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abstract: For at least 200 years, since the time of Malthus, pop-
ulation growth has been recognized as providing a critical link be-
tween the performance of individual organisms and the ecology and
evolution of species. We present a theory that shows how the intrinsic
rate of exponential population growth, , and the carrying capacity,rmax

K, depend on individual metabolic rate and resource supply rate. To
do this, we construct equations for the metabolic rates of entire
populations by summing over individuals, and then we combine
these population-level equations with Malthusian growth. Thus, the
theory makes explicit the relationship between rates of resource sup-
ply in the environment and rates of production of new biomass and
individuals. These individual-level and population-level processes are
inextricably linked because metabolism sets both the demand for
environmental resources and the resource allocation to survival,
growth, and reproduction. We use the theory to make explicit how
and why exhibits its characteristic dependence on body size andrmax

temperature. Data for aerobic eukaryotes, including algae, protists,
insects, zooplankton, fishes, and mammals, support these predicted
scalings for . The metabolic flux of energy and materials alsormax

dictates that the carrying capacity or equilibrium density of popu-
lations should decrease with increasing body size and increasing tem-
perature. Finally, we argue that body mass and body temperature,
through their effects on metabolic rate, can explain most of the
variation in fecundity and mortality rates. Data for marine fishes in
the field support these predictions for instantaneous rates of mor-
tality. This theory links the rates of metabolism and resource use of
individuals to life-history attributes and population dynamics for a
broad assortment of organisms, from unicellular organisms to
mammals.
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Perhaps the most long-standing and well-accepted “law”
of ecology is the inherent capacity of all organisms for
exponential population growth. In An Essay on the Prin-
ciple of Population, Thomas Malthus (1798) noted that all
populations had the potential to increase geometrically”
and that this potential would be realized under favorable
conditions where resources are abundant and enemies are
absent. This capacity was a cornerstone of Darwin’s theory
of evolution by natural selection, and it is central to a large
body of theory in contemporary ecology and evolution.
For example, Turchin (2001) considers Malthusian or ex-
ponential population growth to be one of the few universal
laws of ecology.

This law is usually written as

dN
rtN(t) p N(0)e or p rN, (1)

dt

where the size of the population, N, at some time, t, is a
function of initial population size, , and the specificN(0)
rate of exponential population growth, r. Depending on
the environmental conditions, r can be negative, positive,
or 0. However, there are two choices of r, corresponding
to two special conditions, that are the most natural choices
for comparisons across populations and are the most well
studied in the ecological literature, both empirically and
theoretically. The first of these, , represents ther p rmax

inherent capacity of a population to reproduce and is thus
the maximum exponential growth rate when resources are
not limiting. The second choice for comparisons across
populations is the steady state situation, , where ther p 0
total number of individuals in the population does not
change with time. For this case, the number of organisms
at equilibrium is referred to as the carrying capacity,

, of the environment.K p N(r p 0)
Ecologists and evolutionary biologists have long rec-

ognized that r and K vary enormously among different
taxonomic or functional groups of organisms and with
changing environmental conditions. Microbiologists have
attempted to understand this variation in terms of first
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principles of biology, physics, and chemistry. Their con-
tributions have had only limited influence in ecology, how-
ever, perhaps because ecologists have had difficulty relating
population growth of microbes in culture to population
growth of plants and animals in the field or laboratory.
The link is provided by metabolism, the complex of bio-
chemical reactions that governs the flow of energy and
transformation of materials in organisms. The metabolic
rate is the most fundamental biological rate, and it de-
termines the rates of most other organic processes. In
particular, the metabolic rates of individual organisms de-
termine the vital rates of survival, growth, and reproduc-
tion, and these in turn determine the growth rates of
populations.

It has long been known that metabolic rates vary in
predictable ways with body size and temperature. Recent
progress in theoretically characterizing the joint effects of
size and temperature on metabolic rate (Gillooly et al.
2001, 2002) provides the basis for relating metabolic rates
of individual organisms to an increasing number of eco-
logical and evolutionary processes (e.g., Allen et al. 2002;
Brown et al. 2003). Here, we show that the body size and
body temperature dependence of growth rates of popu-
lations is a direct consequence of the body size and body
temperature dependence of the metabolic rates of indi-
vidual organisms. Therefore, size and temperature can ex-
plain much of the variation in and K among differentrmax

kinds of organisms and environments.
We emphasize that many ecologists have recognized the

body size and temperature dependence of population
growth rate. For example, it has long been known that

scales with the power of body mass (Fenchelr �1/4max

1973; Southwood et al. 1974; Blueweiss et al. 1978; Hen-
nemann 1983; Peters 1983) and that carrying capacity, K,
scales with the power of body mass (Damuth 1987;�3/4
Belgrano et al. 2002). Although the temperature depen-
dence of has also been studied extensively, especiallyrmax

in microbes and insects (Monod 1942; Birch 1948; Dean
and Hinshelwood 1966; Droop 1968; Eppley 1972), the
temperature dependence of K has received surprisingly
little attention. Despite these empirical findings, a general
theory that explains these mass and temperature scalings
for both maximal and steady state population growth
across a wide range of species is lacking. Moreover, with
few exceptions (Peppin 1991), the combined effects of
mass and temperature have not been considered; for ex-
ample, studies have investigated just the body mass de-
pendence for larger organisms such as fishes, amphibians,
and reptiles or just the temperature dependence for smaller
organisms such as microbes and insects.

