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Abstract In this work, we study the shadow of Born–
Infeld (BI) black holes with magnetic monopoles and
Schwarzschild black holes immersed in the BI uniform mag-
netic field. Illuminated by a celestial sphere, black hole
images are obtained by using the backward ray-tracing
method. For magnetically charged BI black holes, we find
that the shadow radius increases with the increase of nonlin-
ear electromagnetics effects. For Schwarzschild black holes
immersed in the BI uniform magnetic field, photons tend to
move towards the axis of symmetric, resulting in stretched
shadows along the equatorial plane.

1 Introduction

The Event Horizon Telescope (EHT) collaboration unveiled
the first image of the supermassive black hole in the center of
galaxy M87 [1–6]. It promotes the current theoretical study
of black holes based on modern astronomical observations,
and corroborates the direct observations of black hole images.
Just recently, the EHT released the image of the supermassive
black hole Sgr A* in the center of the Milky Way galaxy [7–
12], which confirms that this giant object is consistent with
a Kerr black hole and provides valuable clues about it.

Black hole images provide direct evidence of their exis-
tence, revealing much information about black holes and their
surroundings. In particular, the dark area inside a black hole
image is called the black hole shadow, which can give us
information about the basic properties of black holes and
serve as a useful tool to test general relativity. Synge first
discussed the shadow of Schwarzschild black holes in Ref.
[13]. Bardeen [14] soon studied the shadow cast by Kerr
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black holes. In recent years, this topic has been extended to
other black holes by various researchers [15–46].

After reporting the first black hole image , the EHT coop-
erations have conducted in-depth studies of previously col-
lected data on the M87*, revealing a new view of the black
hole in polarized lights [47,48]. The polarized black hole
images indicate a signature of extreme magnetic fields around
black holes. These observations provide new information
about the magnetic field structure outside the black hole.
With the astronomical observations of strong magnetic fields
around black holes, influences of magnetic fields on shadow
images have been studied [49]. Moreover, effects of nonlin-
ear electrodynamics on black hole shadows were investigated
[50–53].

For black hole shadows in nonlinear electrodynamics, it
showed that photons travel along null geodesics in a so-called
effective geometry [54] rather than the actual spacetime. This
means that in a nontrivial vacuum, the motion of lights can
be viewed as electromagnetic waves propagating through a
classical dispersive medium [55]. The medium causes cor-
rections to the equations of motion described in nonlinear
dynamics [56]. In recent years, with the development of non-
linear quantum electrodynamics, the study of light propaga-
tion has also made remarkable progress, e.g., the geometry
of light propagation in nonlinear electrodynamics [57] and
the deflection of magnet star in Born–Infeld [58].

To avoid the occurrence of singularities in the Maxwell
theory, Born and Infeld proposed the Born–Infeld (BI) non-
linear electrodynamics model [59], which considered the
action principle of free particles in relativistic theories, and
naturally imposed an upper bound on the velocity of par-
ticles. Surprisingly, the BI electrodynamics can be derived
from string theory in a low energy limit [60,61]. Later, some
works demonstrated that BI electrodynamics could govern
the dynamics of D branes and derive some soliton solutions
of hypergravity [62,63]. In recent years, these ideas were
applied to modify the Einstein–Hilbert action in the gravity
theory, which has attracted extensive attention [64–83].
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In this paper, we are interested in how BI electrodynamics
will affect black hole shadows. We first study the static spher-
ically symmetric BI black hole with magnetic monopoles
and obtain its metric function. The trajectories of photons
are derived by introducing the effective metric. Based on
the backward ray-tracing method, the black hole images are
obtained with different magnetic charges and BI parameter.
Moreover, we give the first-order perturbative effective met-
ric for Schwarzschild black holes immersed in a BI uniform
magnetic field and study shadows with various parameters
of the BI nonlinear magnetic effects. Unique characteristics
have been found, which may be verified by future observa-
tions for black holes with strong magnetic fields.

The organization of this paper is as follows: In Sect. 2,
we derive the effective metric for BI black holes with mag-
netic monopoles and investigate the images of their shad-
ows. In Sect. 3, we obtain the perturbative effective metric
for black holes immersed in the BI uniform magnetic field,
and analyze the influence of the nonlinear magnetic field on
shadows. Finally, we summarize our results in Sect. 4. In
addition, we introduce the numerical backward ray-tracing
method in Appendix A. In this paper, we set 16πG = c = 1
for simplicity.

