = 2.96, p < 0.01) pooled ES of − 0.42 (95% CI − 0.70 

to − 0.14) in favour of HL. Heterogeneity was not signifi-

cant with an I2 of 18% (p = 0.26).

Four studies with eight outcome measures investigated 

the effects of long-term LL-BFR and HL training on 

muscle mass (see Fig. 3). Averaged percentage increases 

of muscle mass were 6.2 ± 5.1% and 4.2 ± 4.2% in the 

LL-BFR and HL groups, respectively. The weighted aver-

age ES was 0.21 (95% CI − 0.14 to 0.56) in favour of LL-

BFR training. However, this effect did not reach statistical 

significance (Z = 1.16, p = 0.25). The calculation of I2 

showed a heterogeneity of 0% (p = 0.86).

3.3  LL‑BFR Versus LL

A total of two studies and nine comparisons measuring 

muscular strength following LL-BFR and LL training were 

included in this meta-analysis (see Fig. 4). Both studies 

used repetition matched protocols. Across all comparisons, 

LL-BFR training had an average percentage increase of 

12.3 ± 4.1% in muscle strength, compared with LL with 

2.5 ± 2.7%. Quantitative analyses demonstrated significantly 

greater strength increases with LL-BFR compared with LL 

(Z = 3.79, p < 0.001). The pooled ES was 0.86 (95% CI 

0.42–1.30). However, heterogeneity was considerably higher 

for this meta-analysis with I2 = 64% (p < 0.01).

No study was identified comparing the effects of LL-BFR 

and LL on muscle mass.

3.4  BFR and Walking

Three studies (eight comparisons) assessed muscle strength 

changes following long-term BFR walking and walking 

with normal blood flow (see Fig. 5). Studies that com-

bined walking with and without BFR showed percent-

age changes of 13.3 ± 8.5% and 0.4 ± 3.9% in muscular 

Fig. 2  Forest plot demonstrating the effects of LL-BFR versus HL 

training on muscular strength. Different letters for the same study rep-

resent different muscular strength assessment methods. CI confidence 

interval, HL high-load, IV inverse variance, LL-BFR low-load blood 

flow restriction, Random random effects model
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strength, respectively. Calculation of the meta-analysis 

revealed significantly greater strength increases (Z = 5.75, 

p < 0.001) when walking was performed with partial vas-

cular occlusion. The weighted average ES was 3.09 (95% CI 

2.04–4.14). I2 for this analysis was 77% and demonstrated a 

high heterogeneity (p < 0.001).

In order to compare the effects of walking with and 

without BFR on muscle mass, two studies with a total 

of seven comparisons were included in the quantitative 

analysis (see Fig. 6). Mean muscle mass percentage gain 

was 3.0 ± 0.4% for the BFR + walking group, with mean 

percentage changes of − 0.7 ± 0.7% in walking with 

normal blood flow. Statistical examination revealed a sig-

nificantly higher increase in muscle mass following BFR 

compared with normal walking (Z = 7.11, p < 0.001). The 

average ES and I2 were 1.82 (95% CI 1.32–2.32) and 0% 

(p = 0.86), respectively.

4  Discussion

The main objective of the present systematic review and 

meta-analysis was to assess the effects of LL-BFR train-

ing on muscle mass and strength in older adults, compared 

Fig. 3  Forest plot demonstrating the effects of LL-BFR versus HL 

training on muscle mass. Different letters for the same study represent 

different assessment methods for muscle mass. CI confidence inter-

val, HL high-load, IV inverse variance, LL-BFR low-load blood flow 

restriction, Random random effects model

Fig. 4  Forest plot demonstrating the effects of LL-BFR versus LL 

training on muscular strength. Different letters for the same study rep-

resent different muscular strength assessment methods. CI confidence 

interval, IV inverse variance, LL low-load, LL-BFR low-load blood 

flow restriction, Random random effects model
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with conventional HL and LL training. In an additional 

analysis, we sought to provide insights into the beneficial 

effect of BFR combined with walking as this has particu-

lar implications for older individuals at risk of mobility 

limitations.