Here, we begin by developing a general theory for pop-
ulation growth that relates any value of r to individual
metabolic rate, B. Then we focus on the special cases,

and , in order to derive scalings for pop-r p 0 r p rmax

ulation growth and life-history parameters. Life-history
strategies for various organisms determine which param-
eters are the most relevant to study. Therefore, we develop
special applications of this theory on the basis of what
fraction of an organism’s life span is spent reproducing,
which we divide according to nonoverlapping and over-
lapping generations, and on the basis of whether an or-
ganism’s ontogenetic growth is determinate or indeter-
minate. Because previous work connects metabolic rate to
body mass and body temperature, we can use this frame-
work to predict how population growth and life-history
parameters depend jointly on both body mass and body
temperature. Using published data, we then evaluate these
predictions and find support for our theory. Finally, we
comment on some of the implications of this theory for
ecology and future directions of research.

Theory Relating Population Growth Rate to Metabolic
Rate, Body Mass, and Temperature

Physiologists define metabolic rate to be the rate at which
organisms transform energy through biochemical pro-
cesses. West et al. (1997) and Gillooly et al. (2001) showed
that the mass and temperature dependence of the whole
organism metabolic rate, , for an individual scalesB(m, T)
as

�E/kT 3/4B(m, T) p B e m , (2)0

where E is the average activation energy of rate-limiting
biochemical metabolic reactions, k is Boltzmann’s con-
stant, T is absolute temperature, B0 is a taxon-dependent
and metabolic-state-dependent normalization constant,
and m is the body mass of an individual. The mass de-
pendence in equation (2) is a consequence of the scaling
of resource supply networks and exchange surfaces in
branching hierarchical networks (West et al. 1997; see also
Banavar et al. 1999, 2002). As for the temperature depen-
dence in equation (2), rates of chemical reactions, in-
cluding biochemical reactions of metabolism in the body,
scale with temperature according to , known as the�E/kTe
Boltzmann factor in physics and the Arrhenius-van’t Hoff
expression in ecology and biochemistry. Therefore, the
temperature in equation (2) is the temperature at which
the biochemical reactions are occurring, which is the same
as the body temperature of the organism. For ectotherms,
this is very nearly equal to the environmental temperature,
but for endotherms, it is high (35�–40�C) and virtually
independent of environmental temperature. Gillooly et al.
(2001) show empirically that this mass and temperature
dependence explains much of the variation in the meta-
bolic rate within groups of animals, plants, and microbes.
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Different taxonomic or functional groups may differ by
as much as a factor of 20.

To a very good approximation, equation (2) applies to
different levels of metabolic activity (Peters 1983), but just
as for r, a standard must be chosen to compare across
species. This choice partially determines B0. The most
common choices are basal metabolic rate, the metabolic
rate of a fasting, inactive individual; field metabolic rate,
the metabolic rate of a free-living individual in its envi-
ronment; and maximal metabolic rate, the metabolic rate
of an individual at maximum aerobic activity. The rates
at which organisms acquire energetic and material re-
sources from the environment, transform them in bio-
chemical reactions, and allocate them to maintenance (sur-
vival), growth, and reproduction are inextricably linked to
metabolic rate. In this article, we are interested in how an
individual allocates its metabolic rate between the power
it uses for maintenance and the power it uses to create
new organisms. The metabolic rate that is most relevant
in this article is closely akin to field metabolic rate.

We begin by showing the relationship between the met-
abolic rate of a single individual and the average metabolic
rate for an individual in a population. A population grow-
ing exponentially in a constant environment at a fixed rate,
r, will reach a stable age and size distribution, so the av-
erage value of mass for an individual in the population,
M, becomes time independent. Therefore, if we replace
the mass term for an individual, m, by M, we can define
the time-independent quantity, ,�E/kT 3/4B(M, T) p B e M0

which is an excellent approximation to the average met-
abolic rate of an individual (Savage 2004).

Next, we examine how organisms allocate their metabolic
power to maintenance, replacement, and population
growth. If individuals are just sustaining themselves and not
reproducing, the metabolic rate of the population can be
obtained by multiplying the average maintenance metabolic
rate of an individual, , by the number of individualsB(M, T)
in the population at time t, . If the pop-N(M, T, t)B(M, T)
ulation is at a steady state, and , and eachr p 0 N p K
individual is on average just replacing itself, then some
energy and power must be allocated to creating new in-
dividuals. Defining to be the energy to produce aE(M)
new individual (this quantity is independent of temper-
ature, which affects only the rate of ontogenetic growth),
it takes amount of energy to replace theN(M, T, t)E(M)
entire population. Because on average deathsN(M, T, t)
will occur over a time period equal to the average life span,

, all individuals will be replaced during the timeS(M, T)
interval of a single life span, so the power needed to keep
the size of the population at steady state is given by

. Finally, if the population is notN(M, T, t)E(M)/S(M, T)
just maintaining its numbers but increasing them, the rate
of creating new individuals beyond replacement is

, so is the power given todN(M, T, t)/dt E(M)dN(M, T, t)/dt
population growth. Even when the population is decreasing
in size, measures how quickly the met-E(M)dN(M, T, t)/dt
abolic rate of the entire population is decreasing as a result
of a net loss of individuals and must be included as part
of the total metabolic rate. Consequently, by summing the
power required for maintenance, replacement, and net
new individuals, we express the total metabolic rate of the
population as

E(M)
B (M, T, t) p N(M, T, t) B(M, T, t) �POP [ ]S(M, T)

dN(M, T, t)
� E(M) . (3)

dt

To review, after expansion, the first term in equation
(3), , is the power required for main-N(M, T, t)B(M, T)
tenance; the second term, , is forN(M, T, t)E(M)/S(M, T)
replacement (i.e., production of one offspring per indi-
vidual) at zero population growth; and the third term,

, is for production of offspring in ad-E(M)dN(M, T, t)/dt
dition to replacement. Although M and the metabolic rate
per individual for maintenance, , are time inde-B(M, T)
pendent, the metabolic rate of the entire population,

