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In this paper, a formulation for the dynamic stability analy-

sis of circular cylindrical shells under axial compression with

various boundary conditions is presented. The present study

uses Love’s first approximation theory for thin shells and

the characteristic beam functions as approximate axial modal

functions. Applying the Ritz procedure to the Lagrangian en-

ergy expression yields a system of Mathieu–Hill equations

the stability of which is analyzed using Bolotin’s method.

The present study examines the effects of different bound-

ary conditions on the parametric response of homogeneous

isotropic cylindrical shells for various transverse modes and

length parameters.

1. Introduction

The dynamic stability of cylindrical shells has re-

ceived much attention over the years. Yao [16] was

the first to investigate dynamic stability in cylindrical
shells and the loading used in this work considered

both radial and axial directions. Shirakawa [14] con-

sidered in-plane inertia and in-plane disturbances in a

study of a similar problem. Argento and Scott [1,2] and

Argento [3] in a series of papers dealt with this prob-

lem for a composite shell subjected to periodic axial

and torsional loading. The boundary conditions con-

sidered were for a shell clamped at both ends. Bert

and Birman [4], in the parametric instability study of

thick orthotropic cylindrical shells considered simply-

supported end conditions. Koval [7], in the study of

the effects of longitudinal resonance on the parametric

stability of an axially excited cylindrical shell consid-

ered cases with simply-supported end conditions. Liao

and Cheng [9,10], using the finite element method for

the dynamic stability of stiffened laminated composite

shells subjected to in-plane pulsating forces, consid-

ered shells that were clamped at the boundaries. Rad-

wan and Genin [13], in the dynamic instability of cylin-

drical shells, considered simply-supported cases. In the

dynamic instability of truncated conical shells, Mas-

salas et al. [11] considered only clamped cases. Nagai

and Yamaki [12], in the dynamic stability analysis of

cylindrical shells under periodic compressive forces,

compared results for simply-supported and clamped

edge conditions.

A literature search showed that a study on the effects

of boundary conditions on the dynamic stability of cir-

cular cylindrical shells, with the inclusion of free edge

conditions into the comparisons, is not available. Fur-

ther, to the authors’ knowledge, no results are available

for the dynamic stability of shells with free end condi-

tions. A comprehensive study as such would be inter-

esting as it would shed light on the effects of boundary

conditions on the instability regions.

2. Theory and formulation

The cylindrical shell with constant thickness h, ra-

dius R and length L is in the coordinate system as

shown in Fig. 1. The periodic extensional axial load

per unit length is given by

Na(x, t) = No + Ns cosPt, (1)

where P is the frequency of excitation in radians per

unit time.

The deformations of the shell are defined as the dis-

placements u, v and w in the axial, circumferential and

radial directions respectively.
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Fig. 1. Coordinate system of the cylindrical shell.

Fig. 2. An unstable region in the Ns/No–p plane.

Using Love’s first approximation theory, the axial,

circumferential and in-surface shear strains, ex, eθ and

exθ are defined as

ex = e1 − zk1,

eθ = e2 − zk2, (2)

exθ = γ − 2zτ ,

where

e1 =
∂u

∂x
, e2 =

1

R

(

∂v

∂θ
+ w

)

,

γ =
∂v

∂x
+

1

R

∂u

∂θ
(3)

and

k1 =
∂

2w

∂x2
, k2 =

1

R2

(

∂
2w

∂θ2
−

∂v

∂θ

)

,

τ =
1

R

(

∂
2w

∂x∂θ2
−

1

2

∂v

∂x

)

. (4)

The middle surface strains are e1, e2 and γ and the

middle surface curvatures are k1, k2 and 2τ . Assuming

plane stress, a thin shell follows the two-dimensional

Hooke’s law

{σ} = [Q]{e}, (5)

where

{σ}T
= {σx σθ σxθ}, (6)

[Q] =





E
1−ν2

νE
1−ν2 0

νE
1−ν2

E
1−ν2 0

0 0 G12



 , (7)

{e}T
= {ex eθ exθ}, (8)

where E is the elastic modulus and ν is the Poisson’s

ratio. The shear modulus is given as

G12 =
E

2(1 + ν)
. (9)

