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Alzheimer’s disease (AD) causes the progressive deterioration of neural connections,

disrupting structural connectivity (SC) networks within the brain. Graph-based analyses

of SC networks have shown that topological properties can reveal the course of AD

propagation. Different whole-brain parcellation schemes have been developed to define

the nodes of these SC networks, although it remains unclear which scheme can best

describe the AD-related deterioration of SC networks. In this study, four whole-brain

parcellation schemes with different numbers of parcels were used to define SC network

nodes. SC networks were constructed based on high angular resolution diffusion

imaging (HARDI) tractography for a mixed cohort that includes 20 normal controls (NC),

20 early mild cognitive impairment (EMCI), 20 late mild cognitive impairment (LMCI),

and 20 AD patients, from the Alzheimer’s Disease Neuroimaging Initiative. Parcellation

schemes investigated in this study include the OASIS-TRT-20 (62 regions), AAL (116

regions), HCP-MMP (180 regions), and Gordon-rsfMRI (333 regions), which have all been

widely used for the construction of brain structural or functional connectivity networks.

Topological characteristics of the SC networks, including the network strength, global

efficiency, clustering coefficient, rich-club, characteristic path length, k-core, rich-club

coefficient, andmodularity, were fully investigated at the network level. Statistical analyses

were performed on these metrics using Kruskal-Wallis tests to examine the group

differences that were apparent at different stages of AD progression. Results suggest

that the HCP-MMP scheme is the most robust and sensitive to AD progression,

while the OASIS-TRT-20 scheme is sensitive to group differences in network strength,

global efficiency, k-core, and rich-club coefficient at k-levels from 18 and 39. With

the exception of the rich-club and modularity coefficients, AAL could not significantly

identify group differences on other topological metrics. Further, the Gordon-rsfMRI

atlas only significantly differentiates the groups on network strength, characteristic

path length, k-core, and rich-club coefficient. Results show that the topological

examination of SC networks with different parcellation schemes can provide important

complementary AD-related information and thus contribute to amore accurate and earlier

diagnosis of AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, high angular resolution diffusion imaging, structural

connectivity network, fiber tracking

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00113
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00113&domain=pdf&date_stamp=2019-05-21
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yzhang94@uh.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.3389/fnagi.2019.00113
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00113/full
http://loop.frontiersin.org/people/616991/overview
http://loop.frontiersin.org/people/220590/overview


Wu et al. Parcellation Effects on Characterizing AD

INTRODUCTION

As the leading cause of dementia in elderly adults, Alzheimer’s
disease (AD) is a progressive neurodegenerative disorder
characterized by increasing cognitive and behavioral deficits
(Mueller et al., 2005). Preceding AD, the mild cognitive
impairment (MCI) phase presents with significant cognitive
or behavioral deficits and an increased risk of developing
dementia (Winblad et al., 2004; Jessen et al., 2014; Daianu et al.,
2015; Mckenna et al., 2016). Understanding the physiological
deterioration caused by MCI and AD provides an opportunity
to develop future treatments and predict AD onset. Many
postmortem histological and in-vivo imaging studies have
demonstrated widespread white matter (WM) alterations in MCI
and AD patients (Brun and Englund, 1986; Rose et al., 2000;
Bozzali et al., 2002; Nir et al., 2015). The WM degeneration
and neuronal death linked to AD progression then creates
abnormal connectivity patterns between anatomically related
brain regions (Lo et al., 2010). Specifically, demyelination and
axonal degeneration cause drastic reductions in WM volume,
which may contribute to alterations in structural connectivity
(SC) network efficacy. Therefore, AD-related cognitive and
behavioral deficits may be directly linked the disconnection
of brain regions (Delbeuck et al., 2003; Sorg et al., 2009; Lo
et al., 2010), such that altered SC topological patterns reflect the
propagation stage of AD.

High angular resolution diffusion imaging (HARDI) has
provided an ability to extensively study brain networks in clinical
neuroscience (Nguyen et al., 2018). The recent development of
accurate and sophisticated HARDI-based tractography methods
has encouraged the exploration of regional connectivity and
topological network measures, which can quantify MCI and
AD-linked brain changes. Graph theory has been frequently

employed to detect SC network differences across normal control

(NC), MCI, and AD groups, and a variety of topological
measures sensitive to SC network disruption can be computed

to reveal how AD affects the human connectome. Particular
measures of interest include k-core, rich-club efficiency, nodal
degree, characteristic path length, clustering coefficient, and
global efficiency. To perform statistical analysis on SC networks,
Kim et al. presented a multi-resolution analysis framework
(Kim et al., 2015), in which a Wavelet representation of each
anatomical connection was derived at multiple resolutions to
analyze AD-related alterations. In Daianu et al. (2015), rich-
club properties at a range of degree thresholds were calculated,
and their findings indicated that brain network disruptions
occurred predominately in the low-degree (<16) regions of
the connectome in AD. In Daianu et al. (2013b), k-core was
computed to understand the brain network breakdown caused
by AD. In Lo et al. (2010), the alterations of various network
properties were examined, indicating that AD patients exhibit
shorter path lengths, decreased global efficiency, and reduced
nodal efficiency. Yao et al. (2010) explored the characteristics
of SC networks in MCI and AD, finding that the MCI groups
showed a loss of hub regions in the temporal lobe and altered
interregional correlations, and that the topological measures of
the MCI SC networks exhibited intermediate values. Most of

these findings suggest that AD is related to the disruption of
structural connectivity, which is characterized by the loss of rich-
club organization and network efficiency. Together, the findings
suggest that AD is associated with a disrupted topological
organization of SC networks, thus providing structural evidence
for abnormalities in the SC network integrity of AD patients.