, can vary with time because the number ofB (M, T, t)POP

individuals in the population, , often varies withN(M, T, t)
time. From equation (3), the total mass-specific metabolic
rate for an individual averaged over the entire population
is given by

B (M, T, t)POPB (M, T, t) {POP N(M, T, t)M

E(M) E(M)
p B(M, T) � � r, (4)

MS(M, T) M

where is the mass-specific met-B(M, T) { (B(M, T)/M)
abolic rate for maintenance of an individual, and we have
used equation (1) to replace with r. Equation(1/N)(dN/dt)
(4) is a general equation that applies to any value of r and
is valid for any conditions that do not violate the as-
sumption of a stable age and size distribution. For the
special case of a nongrowing population, (dN/dt) p r p

, the last term in equation (4) is 0, and the average mass-0
specific metabolic rate of an individual that is just replac-
ing itself is .B (M, T) p B(M, T) � (E(M)/MS(M, T))REP

Therefore, the average mass-specific metabolic rate of
an individual in a maximally increasing population,

, must exceed that of an individual in a stableB (M, T)MAX

population, , which in turn must exceed theB (M, T)REP

mass-specific metabolic rate of an individual that is main-
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taining itself without growing or reproducing, ; thatB(M, T)
is, .B (M, T) 1 B (M, T) 1 B(M, T)MAX REP

We next consider how size and temperature affect the
rate of energy allocation to production of new individuals.
We assume that the energy required to produce a new
individual is linearly proportional to its mass, E(M) p

, where E0 is a normalization constant. Because thisE M0

cancels the explicit M dependence in equation (4) and
because life span increases with increasing body size and
decreasing temperature, the mass-specific energy required
for an individual to replace itself scales inversely with life
span. Empirically, life span scales inversely with the mass-
specific metabolic rate, so

E(M) E E0 0p p B(M, T),
MS(M, T) S(M, T) S0

where S0 is a constant given by S(M, T) p (S /B(M, T))0

(Gillooly et al. 2001). Thus, B (M, T) p [1 �REP

and(E /S )]B(M, T)0 0

B (M, T, t) p B (M, T) � E r0POP REP

E0p 1 � B(M, T) � E r, (5)0( )S0

which relates the average total mass-specific metabolic re-
quirements of an individual to its requirements for main-
tenance and reproduction.

Now we are in a position to determine the mass and
temperature dependence of r and make empirically testable
predictions. We do this using the Euler equation,

�

�rx1 p dxe L(x)b(x), (6)�
0

where the integral is performed over all possible ages, x,
of individuals; is the average fecundity at age x; andb(x)

is the percentage of the population that has survivedL(x)
from birth to age x (Charnov 1993). In appendix A in the
online edition of the American Naturalist, we show that
under the assumption that is a function that isL(x)b(x)
sharply peaked around the average age at which a female
gives birth, known as the generation time, G, it follows
that r is inversely related to G (May 1976). A simple ar-
gument relates these quantities to the average number of
offspring per individual per generation, R0 . Using equa-
tion (1) to express R0 gives . Because therG p ln (R )0

factor is slowly varying, it can be considered con-ln (R )0

stant, so the mass and temperature dependence of r must
vary inversely to that of G.

Gillooly et al. (2002) previously derived a relation for
time to first reproduction, a, in terms of mass and tem-
perature

1/4 E/kTa ∝ M e . (7)

This theoretically predicted relation is supported by em-
pirical data ( for zooplankton; Gillooly et al.2r p 0.74
2002). As will be shown later, G scales in the same way
as does a, so , which is con-1/4 E/kTG ∝ M e ∝ (1/(B(M, T)))
sistent with the close correlation between generation time
and time to first reproduction. Therefore,

ln R r0 1�1/4 �E/kTr p ≈ r M e p B(M, T), (8)1G B0

where r1 is a taxon- and environment-dependent nor-
malization constant. Note that for the special case of a
nongrowing population, we have , and r is inde-r p 01

pendent of mass and temperature.
Combining equations (5) and (8) gives

E B0 0B (M, T, t) p r 1 � � E . (9)0POP [( ) ]S r0 1

This equation makes explicit the energetic constraints of
metabolism on population growth. That is, r determines
the rate at which the population consumes energy re-
sources, or conversely, the rate of resource supply limits
the rate of population growth:

�1

E B0 0r p B (M, T, t) 1 � � E . (10)0POP [( ) ]S r0 1

Recall that E0, S0, B0, and r1 are independent of M and T,
so the scaling of r reflects that of the average mass-specific
metabolic rate of an individual. Provided that the as-
sumption of a stable age and size distribution and the
approximation implied by equation (8) (see app. A) are
valid, equations (3)–(5) and (9)–(10) apply to all values
of r. For purposes of comparison and analysis of data, we
now characterize the two special cases previously dis-
cussed, and .r p 0 r p rmax

Steady State Populations ( ): Body Size,r p 0
Temperature, and the Energy

Equivalence Rule

Of considerable interest in ecology is the special case of a
nongrowing population, where , and(dN/dt) p r p 0
there is a steady state between the rate of limiting resource
supply in the environment and the rate of resource use
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by the population. Defining the rate of resource supply as
P, the equilibrium population size or carrying capacity is
reached, , when and .N p K (dN/dt) p r p 0 B p PPOP

Consequently, using ,(E(M)/S(M, T)) p (E /S )B(M, T)0 0

equation (3) becomes

E0P p 1 � K(M, T)B(M, T). (11)( )S0

For the special case where P is constant, independent of
M and T, the scalings for and mustK(M, T) B(M, T)
balance so that . Because whole or-�1K(M, T) ∝ B (M, T)
ganism metabolic rate, , scales as , it fol-3/4 �E/kTB(M, T) M e
lows that