The force and moment resultants are defined as

(Nx,Nθ,Nxθ) =

∫ h/2

−h/2

(σx,σθ,σxθ) dz, (10)

(Mx,Mθ,Mxθ) =

∫ h/2

−h/2

(σx,σθ,σxθ)z dz. (11)

Simplifying, one obtains the following constitutive

equation

{N} = [S]{ε}, (12)

where

{N}T
= {Nx Nθ Nxθ Mx Mθ Mxθ}, (13)
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[S] =















A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D22 0

0 0 0 0 0 D66















, (14)

{ε}T
= {e1 e2 γ k1 k2 2τ}. (15)

The extensional stiffnesses Aij ’s and bending stiff-

nesses Dij’s are defined as

{

Aij ,Dij

}

=

∫ h/2

−h/2

Qij

{

1, z2
}

dz. (16)

The total strain energy Uε and total kinetic energy T
of the cylindrical shell can be written as

Uε =
1

2

∫ L

0

∫ 2π

0

εT[S]εR dθ dx, (17)

T =
1

2

∫ L

0

∫ 2π

0

ρt

[(

∂u

∂t

)2

+

(

∂v

∂t

)2

+

(

∂w

∂t

)2]

R dθ dx, (18)

where ρt is the mass per unit surface area (ρ being the

mass density) defined as

ρt =

∫ h/2

−h/2

ρ dz. (19)

The strain energy Ua due to the axial loading can be

written as

Ua =
1

2

∫ L

0

∫ 2π

0

Na

[(

∂v

∂x

)2

+

(

∂w

∂x

)2]

R dθ dx.

(20)

The displacement field for a cylindrical shell of arbi-

trary boundary conditions can be expressed in general

form as given in Blevins [5]

u = A
∂φ(x)

∂x
cos(nθ)q(t), (21)

v = Bφ(x) sin(nθ)q(t), (22)

w = Cφ(x) cos(nθ)q(t), (23)

where A, B and C are constants and φ(x) is the axial

modal function satisfying the required boundary con-

ditions at both ends of the shell. The circumferential

wave number is n and q(t) is a generalized coordinate.

Defining the Lagrangian function

L = T − Uε − Ua (24)

and applying the Ritz procedure with

∂L

∂A
= 0,

∂L

∂B
= 0,

∂L

∂C
= 0 (25)

one obtains, after rearranging, a system of Mathieu–

Hill equations given by

Mq̈ + (K − cosPtQ)q = 0, (26)

where M, K and Q are 3 × 3 matrices and q̈ and q

are column vectors consisting of the q̈’s and q’s (cor-

responding to the axial, circumferential and transverse

modes) respectively.

3. Stability analysis

Equation (26) is in the form of a second order

differential equation with periodic coefficients of the

Mathieu–Hill type. The regions of unstable solutions

are separated by periodic solutions having period T
and 2T with T = 2π/P . The solutions with pe-

riod 2T are of greater practical importance as the

widths of these unstable regions are usually larger than

those associated with solutions having period T . Using

Bolotin’s [6] approach, as a first approximation, the pe-

riodic solutions with period 2T can be sought from the

following form

f = a sin
Pt

2
+ b cos

Pt

2
, (27)

where a and b are arbitrary vectors.

Substituting Eq. (27) into Eq. (26) and equating the

coefficients of the sin(Pt/2) and cos(Pt/2) terms, a set

of linear homogeneous algebraic equations in terms of

a and b can be obtained. The conditions for non-trivial

solutions are given by

det

[

AIJ 0

0 BIJ

]

= 0, (28)

where
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Fig. 3. Comparison of results for the dynamic stability of analysis of a composite laminated cylindrical shell of lamination scheme [90◦/0◦/90◦]

and physical parameters as described in Argento and Scott [3]. No = 0.3 × 243.4 kN. m = 1, n = 4, 5, 3, 6, 2, 7, 8 (from left to right). ’- - -’,

Argento and Scott [3], ’—–’, Present.