2 BI black holes with magnetic monopoles

In this section, we first obtain the static and spherically sym-
metric solution for BI black holes with magnetic monopoles.
Consider an Einstein–Born–Infeld action [57]

S =
∫

d4x
√−g [R + L (F)] , (1)

where R is the scalar curvature, F = FμνFμν , and

L (F) = 4β2

(
1 −

√
1 + F

2β2

)
(2)

is the BI Lagrangian. The parameter β is called the BI param-
eter with the dimension of mass. In the limit β → ∞, L(F)

reduces to the standard Maxwell form. The Einstein–Born–
Infeld equations can be obtained by varying the action with
respect to the gauge field Aμ and the metric gμν , yielding

∂μ

⎛
⎝

√−gFμν√
1 + F

2β2

⎞
⎠ = 0, (3)

Rμν − 1

2
Rgμν = 1

2
gμνL(F) + 2FμαFα

ν√
1 + F

2β2

. (4)

We consider the static and spherically symmetric ansatz
taking the form as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2), (5)

Fθφ = −Fφθ = P sin θ, (6)

where P is a positive constant related to the magnetic charge.
This gauge field is generated by magnetic monopoles, which
satisfies Eq. (3). By substituting Eqs. (5) and (6) into Eq. (4),
the field equation can be rewritten as

r f ′(r) + r2

2
f ′′(r) = 2r2β2

⎛
⎝1 −

√
1 + P2

β2r4

⎞
⎠

+ 2P2

r2
√

1 + P2

β2r4

, (7)

where a prime stands for the derivative with respect to the
coordinate r . From Eq. (7), we obtain the metric function for
magnetically charged BI black holes

f (r) = 1 − 2m

r
+ 2β2r2

3

− 2

3
β2r2

2F1

(
−3

4
,−1

2
; 1

4
;− P2

r4β2

)
, (8)

wherem stands for the black hole mass, and 2F1 is the hyper-
geometric function. This solution can be regarded as the
dual form for the electrically charged BI black hole metric
obtained in Refs. [57,70]. In the limit β → ∞, the met-
ric function in Eq. (8) reduces to the one for the Reissner–
Nordström (RN) black hole. In Fig. 1, we plot the log param-
eter space about P and β. When the BI nonlinear effect is
weak, it almost coincides with the RN black hole. With the
decrease of β, the upper limit of magnetic charge P increases.

Due to the nonlinear electrodynamics effects, photons
propagate along null geodesics in the effective metric rather
than the background metric. The effective metric Gμν takes
the form as [84]

Gμν = 4LFF F
μ
α Fαν − LFg

μν, (9)

where LF = dL/dF and LFF = d2L/dF2. Substituting
Eqs. (2), (5) and (6) into Eq. (9), we derive the effective
metric for the static and spherically symmetric BI black hole
with magnetic monopoles

ds2
e f f =

(
1 + P2

β2r4

) 1
2
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Fig. 1 Region plot in the P−log β−2 parameter space for magnetically
charged BI black holes withm = 1. Black holes exist in the cyan region,
and the blue dashed line stands for the extreme RN black hole. With the
decrease of β, the upper limit of the magnetic charge P increases

×
[
− f (r)dt2 + 1

f (r)
dr2 + h(r)(dθ2 + sin2 θdφ2)

]
,

(10)

where

h(r) = r2
(

1 + P2

β2r4

)
. (11)

The effective geodesic equations are given by a group of
eight first-order Hamilton equations. Setting λ to be the affine
parameter, one can derive the effective geodesic equations as

pμ = dxμ

dλ
,

dpμ

dλ
+ 
μ

ρσ p
ρ pσ = 0, (12)

where pμ is the 4-momentum vector of a photon, and 

μ
ρσ

is the affine connection of the effective metric. It is conve-
nient to define a new dual vector qμ ≡ Gμν pν . Photons have
two Killing vectors corresponding to the conserved energy
E = −qt and angular momentum L = qφ [51,52]. By sub-
stituting the effective metric (10) into the Hamiltonian con-
straint Gμνqμqν = 0, we obtain

f (r)q2
r − 1

f (r)
E2 + 1

h(r)

(
q2
θ + L2

)
= 0, (13)

where we can introduce the effective potential V of photons

V (r) = L2

h(r)
− E2

f (r)
. (14)

For the critical case V (rph) = V ′(rph) = 0, photons can orbit
around the spherically symmetric black hole at a constant
radius rph, which forms a sphere called the photon sphere.
Being an intrinsic property of the black hole and independent
of the observer, it determines the boundary for photons to fall
into a black hole or escape to infinity.