E/kT �3/4K(M, T) ∝ e M . (12)

This predicts that for a fixed supply of resources, P, car-
rying capacity or equilibrium population size, ,K(M, T)
should decrease with increasing body size as and�3/4M
also decrease with increasing temperature as . BecauseE/kTe
equation (12) assumes that P does not depend on M or
T, it applies to species living in separate environments with
identical resource supply rates or to coexisting species that
have identical rates of resource use in the same environ-
ment; that is, some constant fraction of P is used by each
species. Consequently, equation (12) explains the �3/4M
trade-off between size and abundance shown by plants of
different sizes growing under near-constant conditions,
that is, similar values of P (Enquist et al. 1998). These
equations do not explain how species apportion energy
resources and power, P, or balance population abundances
in a shared environment. However, if we assume the energy
equivalence of species resource use in natural populations
described by Damuth (1987), then equation (12) follows
from our theory. Hence, equation (12) determines the
mass and temperature dependence of carrying capacity in
or across ecosystems where the total population of each
species uses approximately the same amount of power.
This body size dependence agrees with the previous find-
ings of Damuth (1987; see also Belgrano et al. 2002). The
Boltzmann temperature dependence is of at least equal
importance. It agrees with Allen et al.’s (2002) findings
for ectotherms across environmental gradients of latitude
and temperature. The negative relationship between car-
rying capacity and temperature may seem counterintuitive,
but it is a direct consequence of the fact that when op-
erating at a higher temperature, each individual uses re-
sources at a higher rate because of its elevated metabolic
rate. Inserting the temperature dependence of P into equa-
tion (11) should provide an especially useful method for

making comparisons across latitudes, elevations (terres-
trial), or depths (aquatic).

Equation (11) can also be used to place an upper bound
on the value of for each species. The power usedK(M, T)
by a given species cannot exceed the total power available
in the environment, PTOT, so equation (11) dictates that

PTOTK(M, T) ≤
[1 � (E /S )]B(M, T)0 0

PTOT �3/4 E/kTp M e . (13)
[1 � (E /S )]B0 0 0

Thus, because PTOT does not depend on M or T, in a plot
of versus , all of the data must�E/kTlog (K(M, T)e ) log M
fall below a maximal line with a slope of and an�3/4
intercept given by . If carrying�1log [(P /B )(1 � E /S ) ]TOT 0 0 0

capacity, , scales with mass according to a powerK(M, T)
law that extends over an unbounded mass range, then
equation (13) requires that the power law have a slope of

; that is, . If deviated from�3/4�3/4 K(M, T) ∝ M K(M, T)
a power law, the two lines would not be parallel,�3/4
and the line for the temperature-corrected carrying ca-
pacity would necessarily exceed the maximal line for cer-
tain masses, thereby violating equation (13). In actuality,
the mass range is not unbounded, although mammals do
span a very wide mass range, covering eight orders of
magnitude. Moreover, values for the temperature-
corrected carrying capacity will probably be within two to
three orders of magnitude of the upper bound in equation
(13), corresponding to a separation of two to three units
between the power-law line for temperature-corrected car-
rying capacity and the maximal line. Because these lines
have a small separation of two to three units in the log-
arithm of temperature-corrected carrying capacity (Y-axis)
compared with the range of eight units in the logarithm
of mass (X-axis), the slope of the line for the temperature-
corrected carrying capacity must be close to , or the�3/4
maximal line will be crossed, and equation (13) will be
violated. Consequently, if carrying capacity does follow a
power law for mammals, we have argued on very general
grounds that the exponent for the mass must be close to

.�3/4

Theory for Nonoverlapping Generations
with : Case 1r p rmax

Next, we consider populations where individuals repro-
duce during only a small fraction of their lifetime, hereafter
referred to as discrete or nonoverlapping generations. One
example is given by unicellular organisms, which repro-
duce by fission. Other examples are given by multicellular
organisms, such as many insects and zooplankton, which
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spend only a brief period of their lives reproducing. For
such organisms, and are 0 except atL(x) b(x) x p a p

. Equation (6) can now be solved to giveG r pmax

. Note that is a slowly varyingln [L(G)b(G)]/G ln [L(G)b(G)]
function, so the mass and temperature dependence of

is dominated by the variation in G, which agrees withrmax

the approximation in appendix A. For realistic values of
ranging from 3 to 30, ranges fromL(G)b(G) ln [L(G)b(G)]

only 1 to 3. Thus, equation (8) is a good approximation
to the solution, with , where C is ar p ln [L(G)b(G)]/C1

proportionality constant related to ontogenetic growth rate
(Gillooly et al. 2002). In this case, the equations are easy
to solve, and the approximations and predictions should
be quite accurate.