AIJ = KIJ −
1
2
QIJ −

1
4
P 2MIJ ,

BIJ = KIJ +
1
2
QIJ −

1
4
P 2MIJ .

Instead of solving the above nonlinear geometric

equations for P , the above equation can be rearranged

to the standard form of a generalized eigenvalue prob-

lem

det

[(

KIJ −
1
2
QIJ 0

0 KIJ +
1
2
QIJ

)

−P 2

(

1
4
MIJ 0

0 1
4
MIJ

)]

= 0, (29)

where 0 is a 3 × 3 null matrix.

4. Axial modal functions and boundary conditions

The axial modal function φ(x) is chosen to satisfy

the required end conditions at the two ends of the cylin-

drical shell. In this study, the characteristic or analytic

beam functions have been chosen. First we define the

boundary conditions. The modal function defines the

transverse displacement, the rotation corresponds to its

first derivative with respect to x, the bending moment

corresponds to its second derivative and the transverse

shear force corresponds to its third derivative.

At a clamped boundary, transverse displacement and

rotation are prohibited,

φ =
∂φ

∂x
= 0. (30)

At a simply-supported boundary, transverse dis-

placement and bending moment are prohibited,

φ =
∂

2φ

∂x2
= 0. (31)

At a free boundary, bending moment and transverse

shear force are prohibited,

∂
2φ

∂x2
=

∂
3φ

∂x3
= 0. (32)
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Table 1

Unstable regions for a cylindrical shell of length ratios L/R = 1, 3, 5, tensile loading of ηo =

0.5ηcr and with axial wave number m = 1

SS-SS C-C F-F

L/R = 1 n = 1 Pt. of origin p 1.7226704 1.7996997 2.0682982

Angle subtended Θ ×10−2 1.5704949 1.8768033 6.5162280

n = 2 Pt. of origin p 1.3471428 1.4512196 1.9467126

Angle subtended Θ ×10−2 2.0082898 2.3245120 6.9255557

n = 3 Pt. of origin p 1.0214074 1.1677581 1.7514490

Angle subtended Θ ×10−2 2.6347333 2.8818143 7.6562853

L/R = 3 n = 1 Pt. of origin p 0.7532045 0.9077726 1.4230583

Angle subtended Θ ×10−2 0.3875676 0.4133224 0.9388126

n = 2 Pt. of origin p 0.3797018 0.5469822 0.8110883

Angle subtended Θ ×10−2 0.7766855 0.6837076 1.7209182

n = 3 Pt. of origin p 0.2294124 0.3604280 0.5074538

Angle subtended Θ ×10−2 1.2886346 1.0342319 2.8467950

L/R = 5 n = 1 Pt. of origin p 0.3782150 0.5317407 0.7731918

Angle subtended Θ ×10−2 0.2728141 0.2526790 0.5411772

n = 2 Pt. of origin p 0.1661971 0.2817677 0.3716542

Angle subtended Θ ×10−2 0.6396071 0.4763392 1.3680922

n = 3 Pt. of origin p 0.1103028 0.1757311 0.2341207

Angle subtended Θ ×10−2 0.9610056 0.7609491 2.2336453

Table 2

Unstable regions for a cylindrical shell of length ratios L/R = 10, 20, 30, tensile loading of