For a distant observer located at ro � m, the shadow
radius is given by rsh = ro sin θ � L/E |rph . The parameter θ

represents the inclination angle of the photons emitted from
r = rph. By substituting the critical condition into Eq. (14),
the shadow radius takes the form as

rsh = ±
√

h(rph)

f (rph)
. (15)

Based on the effective geodesic equations in Eq. (12)
and using the numerical backward ray-tracing method pro-
grammed with Wolfram�Mathematica, we plot 2000×2000
pixels images for magnetically charged BI black holes with
m = 1 and P = 0.8 for β = 1, β = 0.1 and β = 0.01 in
Fig. 2, respectively. It shows that the radius of the shadow
increases significantly when β decreases to the order of 10−2,
and the surrounding gravitational lensed image also becomes
thinner with the decrease of β.

In addition, the numerical results of the shadow radius
rsh and the photon sphere radius divided by the horizon
radius rph/rh are displayed with various BI parameter β

under different magnetic charge P in Fig. 3. In Fig. 3a, the
shadow radius increases monotonically with β decreases. It
is worth noting that there is a special βc � 0.194798, at
which rsh remains the same regardless of the value of P .
When β > βc (β < βc), black holes with larger magnetic
charge have smaller (larger) shadows. At the same time, the
parameter rph/rh increases monotonically as P increases or
β decreases.

3 Schwarzschild black holes immersed in BI uniform
magnetic fields

First, we study the effective metric for Schwarzschild black
holes immersed in the BI uniform magnetic field. Consider
a gauge field for a uniform magnetic field,

Aμdx
μ = Aφ(r, θ)dφ, (16)

where we take the gauge choice Ar = 0, and At = 0 for
the absence of the electric field. We assume that the gauge
field is axisymmetric, and hence Aφ is independent of φ.
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(a) (b) (c)

Fig. 2 Images of magnetically charged BI black holes with m = 1 and P = 0.8 for β = 1, β = 0.1 and β = 0.01 respectively. We find that the
shadow radius increases with the decrease of β

Fig. 3 The shadow radius rsh
in a and the photon sphere
radius divided by the horizon
radius rph/rh in b with respect
to the BI parameter β for
magnetically charged BI black
holes for different P with
m = 1. When β = βc, the radius
of the shadow remains
unchanged regardless of the
value of P . While the decrease
of β or the increase of P makes
rph/rh increase monotonically (a) (b)

Substituting Eq. (16) into Eq. (3), we obtain

∂r

⎡
⎢⎢⎣ (r − 2m)∂r Aφ(r, θ)

r sin θ

√
1 + r(r−2m)∂2

r Aφ(r,θ)+∂2
θ Aφ(r,θ)

β2r4 sin2 θ

⎤
⎥⎥⎦

+ ∂θ

⎡
⎢⎢⎣ ∂θ Aφ(r, θ)

r2 sin θ

√
1 + r(r−2m)∂2

r Aφ(r,θ)+∂2
θ Aφ(r,θ)

β2r4 sin2 θ

⎤
⎥⎥⎦ = 0.

(17)

In the limit β → ∞, an asymptotic solution could be derived

lim
β→∞ Aφ(r, θ) → B

2
r2 sin2 θ, (18)

which describes an axisymmetric magnetic field with strength
B along z-axis. This asymptotic gauge field is the ana-
lytical solution of the Maxwell uniform magnetic field in
Schwarzschild black holes [86]. On the other hand, since Eq.
(17) is a nonlinear partial differential equation, obtaining the
analytical solution of Aφ(r, θ) is challenging. In this paper,
we use perturbative results from Ref. [85] to give the effec-
tive metric for photons moving around Schwarzschild black
holes immersed in BI uniform magnetic fields. In fact, the

first-order perturbative gauge field takes the form

Aφ(r, θ) = B

2
r2 sin2 θ + mB3

16β2 [4(2r − 5m) cos 2θ

−(2r − m)(3 + cos 4θ)] . (19)

Substituting Eq. (19) into Eq. (9) gives the non-zero compo-
nents of the first-order perturbative effective metric

Gtt = −G−1
rr

= −
(

1 − 2m

r

) [
1 + H(r − m + m cos 2θ)

2r

]
,

Gθθ = r2 + 1

2
Hr [2r − m + (m + r) cos 2θ ] ,

Grθ = Hr sin θ cos θ,

Gφφ = r2 sin2 θ + 3

2
Hr sin2 θ(r − m + m cos 2θ),

(20)

where the dimensionless parameter H = B2/β2 character-
izes the strength of the BI effect.