Theory of Overlapping Generations
with : Case 2r p rmax

Here, we consider organisms that reproduce over a sig-
nificant fraction of their lifetimes so that several genera-
tions can be reproducing at the same time, hereafter re-
ferred to as overlapping generations. First, we consider the
simpler case of determinate ontogenetic growth (e.g., birds
and mammals), where growth ceases at the age of maturity,
a. Then we argue that the theory is robust enough also
to describe indeterminate ontogenetic growth (e.g., fishes
and most plants). For these organisms, the approximation
used in appendix A does not apply because populations
are age or size structured. Therefore, we use a different
method for solving Euler’s equation and in the process
derive scaling laws for and (Charnov 1993).b(x) L(x)

We assume that this case is described by the production
of offspring (b) and the instantaneous mortality rate (Z)
both occurring at a constant rate. With forb(x) p 0 x !

and and for ,�Z(x�a)a b(x) p b(a) L(x) p L(a)e x 1 a

equation (6) can be written as

�

Za �(Z�r )xmax1 p b(a)L(a)e dxe . (14)�
a

Integrating equation (14) and rearranging terms gives
. In this expression,r amax(Z � r )e � b(a)L(a) p 0 L(a)max

can be written as , where is an
a� ∫ Z(x)dx �Za0L(a) p e p e Z

average of Z over the immature period of ontogenetic
growth (Charnov 1993). Hence, equation (14) becomes

r a �Zamax(Z � r )e � b(a)e p 0 ormax

Z � rmax(Z � r )a p � ln . (15)max ( )b(a)

The exponent in the first term must be dimensionless, so
has the dimensions of . Because increasesr amaxr 1/a emax

rapidly with a and decreases rapidly with a, it appears�Zae
as if equation (15) cannot be satisfied for all values of a.
However, equation (15) is always satisfied if andr Zmax

both vary inversely with a. These relations keep the ex-
ponentials fixed and the two terms in balance. Conse-
quently, , which suggests as previ-r ∝ Z ∝ 1/a a ∝ Gmax

ously stated. Moreover, by a similar analysis, equation (15)
shows that it is consistent for the coefficients Z and b to
be proportional to and, thus, that Z, b, and are allr Zmax

inversely related to a as given by equation (7). We propose
that these are the scalings for this case, so

�1/4 �E/kTZ(a) ∝ Z(a) ∝ b(a) ∝ M e . (16)

So, mortality rate is predicted to have the same mass and
temperature dependence as because both of these ratesrmax

are determined by and scale the same as mass-specific
metabolic rate.

Even though the above analysis is for organisms with
determinate ontogenetic growth, the scaling relations may
be robust enough to apply to a broad range of organisms
including those with indeterminate ontogenetic growth
(e.g., fishes). Below, we provide empirical evidence that
for indeterminate growers, Z does indeed scale according
to equation (16) and that scales like equation (8).rmax

Data and Methods

The above predictions were evaluated by compiling rele-
vant data from the literature. In the following analyses,
we de-emphasized evaluating the mass dependence of

because the predicted scaling has been well doc-�1/4r Mmax

umented by previous studies (e.g., Fenchel 1973; South-
wood et al. 1974; Blueweiss et al. 1978; Henneman 1983;
Peters 1983).

rmax: Laboratory Data for Invertebrates

Data on intrinsic rate of increase, , for insects, zoo-rmax

plankton, algae, and protists, were compiled from labo-
ratory studies where the organisms were incubated at con-
stant temperatures ranging from 5�–35�C. Figure 1
illustrates the temperature dependence of population
growth. Each species has a minimum temperature below
which population growth cannot occur, an optimal tem-
perature at which maximal growth occurs, and a very nar-
row temperature range above the optimum where popu-
lation growth rates decrease rapidly. It is only in the
“biologically relevant” temperature range, between the
lower threshold and the optimum, that metabolic rates
and population growth rates have exponential temperature
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Figure 1: Plots of (1/d) as a function of T (�C) for four species ofrmax

insects. This is an example of a typical temperature profile of . Wermax

took the optimal temperature to be 25.2�C for Epiphyas postvittana, 29�C
for Bactrocera dorsalis, 29�C for Bactrocera cucurbitae, and 32�C for Dac-
tylopius austrinus. We also excluded the data for B. dorsalis at 16�C because
the population growth rate was negative. This figure illustrates the “bi-
ologically relevant” temperature range for these four species and is rep-
resentative of plots for the other species used in this article.

dependence. Outside of this biologically relevant range,
factors such as the freezing of water at low temperatures
or the breakdown of proteins at high temperatures have
negative effects on metabolism and population growth. As
seen in figure 1, the optimal temperature is 25.2�C for
Epiphyas postvittana, 29�C for Bactrocera dorsalis and Bac-
trocera cucurbitae, and 32�C for Dactylopius austrinus.
While understanding effects of temperature outside of the
biologically relevant range is an interesting problem, it is
beyond the scope of this article. Here, in compiling and
analyzing data, we have excluded temperatures that are
clearly below the minimum threshold for positive popu-
lation growth and definitively above the optimal temper-
ature, that is, low temperatures with nonpositive popu-
lation growth rates and high temperatures where
population growth rates have begun to decline dramati-
cally. For example, we excluded the data for B. dorsalis at
16�C because the population growth rate was negative.
Figure 1 contains other examples of data that were ex-
cluded for being outside the biologically relevant temper-
ature range.

Data for insects from the article by Banse and Mosher
(1980) demonstrated a mass dependence ( )1.21r ∝ Mmax

that was anomalous, with a positive allometric exponent
for compared with the negative exponents (∼�0.25)rmax

found in insect data from all other sources. We believe

this to be in error, so these data were excluded from our
data set.

The data include three species of algae, one species of
protist, eight species of zooplankton, and five species of
insects. Body masses of some species were not mentioned
in the published articles, so values for some zooplankton
in appendix B in the online edition of the American Nat-
uralist were taken from those of Gillooly (2000). When
there were multiple data points for the same species at the
same temperature, we computed an average value to avoid
a biased weighting for those species and temperatures. For
details of methods, see the data sources referenced in the
supplemental “Literature Cited” in the online edition of
the American Naturalist.