ηo = 0.5ηcr and with axial wave number m = 1

SS-SS C-C F-F

L/R = 10 n = 6 Pt. of origin p 0.2026213 0.2036963 0.2148305

Angle subtended Θ ×10−3 1.3389081 1.6595008 6.2934898

n = 7 Pt. of origin p 0.2768784 0.2776116 0.2862707

Angle subtended Θ ×10−3 0.9806043 1.2188422 4.7387204

n = 8 Pt. of origin p 0.3629780 0.3635353 0.3705403

Angle subtended Θ ×10−3 0.7482907 0.9312051 3.6674125

L/R = 20 n = 6 Pt. of origin p 0.2001379 0.2003568 0.2032419

Angle subtended Θ ×10−3 0.3393152 0.4224544 1.6723056

n = 7 Pt. of origin p 0.2749706 0.2751334 0.2773427

Angle subtended Θ ×10−3 0.2470225 0.3077178 1.2267132

n = 8 Pt. of origin p 0.3614304 0.3615603 0.3633337

Angle subtended Θ ×10−3 0.1879495 0.2341900 0.9368355

L/R = 30 n = 6 Pt. of origin p 0.1996829 0.1997758 0.2010669

Angle subtended Θ ×10−3 0.1511874 0.1883608 0.7521679

n = 7 Pt. of origin p 0.2746192 0.2746898 0.2756755

Angle subtended Θ ×10−3 0.1099426 0.1370065 0.5488522

n = 8 Pt. of origin p 0.3611445 0.3612015 0.3619916

Angle subtended Θ ×10−3 0.0836055 0.1041976 0.4180708

Thus for clamped ends,

φ = C1(cosϕx− coshϕx)

+C2(sinϕx− sinhϕx), (33)

where

C1(cosϕL− coshϕL)

+C2(sinϕL− sinhϕL) = 0, (34)
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Fig. 4. Unstable regions for a cylindrical shell of length ratio L/R = 1, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 1. Middle diagram – n = 2. Lower diagram – n = 3.

C1(sinϕL + sinhϕL)

+C2(− cosϕL + coshϕL) = 0 (35)

with the frequency equation being

cosϕL coshϕL = 1. (36)

For simply-supported ends,

φ = C1 sinϕx, (37)

where

ϕ =
mπ

L
. (38)

For free ends,

φ = C1(cosϕx + coshϕx)

+C2(sinϕx + sinhϕx), (39)

where
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Fig. 5. Unstable regions for a cylindrical shell of length ratio L/R = 3, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 1. Middle diagram – n = 2. Lower diagram – n = 3.

C1(− cosϕL + coshϕL)

+C2(− sinϕL + sinhϕL) = 0, (40)

C1(sinϕL + sinhϕL)

+C2(− cosϕL + coshϕL) = 0 (41)

with the frequency equation being

cosϕL coshϕL = 1. (42)

5. Numerical results and discussion

In order to validate the present results, present re-

sults are compared with those of Argento and Scott [3]

for a clamped-clamped graphite-epoxy laminated cylin-

drical shell. The present results for the laminated shell

are obtained by making the necessary modifications to

the material constitutive equations. The graphical re-

sults compared in Fig. 3 show that the present results
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Fig. 6. Unstable regions for a cylindrical shell of length ratio L/R = 5, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 1. Middle diagram – n = 2. Lower diagram – n = 3.

are in very good agreement with those of Argento and

Scott [3] for the principal instability regions.

The results for the dynamic stability of cylindrical

shells of simply-supported-simply-supported (SS-SS),

clamped-clamped (C-C) and free-free (F-F) boundary

conditions are presented for various length ratios and

circumferential wave numbers, n. Only the results for

the transverse modes are presented as they are usually

considered more important with considerably larger

unstable regions. The results are for shells of thickness

ratio h/R = 0.01 and for axial wave number m = 1,

meaning that for the F-F case, it is the first non-rigid-

body mode in the axial direction.

The nondimensional excitation frequency parameter

p is defined as

p = P

(

ρR2(1 − ν2)

E

)1/2

. (43)

The values of No are chosen to be in terms of
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Fig. 7. Unstable regions for a cylindrical shell of length ratio L/R = 10, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 6. Middle diagram – n = 7. Lower diagram – n = 8.

Pcr which is the critical buckling load of a simply-
supported circular cylindrical shell subjected to static
compressive axial load. For cylindrical shells of short
to intermediate length, as are the cases used here, the
buckling load as given by Timoshenko and Gere [15]
is

Pcr =
Eh2

[3(1 − ν2)]1/2R
(44)

and can be nondimensionalized as

ηcr = Pcr

(

1 − ν2

Eh

)

. (45)

If ν is taken to be 0.3,

ηcr = 0.5507
h

R
. (46)

Each unstable region is bounded by two curves orig-
inating from a common point from the p axis with
ηs = 0. The two curves appear at first glance to be
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Fig. 8. Unstable regions for a cylindrical shell of length ratio L/R = 20, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 6. Middle diagram – n = 7. Lower diagram – n = 8.

straight lines but are in fact two very slightly “out-

ward” curving plots. For the sake of tabular presenta-

tion, the angle subtended, Θ, is introduced. It is calcu-

lated based on the arctangent of the right-angled trian-

gle, abc, obtained by halving the whole unstable region

as shown in Fig. 2. This angle gives a good measure

of the size of the unstable region as calculations done

with the smaller similar triangle, ab′c′ (see Fig. 2), are

within 0.2%.