In Fig. 4, we plot images for the Schwarzschild black hole
immersed in the BI uniform magnetic field with m = 1 for
different H . Figure 4a, b display images with H = 0.1 and
H = 0.2, respectively. Their shadow contours both have tiny
stretches along the equatorial plane, whose shapes are similar
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(a) H = 0.1 (b) H = 0.2

(c) H = 0.3 (d) H = 0.4

Fig. 4 Images of the Schwarzschild black hole immersed in uniform
magnetic fields for different H with the black hole mass m = 1. With
H increases, the shadow contour stretches along the equatorial plane

to ellipses. While for H = 0.3 in Fig. 4c and H = 0.4 in
Fig. 4d, shadow contours get more severe stretches, showing
shapes similar to peanuts.

To study how BI nonlinear uniform magnetic field
stretches the shadow in detail, we depict the shadow length
along the equatorial plane Xo for an observer located at finite
distance in Fig. 5a, and X∞ for a distant observer in Fig. 5b.
The values of both Xo and X∞ are divided by the one for
black holes with H = 0. The shadow length Xo shows a
nonlinear relationship with H in Fig. 5a. While for a distant
observer in Fig. 5b, the shadow length shows clearly a linear
relation with respect to H .

To reveal the influence of the BI uniform magnetic field
in detail, we further depict image for Schwarzschild black
holes immersed in Maxwell magnetic fields in Fig. 6a. With-
out nonlinear effects, Fig. 6a shows a circular shadow in the
center. While Fig. 6b displays a flat Minkowski spacetime

(a) Schwarzschild-Maxwell (b) Minkowski-Maxwell

(c) Schwarzschild-BI (d) Minkowski-BI

Fig. 6 Images for Schwarzschild black holes (the Minkowski space-
time) in the left panel (right panel), immersed in Maxwell magnetic
field (BI magnetic field) on the top panel (bottom panel). We set the
black hole mass m = 1 for a and c, and the BI magnetic field strength
H = 0.4 for c and d. When BI nonlinear effects are considered, axisym-
metric higher-orders images of the celestial sphere appear in c and d. It
reveals that photons tend to move towards the axis of symmetry under
the influence of the nonlinear effects

immersed in Maxwell magnetic fields. When BI nonlinear
effects are considered in Fig. 6c, the circular shadow begins
to stretch along the equatorial plane. In the meantime, the
area outside the shadow gets different image patterns com-
pared with Fig. 6a. Figure 6d shows the Minkowski space-
time immersed in the BI magnetic field. By comparing it with
Fig. 6b, we find that photons no longer travel in a straight line
under the influence of nonlinear magnetic field. The image
of the red quadrant appears only in the upper right of Fig. 6b,
while Fig. 6d has three red images. Influenced by nonlinear
effects, the first-order image of the red quadrant appears on
the left side away from the axis, and the second-order image
is located on the right side close to the axis. The axisym-

Fig. 5 The shadow length
along the equatorial plane Xo
for an observer located at finite
distance in a, and X∞ for a
distant observer in b. The
parameter Xo shows a nonlinear
relation with respect to H .
While H − X∞ fits nicely with
a line

(a) (b)
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metric higher-orders images in Fig. 6d reveal that the BI
effect makes photons move towards the axis, which can be
described by an axial attraction. This axial attraction makes
it easier for photons around the equatorial plane to fall into
black holes, resulting in a stretched shadow in Fig. 6c.