The data for all groups were then logarithmically trans-
formed, plotted, and fit with Type I linear regression. Type
I regression is most appropriate because mass and tem-
perature are measured with a high degree of precision
while population growth rates often are not.

rmax and Z: Laboratory and Field Data
for Fishes and Mammals

The data for intrinsic rate of increase, , for fishes werermax

compiled from estimates from field studies. Data for mam-
mals were derived from direct measures in laboratory stud-
ies. The data for mammals are for only four species, all
rodents. Because these closely related taxa are the only
data for high temperatures, we address concerns about
nonindependence as a result of phylogenetic relatedness
by also calculating regression lines with the mammal data
excluded. The body temperature for mammals is approx-
imately constant (∼37�C). The temperature for fishes was
taken as the average temperature at which they live. Be-
cause most of the data is for marine fishes, there is little
seasonal variation, so using the average temperature in
equation (8) is a good approximation. In the original
sources, data are given in terms of production per unit
biomass, which is equal to for populations with a stablermax

body size distribution. The data include nine species of
fishes and four species of mammals. Data for mortality
rates, Z, for marine fishes (175 stocks) were taken from a
compilation by Pauly (1980). Methods are detailed in the
references in the supplemental “Literature Cited.” The data
for all groups were combined, logarithmically transformed,
plotted, and fit with Type I linear regression.

Results

Before analyzing different taxonomic groups, we did an
ANOVA on all of the data. The ANOVA gives valuesrmax

for independent regressions of as a function ofr 1/kTmax

and as a function of . Further, it determines whetherln (M)
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Figure 2: Relationship of mass-corrected exponential population growth, (fresh weight, mg1/4), to inverse1/4r (individuals/[individual # day]) # Mmax

temperature, T ( ), for unicellular invertebrates (left panel, algae and protists) and multicellular invertebrates (center panel, zooplankton and1/K
insects) that were incubated at different constant temperatures in the laboratory. The same type of plot is performed using data for fishes (right
panel, solid line) and fishes combined with mammals (dashed line). Lines were fit using Type I regression. The equation is for the fit to the fish data
only. The data were obtained from published sources listed in the supplemental “Literature Cited.” As predicted, the plots are straight lines.

the effects of these two variables are independent. Using
the data for , we obtain an activation energy of 0.63rmax

eV ( ; 95% confidence interval [CI]: 0.52, 0.74) andP ! .01
a scaling exponent for the mass of �0.22 ( ; 95%P ! .01
CI: �0.20, �0.23). The value for the activation energy is
in close agreement with the value of 0.6 eV for the average
of the activation energies for cellular biochemical reactions
(range, 0.2–1.2 eV; Crossier 1926; Raven and Geider 1988;
Vetter 1995; Gillooly et al. 2001). The value for the mass
exponent is close to but slightly lower than the predicted
exponent, �0.25. This deviation from theoretical expla-
nation may be a result of the slightly different intercepts
among taxonomic groups.

As indicated, the mass dependence of is well�1/4M rmax

documented (Fenchel 1973; Southwood et al. 1974; Blue-
weiss et al. 1978; Henneman 1983; Peters 1983), so we
focused primarily on evaluating the temperature depen-
dence of predicted by equation (8). Because the ac-rmax

tivation energy, E, varies little across taxa and equation (8)
is a good approximation for populations described by case
1, we predict that plots of versus will1/4ln (r M ) 1/kTmax

yield straight lines with an approximately invariant slope,
�E, and y-intercept, . We also predictln {ln [L(G)b(G)]/C}
the negative of the slopes (E) should be close to the value
of 0.6 eV for the average activation energies for cellular
and biochemical reactions (Crossier 1926; Raven and Gei-
der 1988; Vetter 1995; Gillooly et al. 2001). We first eval-
uate this prediction using empirical measurements of

from two groups of unicellular organisms with non-rmax

overlapping generations grown at different constant tem-
peratures in the laboratory, protists and algae. As shown
in figure 2, left panel, plots of versus do1/4ln (r M ) 1/kTmax

indeed yield straight lines. The slope of the line for these
unicellular eukaryotes is �0.54 eV ( ; 95% CI:P ! .01

�0.40, �0.68 eV). Plotting the two groups separately gives
a slope for algae of �0.53 eV ( ; 95% CI: �0.32,P ! .01
�0.75 eV) and for the protists, Paraphysomonas imper-
forata, �0.65 eV ( ; 95% CI: �0.41, �0.89 eV). AllP ! .01
of these plots and regression lines for individual species
have slopes and confidence intervals that are within the
range of activation energies for cellular biochemical re-
actions. Regressions lines were also fitted to the data for
each species, and the slopes are all within the range of
activation energies for cellular biochemical reactions.

Data for multicellular organisms with nonoverlapping
generations, zooplankton (rotifers, copepods, and cladoc-
erans) and insects (mostly agricultural pests), also support
the hypothesis for case 1, that scales inversely withrmax

biological time. A plot for these groups yields a straight
line with slope �0.84 eV ( ; 95% CI: �0.65, �1.03P ! .01
eV; fig. 2, center panel). Plotting the two groups separately
gives slopes of �0.85 eV ( ; 95% CI: �0.56, �1.14P ! .01
eV) for zooplankton and �0.53 eV ( ; 95% CI:P ! .01
�0.28, �0.79 eV) for insects. Regression lines were also
fitted to the data for each species, and the slopes are all
within the range of cellular biochemical reactions.