While our analyses demonstrate that HL and LL-BFR 

training produce similar increases in muscle mass in older 

cohorts, adaptations in muscular strength were smaller fol-

lowing LL-BFR training compared with those typically 

seen after HL training. However, the application of an 

external tourniquet seems to facilitate significantly greater 

responses in muscular strength compared with LL train-

ing alone. Due to insufficient data availability, no conclu-

sion can be drawn about the effects of LL-BFR training 

on muscle mass compared with LL training alone. Inter-

estingly, even during intensities as low as walking, BFR 

enhances strength and muscle mass adaptations in older 

subjects compared with normal walking.

4.1  LL‑BFR Versus HL Resistance Training

Our results suggest that LL-BFR training is equally effective 

in increasing muscle mass but seems to be inferior in elicit-

ing muscle strength responses compared with a common HL 

resistance training programme in older subjects. These find-

ings are in line with a previously published meta-analysis 

by Lixandrao et al. [6], which investigated the effects of 

LL-BFR training and HL training in a mixed-age population.

Even though mechanical tension produced by LL-BFR 

training is assumed to be much lower than during HL train-

ing, our results indicate that gains in muscle mass were not 

different between these training protocols in older subjects. 

One plausible mechanism that has been reported to be as 

important as mechanical tension for the promotion of muscle 

mass is metabolic stress [36]. While one study demonstrated 

an augmented lactate concentration following LL-BFR com-

pared with HL resistance training for older men [5], others 

Fig. 5  Forest plot demonstrating the effects of walking + BFR versus 

normal walking on muscular strength. Different letters for the same 

study represent different muscular strength assessment methods. BFR 

blood flow restriction, CI confidence interval, IV inverse variance, 

Random random effects model

Fig. 6  Forest plot demonstrating the effects of walking + BFR versus 

normal walking on muscle mass. Different letters for the same study 

represent different muscle mass assessment methods. BFR blood flow 

restriction, CI confidence interval, IV inverse variance, Random ran-

dom effects model
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showed inconsistent results [37]. Moreover, several studies 

reported that the intramuscular hypoxic environment and 

metabolic stress influence the fatigability of the muscle 

fibres and thus induce a progressive recruitment of motor 

units during training [38, 39]. In addition to metabolic accu-

mulation, the effects of LL-BFR on muscular hypertrophy 

have been suggested to be mediated by an increased mecha-

notransduction [40] and hormonal response [41], an acute 

production of reactive oxygen species [42] or cell swelling 

[36, 43]. However, current research on this topic is sparse 

and studies investigating potential mechanisms are mostly 

performed with younger populations [39, 44, 45] or do 

not compare LL-BFR and HL resistance training [39, 40, 

46]. Thus, any definite conclusions at this time would be 

premature.

The inferiority of LL-BFR resistance training in increas-

ing muscular strength compared with traditional HL pro-

grammes could be linked to an insufficient neural drive 

during exercising with low loads. Studies investigating this 

aspect used surface electromyography (sEMG) or twitch 

interpolation to estimate changes in voluntary muscle acti-

vation during exercise. It was reported that EMG parameters 

(e.g. amplitude or integrated EMG) were greater following 

HL training than following LL-BFR training [47–49]. Kubo 

et al. [49], for example, showed that the activation levels of 

the quadriceps muscle assessed by sEMG and twitch inter-

polation significantly increased by 20.5% and 3.2%, respec-

tively, following 12-week HL training, with no significant 

changes in the LL-BFR group. However, these results must 

be interpreted with caution since a higher EMG amplitude 

might not necessarily represent a higher motor unit recruit-

ment. Often the phenomenon of motor unit cycling, which 

refers to the fact that motor units can be temporarily de-

recruited for the purpose of reducing fatigue [50–52], is 

ignored by researchers. Moreover, these studies were con-

ducted in young and healthy subjects [48, 49] and may not 

necessarily be transferred to older populations. However, 

the findings in these cohorts provide insights into how the 

observed results might be explained in older individuals.