4 Conclusion

In this paper, we first studied shadows of BI black holes
with magnetic monopoles. By solving the Einstein–Born–
Infeld equations, the background metric was obtained. We
depicted the parameter space about the magnetic charge P
and BI parameter β in Fig. 1. We found that the decrease
of β increases the upper limit of magnetic charge of the
black hole. Based on the numerical backward ray-tracing
method, we plotted images for the BI black hole with mag-
netic monopoles in Fig. 2, which shows that the radius of
the shadow increases with the decrease of the BI parameter.
Moreover, the numerical results of rsh and rph/rh were dis-
played in Fig. 3. We found a specific βc in which rsh remains
unchanged regardless of the value of P . Meanwhile, rph/rh
increases monotonically as P increases or β decreases.

Next, we investigated shadows of Schwarzschild black
holes immersed in the BI uniform magnetic field. By deriv-
ing a perturbative solution of the effective metric, we plotted
black hole images with different nonlinear magnetic field
strengths H in Fig. 4. As H increases, the shadow con-
tour stretches along the equatorial plane. Furthermore, we
depicted the shadow length along the equatorial plane Xo for
an observer located at finite distance in Fig. 5a, and X∞ for a
distant observer in Fig. 5b. The length Xo shows a nonlinear
relationship with H . While X∞ as a function of H fits nicely
with a line, showing that the increases of nonlinear magnetic
fields linearly increase the shadow length along the equato-
rial plane. We further plotted images for Schwarzschild black
holes and the Minkowski spacetime immersed in Maxwell or
BI magnetic fields in Fig. 6. By comparing Fig. 6b and d, we
found that the photon tends to move towards the axis of sym-
metry due to the effect of BI uniform magnetic fields. This
axial attraction makes it easier for photons around the equa-
torial plane to fall into black holes, and results in a stretched
shadow.

The first-order perturbative solutions derived in this paper
reveals some physical characteristics of the BI uniform mag-
netic field. It also qualitatively explained the deformation of
shadows when Schwarzschild black holes is immersed in the
nonlinear magnetic field. Though getting the analytical solu-
tion of the nonlinear partial differential equation in Eq. (17)
is challenging, it is of great interest to obtain the numerical
solution for BI uniform magnetic fields in future works.
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Appendix A: Ray-tracing method

Celestial sphere is a concept in astrophysics where all objects
in the sky can be seen through a projection on the sphere. To
compute photon geodesics and get the image of the shadow,
we divide the celestial sphere into four parts and give each a
different color in Fig. 7a [38]. On top of these, we divide the
sphere into evenly spaced grids with latitude and longitude
lines separated by 10 degrees in Fig. 7b.

The observer is placed inside the celestial sphere at an off-
centered position and denoted as O , and the black hole is just
located at the center of the celestial sphere. Photons start from
the observer, travel along null geodesics, and eventually reach
the celestial sphere or fall into the black hole. The images of
black holes are obtained by a projection onto the observer’s
local frame, which will be explained in detail afterward. Here
we ignore the redshift effect and focus only on the spatial
distortion of these images.

Fig. 7 The celestial sphere in a, and the observational image of the
celestial sphere in the Minkowski spacetime in b
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In our paper, we consider that the background metric is
static and spherically symmetric, which takes the form

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2dθ2 + r2 sin2 θdφ2.

(A1)

Since the effective metric is non-circular and non-rotating,
we assume that the effective metric takes the form

ds2
e f f = Gμνdx

μdxν = Gttdt
2 + Grrdr

2 + Gθθdθ2

+ Gφφdφ2 + 2Grθdrdθ.
(A2)

Assuming that pμ is the 4-momentum vector of a pho-
ton, we have the dual vector pμ ≡ gμν pν in the background
spacetime. However, pμ pμ 	= 0 due to the nonlinear electro-
dynamic. Note that Gμν pμ pν = 0 in the effective geometry,
so it is convenient to define a new dual vector

qμ ≡ Gμν p
ν . (A3)

And the effective geodesic equations are given by a group of
eight first-order Hamilton equations,

dqμ

dλ
= − ∂H

∂xμ
,

dxμ

dλ
= ∂H

∂qμ

, (A4)

where λ is the affine parameter, and H = Gμνqμqν/2 = 0
is the Hamiltonian of photons.

Due to the stationary and axisymmetry, the metric admits
two Killing vectors, which correspond to two conserved
quantities of geodesic motion,

E = −qt , L = qφ. (A5)

For a massless particle, E and L are interpreted as the energy
and the angular momentum along the axis of symmetry,
respectively.