The hypothesis that the scaling for also applies tormax

case 2, and the possible extension of case 2 to indeter-
minate ontogenetic growth, is supported by data for mul-
ticellular organisms with overlapping generations, fishes.
The solid line (fit to the fish data) shown in figure 2, right
panel, is a straight line with a slope of �0.35 eV (P p

; 95% CI: 0.00, �0.69 eV). These values for E are lower.05
than most of the activation energies for cellular biochem-
ical reactions (Crossier 1926; Raven and Geider 1988; Vet-
ter 1995; Gillooly et al. 2001). However, these values are
in agreement with the activation energy for fishes of �0.43
eV, which was derived from data for metabolic rate (Gil-
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Figure 3: A, Relationship of the mass-corrected instantaneous mortality rate, Z (g1/4), to inverse temperature,1/4(individual/[individual # years]) # M
T ( ), for marine fishes. B, Relationship of the temperature-corrected instantaneous mortality rate, , toE/kT1/K Ze (individual/[individual # years])
body mass, M (g), for marine fishes. On the basis of A, an activation energy of 0.45 eV was chosen. The lines were fit using Type I linear regression.
The data were obtained from a single reference listed in appendix B. Both plots give straight lines, as predicted.

looly et al. 2001). Further, Gillooly et al. (2001) showed
that after accounting for mass and temperature, the var-
iation in metabolic rate between most ectotherms and en-
dotherms reduces to a factor of six. Because we have re-
lated population growth rates to metabolic rates, it seems
that a similar offset may exist between the population
growth rates of fishes and mammals. However, combining
data for mammals and fishes, we find that for population
growth rates, the difference is reduced to an even smaller
factor. The dashed line (fit to fish and mammal data)
shown in figure 2, right panel, is a straight line with a slope
of �0.45 eV ( ; 95% CI: �0.33, �0.57 eV). BecauseP ! .01
the fit to both fish and mammal data spans a broader
range of temperatures, the fit to the combined data may
be a more accurate determination of the activation energy
for these two groups.

To determine whether Z follows equation (16) for or-
ganisms with overlapping generations and indeterminate
ontogenetic growth, we use estimates of instantaneous
mortality rate for a broad assortment of marine fishes (175
stocks) living under field environmental conditions. If Z
follows equation (16), we predict once again that a plot
of versus will yield a straight line. Figure1/4ln (ZM ) 1/kT
3A supports this prediction with a straight line and a slope
of �0.45 eV ( ; 95% CI: �0.36, �0.53 eV). ThisP ! .01
again is within the range of activation energies for cellular
biochemical reactions and is in close agreement with the
activation energy for fish of �0.43 eV (Gillooly et al. 2001).
As a further test of this prediction, equation (16) predicts
that a plot of versus will yield a straightE/kTln (Ze ) ln (M)
line with a slope of �0.25. When we use 0.45 eV for the
activation energy, as measured from the previous graph,
figure 3B strongly supports this prediction with a straight
line and a slope of �0.23 ( ; 95% CI: �0.20, �0.27).P ! .01

The temperature dependence of mortality is of great

importance in understanding how fish mortality rates dif-
fer between ecosystems. A negative quarter-power mass
scaling for mortality was also found empirically by Peter-
son and Wroblewski (1984). McGurk (1986) went even
further and developed a model based on spatial patchiness
that describes the deviations from this scaling, which apply
primarily to fish eggs and larvae. Peppin (1991) studied
the combined effects of body mass and temperature on
mortality rates for early life-history stages of marine fishes.
Because our data are for marine fishes in the field, figure
3 indicates that the natural forces causing mortality (e.g.,
predation) scale predictably with the rate of metabolism.
That is, an organism’s ability to avoid death appears to
diminish with age at a rate set by the mass-specific met-
abolic rate. Therefore, survivorship, which depends largely
on an organism’s ability to acquire food and evade pred-
ators, should scale inversely with mass-specific metabolic
rate, , as observed in figure 3. Equation (16) alsoB(M, T)
predicts that is an invariant, independent of�ZaL(a) p e
body mass and temperature. Consequently, for diverse or-
ganisms living in systems of differing temperatures, we
predict that approximately the same percentage of off-
spring will survive to the age of first reproduction.

The data sets for algae and protists, insects and zoo-
plankton, and vertebrates support the predictions of the
theory relating population growth characteristics to met-
abolic rate and thereby to body size and temperature. Gil-
looly et al. (2001) found that the metabolic rates of diverse
eukaryotes had quantitatively similar mass and tempera-
ture dependence, so after mass and temperature correc-
tion, the rates overlapped substantially among different
taxonomic groups. This suggests that once the data for

have been corrected for mass and temperature, theyrmax

might also exhibit considerable overlap. Figure 4A eval-
uates this by plotting mass-corrected as a function ofrmax
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Figure 4: A, Relationship of mass-corrected exponential population growth, (fresh weight, mg1/4), to1/4r (individuals/[individual # day]) # Mmax

inverse temperature, T ( ), for all organisms in figure 2. There is significant overlap among the data, and a single line is fit through the data. B,1/K
Relationship of temperature-corrected exponential population growth, , to body mass, M (mg), for allE/kTr e (individuals/[individual # day])max

organisms in figure 2. E was chosen to be 0.63 eV on the basis of an ANOVA, and each point represents the average of the logarithm of temperature-
corrected for each species. The line was then fit using Type I linear regression. All of the data are well fit by this single straight line.rmax

inverse temperature, using a mass exponent of . These1/4
data span 12 orders of magnitude of variation in body
size. Figure 4A shows not only the similar activation en-
ergies (slopes) but also the overlapping values of acrossrmax

a wide variety of organisms, from unicells to mammals.
The nearly complete overlap across organisms with diverse
modes of reproduction (i.e., fission, ovipary, and vivipary)
implies that population growth rates have very nearly the
same mass and temperature dependence. Figure 4B is a
plot of temperature-corrected as a function of bodyrmax

size. To prevent an unbiased weighting of the data, we
have taken the average of the logarithm of the tempera-
ture-corrected for each species, so each point in figurermax

4B represents a single species. Also, an activation energy
of 0.63 eV was chosen on the basis of the ANOVA discussed
in the first paragraph of this section. Note that the fitted
regression line now gives a slope of �0.23 for the mass
exponent, slightly higher than the ANOVA value of �0.22.
This is due to the effect of averaging over temperature for
each species. Here, we see that across 12 orders of mag-
nitude of variation in body size, a single line describes the
mass dependence of for the broad assortment of or-rmax

ganisms studied in this article.