4.2  LL‑BFR Versus LL Resistance Training

Our finding that the addition of BFR to LL resistance 

training enhances muscle strength supports the results of 

a previous meta-analysis from Slysz et al. [1] that was con-

ducted in mixed-aged populations. Functional adaptations in 

strength are generally believed to be mediated by neural (e.g. 

increased muscle activation) and/or structural factors (e.g. 

muscular hypertrophy) [53]. Evidence on this topic suggests 

that the application of a cuff during LL training is associated 

with a reduction in oxygen availability and high metabolite 

accumulation, thereby leading to significantly increased fast-

twitch fibre recruitment [38, 39, 54]. However, studies with 

protocols to volitional exhaustion reported a similar muscle 

activation in both LL-BFR and LL groups [46, 48]. This sup-

ports the notion that LL alone can also elicit high levels of 

muscle activity (as assessed with sEMG) if the exercise task 

is performed in an all-out manner [46]. Accordingly, long-

term intervention studies confirm that free-flow LL training 

performed to fatigue induces equal muscular hypertrophy 

compared with the same training with BFR [55]. Translating 

this to older individuals, performing resistance exercise to 

failure could increase the incidence of overtraining or mus-

culoskeletal injuries compared with young individuals [56]. 

Therefore, the prescription of LL-BFR resistance training 

could be beneficial in these populations.

Besides neural changes with LL-BFR training, there seem 

to be structural changes when combining LL training with 

BFR in older people. Although two studies investigated the 

effects of LL-BFR in older individuals, both could not be 

included in the present meta-analysis due to insufficient 

study quality (PEDro < 4) [34] or unavailable raw data [5]. 

However, their findings point towards a significantly greater 

increase of muscle mass in the LL-BFR group compared 

with the LL group. Studies investigating the increase of mus-

cle mass following LL-BFR in young individuals [57, 58] or 

athletes [59] confirm these results and show that LL-BFR 

maximizes the effects of LL training on muscle mass. These 

results, however, do not permit reliable statements for older 

populations.

Previous short-term studies provided evidence that the 

hypertrophic response is upregulated with partial vascular 

occlusion in older subjects. Fry et al. [40] investigated the 

effects of BFR training on stimulating mammalian target of 

rapamycin (mTOR) and muscle protein synthesis (MPS). 

Their results demonstrate that LL-BFR enhances mTOR 

signalling and MPS. Additionally, Fry and colleagues 

[40] observed a significant 9-fold growth hormone (GH) 

increase in the LL-BFR group compared with the control 

group. These findings are in accordance with other studies 

[39, 60], but have to be cautiously interpreted with regard to 

muscular hypertrophy, since muscle growth can occur even 

in the absence of key anabolic hormones such as insulin-like 

growth factor 1 or GH [61–64].

4.3  BFR Walking Versus Normal Walking

Although long-term walking training has been shown to 

increase muscle thickness and strength in the elderly [65], 

the present meta-analysis revealed that the combination 

of walking with BFR has significant additional benefits 

towards these outcomes. The percentage changes in mus-

cular strength (+ 13.3%) are comparable to what is seen 

after LL resistance training (+ 12.3%). Changes in muscle 

mass are small but still significant (+ 3.0%). Previous studies 

also report an increase in physical function [66], but not in 
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aerobic capacity (estimated by peak oxygen uptake,  VO2peak) 

[32, 67].

Interestingly, a recent meta-analysis by Slysz et  al. 

showed that the strength adaptations occur in an intensity-

dependent manner, with higher walking intensities (> 70 m/

min) eliciting greater strength increases compared with 

lower intensities (< 70 m/min) [1]. Besides its positive 

effects on muscle mass and strength, walking combined with 

BFR has also been shown to improve venous compliance in 

untrained elderly subjects [68].

4.4  Practical Implications

Numerous studies have shown that the age-related loss of 

muscle strength is associated with a decrease in postural 

control [69] leading to a higher risk of falls [70] and mortal-

ity [71]. A frequently occurring simultaneous loss in muscle 

mass can contribute to the development of cardiometabolic 

diseases in the elderly [72]. This highlights the need for 

adequate interventions to counteract these phenomena in 

older age. To maximize the span of effective functioning 

for people with sarcopenia, Cruz-Jentoft et al. [73] sug-

gest the use of multidimensional approaches combining 

physical exercise and nutritional interventions. However, 

current exercise guidelines for older people [74] are often 

difficult to implement due to contraindications to high train-

ing loads.