Assuming that the observer is located in the frame with the
observer basis

{
ê(t), ê(r), ê(θ), ê(φ)

}
, which can be expanded

in the coordinate basis {∂t, ∂r, ∂θ, ∂φ} as

e(t) = ∂t√−gtt
, e(r) = ∂r√

grr
, e(θ) = ∂θ√

gθθ

,

e(φ) = ∂t√
gφφ

.

(A6)

For a photon of four-momentum qμ, the locally measured
momentum of is

p(t) = −ê(t) · p = − qt√−gtt
= E√−gtt

,

p(r) = ê(r) · p = qr√
grr

,

p(θ) = ê(θ) · p = qθ√
gθθ

,

p(φ) = ê(φ) · p = qφ√
gφφ

= L√
gφφ

,

(A7)

where we use qt = −E and qφ = L . As in Ref. [36], we
can introduce the observation angles α and β in Fig. 8 as

sin α = p(θ)

| 
P| = qθ
√−gtt

E
√
gφφ

, tan β = p(φ)

p(r)
= L

√
grr

qr
√
gφφ

,

(A8)

where | 
P| = √
p(r)2 + p(θ)2 + p(φ)2 = p(t). Thus, one has

p(r) = | 
P| cos α cos β, p(θ) = | 
P| sin α, p(φ)

= | 
P| cos α sin β,
(A9)

which can be used to express qt , qr , qθ , qφ in terms of α, β

and | 
P|,
qt = −E = −√−gtt | 
P|,
qr = √

grr | 
P| cos α cos β,

qθ = √
gθθ | 
P| sin α,

qφ = L = √
gφφ | 
P| cos α sin β.

(A10)

For pμ, we have

pt = Gttqt = −Gtt E = −Gtt√−gtt | 
P|,
pr = Grrqr + Grθqθ = Grr√grr | 
P| cos α cos β

+ Grθ√gθθ | 
P| sin α,

pθ = Gθθqθ + Gθr qr = Gθθ√gθθ | 
P| sin α

+ Gθr√grr | 
P| cos α cos β,

pφ = Gφφqφ = GφφL = Gφφ√
gφφ | 
P| cos α sin β.

(A11)

The Cartesian coordinates (x, y) corresponding to each
photon on the sky plane are functions of the observation
angles (α, β). The map between them is the projection
method we are considering. We introduce a well-defined dis-
tance in the curved spacetime. As in Ref. [15], the perimetral
radius or circumferential radius r̃ is introduced to measure
the distance. It is defined as

r̃ ≡ P
2π

= √
gφφ, (A12)

where P = ∫ 2π

0
√
gφφdφ = 2π

√
gφφ is the perimeter of a

circumference at the equator (θ = π/2) with constant radial
coordinate r . Assuming that the sky plane of the observer
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Fig. 8 The vector 
P is the
photon’s 3-momentum in the
observer’s frame, and (α, β) are
the positive observation angles.
The planes associated with the
angles α and β are
perpendicular to each other, and

P is in the same plane as α. The

vectors ê(φ) and ê(r) are also
co-planar with β

located at a distance r = ro and inclination θ = θo, we choose
the simplest pinhole camera projection model, in which the
coordinates (x, y) can be presented as

x ≡ −r̃o cos α sin β � −r̃oβ,

y ≡ r̃o sin α � r̃oα.
(A13)

The y-axis lies in the same plane as the black hole’s rota-
tion axis, and the black hole centers on the origin of the sky
plane. The minus sign in the x definition comes from the sym-
bolic convention for β (see Fig. 8). In addition, the vectors
êx and êy that span the sky plane are defined as,

êx = ê(φ), êy = −ê(θ). (A14)

For the geodesic equations in Eq. (12) and the observer’s
position (ro, θo, 0), we can give the initial conditions at λ = 0
as

t (0) = 0, r(0) = ro, θ(0) = θo, φ(0) = 0,

pt (0) = −Gtt√−gtt |ro,θo ,
pr (0) = [Grr√grr cos α cos β + Grθ√gθθ sin α]|ro,θo ,
pθ (0) = [Gθθ√gθθ sin α + Gθr√grr cos α cos β]|ro,θo ,
pφ(0) = Gφφ√

gφφ cos α sin β|ro,θo ,
(A15)

where we take | 
P| = 1. The constraints are

L = qφ = Gφφ p
φ,

E = −qt = Gtt p
t ,

H = Gμνqμqν/2 = 0.

(A16)
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