Discussion

This theory characterizes the fundamental effects of body
size and temperature. When the predictions are evaluated
empirically, we see that most of the variation in rates of
population growth is explained by this mass and temper-
ature dependence, . The activation energies de-1/4 �E/kTM e
rived from population growth data for the taxonomic
groups considered here vary from 0.35 to 0.84 eV. These

bracket the average value for the activation energies of
metabolic reactions, 0.6 eV, and the average value obtained
from metabolic range data, 0.62 eV (Gillooly et al. 2001),
although the causes of this variation are not clear. The
question of whether there is a unique activation energy
that determines how metabolic rate scales with tempera-
ture remains open.

These scaling relations, which hold over 12 orders of
magnitude in body mass and over approximately 30�C,
emphasize the commonality of life. This unity is expressed
in the dependence of population growth rate and carrying
capacity on metabolic rate. Presumably, population growth
is so tightly linked to metabolism because all organisms
use the same fundamental metabolic reactions for energy
transformation and biosynthesis (Morowitz 1992). The
mass dependence of biosynthesis reflects the fractal-like
design and resulting rate-limiting constraints of the re-
source supply system. The temperature dependence of bio-
synthesis reflects the kinetics of the metabolic reactions.

The data do not always match the theoretical predic-
tions, and these differences may have significant biological
meaning. Nevertheless, much of the variation in rates of
population growth can be explained solely by the mass
and temperature dependence. Thus, this theory can now
be used as a baseline or zero-order model to explore the
remaining variations that may reveal important biological
insights. Understanding the commonality for this broad
assortment of eukaryotic organisms may help to identify
and better understand how and why some species are dif-
ferent. The direction and magnitudes of deviations from
predicted slopes or fitted regression lines offer clues to the
identity of other important variables and the magnitudes
and mechanisms of their influence. In some cases, depar-
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tures may call attention to errors or biases due to exper-
imental or measurement techniques or to discrepant re-
sults due to different methodologies. Other departures may
reflect important differences between different kinds of
organisms or environments. For example, there is consid-
erable variation in size-corrected ontogenetic growth rates
of zooplankton around the regression lines for tempera-
ture. Much of this residual variation can be attributed to
growth rates of individuals and species increasing with
body phosphorus concentrations (Gillooly et al. 2002).
This is just what is predicted by the growth rate hypothesis
of Elser et al. (1996; Sterner and Elser 2002). We expect
many other sources of biological variation to be identified
in a similar manner.

We recognize that the models developed here and in
related publications (Gillooly et al. 2001, 2002; Allen et
al. 2002; Brown et al. 2003; Jun et al. 2003; Moses and
Brown 2003) neither explain all of the empirically observed
variation nor provide a complete mechanistic explanation
for the factors and processes controlling population
growth. We view these models as preliminary contribu-
tions to a more complete metabolic theory of ecology.
When complete, such a theory would make explicit the
environmental and physiological factors controlling the
fluxes and transformations of energetic and material re-
sources at the individual level: uptake from the environ-
ment; the biochemical and physiological processing within
the body; and allocation to survival, growth, and repro-
duction. To do this, the theory would explicitly incorporate
ecological stoichiometry (Elser et al. 1996; Sterner and
Elser 2002) and would include more detailed studies of
mass and energy relationships at the cellular, individual,
and population levels (e.g., Kooijman et al. 1991). It would
also incorporate the long-standing research program in
microbiology and entomology that has related resource-
limited population growth to underlying biochemical pro-
cesses (e.g., Monod 1942; Birch 1948; Dean and Hin-
shelwood 1966; Droop 1968; Eppley 1972). Developing a
comprehensive metabolic theory of ecology would connect
many seemingly disparate parts of ecology and, hence, help
to unify the field. Much remains to be done before there
will be any reasonably complete metabolic theory of ecol-
ogy. Nevertheless, the progress has been encouraging, and
the prospects are exciting.

In this article, we have linked population growth to
metabolism and thereby to mass and temperature. This
already has several important implications for ecology.
First, it relates two different types of population growth,
Malthusian population growth and its fundamental pa-
rameter, , and steady state population growth and itsrmax

fundamental parameter, K, to first principles of energetics
and kinetics. It links the one unquestioned law of popu-
lation ecology to underlying mechanistic laws of physics

and physical chemistry. Second, this theory extends the
theoretical framework initiated by Charnov (1993) to
make connections between metabolism (production) and
features of life history, such as ontogenetic growth rate,
timing and magnitudes of fecundity and mortality, and
life span. Third, this theory begins to make explicit how
metabolic processes at the level of individual organisms
affect ecological processes by determining the magnitudes,
rates, and times of impacts on and responses to en-
vironments.

Additionally, it should be possible to extend this frame-
work to address other important patterns and processes
in ecology and evolution. Metabolism links the require-
ments and transformations of energy and materials in the
bodies of organisms to the biotic and abiotic pools and
fluxes of energy and materials in the environment. The-
oretical explorations of these linkages are already offering
new insights into such diverse phenomena as the structure
and dynamics of forests (Enquist et al. 1998; Enquist and
Niklas 2001, 2002), foraging behavior of ants (Jun et al.
2003), latitudinal and elevational patterns of species di-
versity (Allen et al. 2002), geographic variation in the di-
versity of aboriginal human cultures (Collard and Foley
2002), and fecundity rates in modern human populations
(Moses and Brown 2003).
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