The fact that even low-workload walking exercise is able 

to facilitate such changes is of particular importance for 

older populations with limited functional capacity or mobil-

ity [11, 75]. Maintaining fitness and an active lifestyle could 

thus help to postpone the crossing of the threshold for inde-

pendence [76]. Apart from improvements on the muscular 

level, LL-BFR training has also been shown to positively 

influence bone metabolism and hence may be applicable in 

the prevention and treatment of bone diseases such as osteo-

porosis [77].

Given these musculoskeletal adaptations, LL-BFR 

training may be particularly recommended for older pop-

ulations with contraindications regarding high training 

loads. For healthy individuals without contraindications, 

LL-BFR training may be prescribed in combination with 

HL training in order to aim for optimal muscular strength 

responses. From a practical standpoint, the data from our 

meta-analysis might help practitioners and therapists in 

geriatrics and rehabilitation to increase clients’ functional 

capacity and maintain quality of life. In this regard, taking 

a thorough cardiovascular disease history from each indi-

vidual is important to avoid adverse events, particularly 

since most risk factors have not been thoroughly investi-

gated in older people. Kacin et al. [78] have developed a 

clinical screening tool for determining risk when prescrib-

ing BFR training programmes. These authors recommend 

a comprehensive assessment of personal, medical, social 

and family histories.

4.5  Limitations and Strengths

Regarding the interpretation of our results, there are some 

limitations in the present meta-analysis that should be men-

tioned. Although the field of BFR training is a frequently 

discussed topic in scientific research [3, 7, 21, 77], the num-

ber of studies investigating the effects of LL-BFR in older 

adults is still sparse. The limited number of included studies 

(N = 11) is not least attributable to the fact that we intention-

ally chose strict inclusion criteria in terms of study quality 

(PEDro > 4). It must also be noted that the study quality of 

the majority of included studies (10/11) was only rated as 

moderate (PEDro = 4). One main factor for potential bias 

and thus restricted study quality in all studies was the lack 

of subject blinding. While we are aware that it is not always 

feasible in BFR training interventions, future investigations 

should aim to choose different training locations in order to 

reduce performance bias. In addition, a large heterogeneity 

was found across studies for the comparisons of BFR with 

LL (I2 = 64) and walking (I2 = 77%) in muscular strength 

assessments. This large variability might result from dif-

ferences in training protocols (i.e. training durations from 

4 to 10 weeks), sample sizes, trained limbs (i.e. lower vs 

upper extremity) and strength assessments (dynamic 1RM 

vs isometric vs isokinetic testing). Furthermore, considering 

multiple outcomes from the same study in one meta-analysis 

could also partially have an impact on the homogeneity of 

the results.

5  Conclusion

The present systematic review and meta-analysis provides 

novel insights into the effect of LL-BFR training compared 

with training modalities that are currently used for coun-

teracting the age-related decline in muscle mass and func-

tion. Our results indicate that the application of BFR to LL 

training and walking exercise positively influences muscu-

lar adaptations compared with each exercise under normal 

blood-flow conditions. In comparison with HL training, LL-

BFR elicits lower strength increases.

Although the research on this topic is limited, our data 

provide first evidence for practitioners and physicians 

that are confronted with individuals that cannot tolerate 

near-maximum loads but are in need of adequate therapy. 

Although previous surveys and reviews report an accept-

able level of safety for LL-BFR for mixed age popula-

tions [79, 80], we recommend a thorough screening and 

physical examination of all trainees before commencing 

this training regimen. Although it was beyond the scope 
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of this review, future studies need to examine potential 

moderators (e.g. cuff pressure, sex, volume or frequency) 

that might affect adaptations of muscle mass and strength 

in older adults. Additionally, we want to draw attention to 

the lack of high-quality studies comparing the effects of 

LL-BFR and LL on muscle mass.
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