Table 1 and Figs 4 to 6 gives the results for an

isotropic cylindrical shell of linear parameters L/R =

1, 3, 5 and circumferential wave numbers n = 1, 2, 3

with the axial loading being ηo = 0.5ηcr. Table 2 and

Figs 7 to 9 gives the results for an isotropic cylindri-

cal shell of linear parameters L/R = 10, 20, 30 and

circumferential wave numbers n = 6, 7, 8 with the ax-

ial loading again being ηo = 0.5ηcr. The choice of

these cases are based on previous studies on effects of

boundary conditions on the free vibration of cylindri-

cal shells by Lam and Loy [8]. An important aspect of
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Fig. 9. Unstable regions for a cylindrical shell of length ratio L/R = 30, tensile loading of ηo = 0.5ηcr and with axial wave number m = 1.

’—–’, SS-SS, ’- - -’, C-C, ’· · · · ·’, F-F. Upper diagram – n = 6. Middle diagram – n = 7. Lower diagram – n = 8.

the present study is to determine if effects of boundary

conditions on the free vibration analysis corresponds

to that of dynamic stability analysis.

In the conclusions from Lam and Loy [8] for the ef-

fects of boundary conditions on the free vibration of

cylindrical shells, it was found that for low L/R and

low n values, the natural frequencies were distinct for

different boundary conditions. The present study can

easily be related to the free vibration study in that the

points of origin of the principal unstable regions cor-

respond to twice the natural frequencies of the axially

loaded shells. The present study confirms the conclu-

sions of the earlier study by Lam and Loy [8] in that

the unstable regions are distinct in their points of ori-

gin at for different boundary conditions at low L/R
and low n values. This can easily be seen from Ta-

ble 1 and Figs 4 to 6. Some general observations from

the present study are that the sizes of the unstable re-

gions invariably decrease as L/R increase. Also, for

the three boundary conditions considered, the F-F case
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always has the highest point of origin and largest unsta-

ble region size for any particular mode. The SS-SS case

always has the lowest point of origin. As for smallest

unstable region size, it can either be the SS-SS case or

the C-C case.

It was also noted in the study by Lam and Loy [8]

that regardless of boundary conditions, all frequencies

of similar mode converge with increasing n. In that

study, the rate of convergence was found to be faster for

longer shells. In the present study, the points of origin

for different boundary conditions do indeed show con-

vergence behavior as n increases. This can be observed

from Table 2 and Figs 7 to 9. The rate of convergence

is also found to be faster for longer shells. However,

it is important to note here that the sizes of the unsta-

ble regions do not exhibit corresponding convergence

behavior. This can be observed from Table 2 where is

is obvious that the sizes of the unstable regions asso-

ciated with the different boundary conditions maintain

their relative differences at high n values and even for

long shells of L/R = 30. It is also interesting to note

here that for long shells, the points of origin are rather

insensitive to changes in length but the sizes of the un-

stable regions are considerably more sensitive to cor-

responding length changes.

6. Conclusion

The dynamic stability of cylindrical shells with three

types of boundary conditions (SS-SS, C-C, F-F) has

been examined. The F-F case exhibited the highest

point of origin and largest unstable region size for any

particular mode while the SS-SS case always had the

lowest point of origin. The smallest unstable region

size is not conclusive and may be associated with the

C-C case or the SS-SS case depending on the particular

mode. For the different boundary conditions, the points

of origins were found to converge at high circumferen-

tial wave numbers n with longer shells having higher

rates of convergence. However, the sizes of the unsta-

ble regions did not display signs of convergence and

always maintained their relative differences.
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