Graph-based analysis of brain structural networks provides
a chance to understand how AD-linked structural connectivity
abnormalities underlie the cognitive and behavioral deficits of
patients. Specifically, the definition of network nodes is one
of the most critical steps in network topological analysis, as
it assigns the network structure and density for subsequent
assessment. Different whole-brain parcellation schemes have
been developed to define network nodes, although the effect
that these schemes have on the detection of AD propagation
stages remains unknown. Accurate brain parcellation provides
a foundation for understanding the functional and structural
organization of the human brain. During graph-based analysis
of the SC networks derived from HARDI, brain parcellation is a
key step for the construction of brain anatomical brain network
architecture. This step is not trivial, however; the division of the
cortex into different numbers of regions affects the structure of
the SC network, such that the resulting topological properties
of the generated SC network can be significantly changed by
the scale of the chosen parcellation atlas (Proix et al., 2016).
Considering that brain parcellation schemes are fundamental to
the isolation and selection of brain regions, their application
plays an important role in revealing the abnormal topological
organization of SC networks in MCI and AD.

Cognitive studies have demonstrated that the cerebral cortex
is comprised of distinct cortical areas that are interconnected
through WM fibers (Sporns et al., 2004; delEtoile and Adeli,
2017). Network analysis represents cortical regions and their
connections as a series of nodes and edges, respectively (Lo et al.,
2010). Previous investigation have typically relied on a single type
of whole-brain parcellation scheme to construct SC networks,
such as the 96-region Harvard-Oxford atlas used in Shao et al.
(2012), 113-region Harvard-Oxford atlas used in Zhan et al.
(2015a), 162-region IIT3 atlas used in Kim et al. (2015), and 68-
region Desikan-Killiany atlas used in Daianu et al. (2013b) and
Daianu et al. (2015). Each of these schemes presents a different
number of parcels, and the effect this has on AD-related SC
topological changes has not comprehensively characterized. In
this study, SC networks are constructed for NC, early mild
cognitive impairment (EMCI), late mild cognitive impairment
(LMCI), and AD subjects based on HARDI tractography to
fully characterize the manner in which patterns of SC network
topological metrics change based on parcellation schemes. Four
different whole-brain parcellation schemes over a range of
parcellation scales (62, 116, 180, and 333 regions) were used to
define SC network nodes: the OASIS-TRT-20 (62 regions) (Klein
and Tourville, 2012), AAL (116 regions) (Tzourio-Mazoyer et al.,
2002), HCP-MMP (180 regions) (Glasser et al., 2016), and
Gordon-rsfMRI (333 regions) (Gordon et al., 2014). Edges were
then estimated through deterministic fiber tracking based on
orientation distribution function (ODF) fields, which was derived
from HARDI images (Iturria-Medina et al., 2008; Descoteaux
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TABLE 1 | Demographics information for ANDI participants, arranged into NC,

EMCI, LMCI, and AD groups.

NC EMCI LMCI AD

N 20 20 20 20

Gender 8M/12F 13M/7F 11M/9F 10M/10F

Age range (years) 66–87 62–88 61–85 61–90

Mean age (SD) 76.85 (6.67) 77.90 (7.26) 75.60 (5.65) 74.15 (7.94)

et al., 2009; Côté et al., 2013; Yeh et al., 2013; Christiaens et al.,
2015). To determine if SC topological characteristics changed
with different cortical parcellation schemes as AD progressed,
SC network topological assessments were performed on a mixed
ADNI cohort of 20 NC, 20 early MCI (EMCI), 20 late MCI
(LMCI), and 20 AD subjects. Finally, to explore the influence that
different cortical parcellation schemes exert on the graph-based
analysis of brain SC networks in AD propagation, Kruskal-Wallis
tests were employed to identify group differences in network
strength, global efficiency, characterized path length, cluster
coefficient, k-core, and modularity coefficient. Additionally,
linear regression analysis was used to examine the changing
trajectories of rich-club coefficients for NC, EMCI, LMCI, and
AD groups.

MATERIALS AND METHODS

Data
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of the ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early AD (Jack et al., 2008; Risacher et al., 2009; Petersen
et al., 2010). In this study, 80 subjects were selected from the
ADNI database and arranged into NC, EMCI, LMCI, and AD
groups according to their ADNI classification. Table 1 shows
the demographics of the participants, including age and gender.
All 80 participants underwent whole-brain MRI scanning using
3T GE Medical Systems scanners. The acquisition protocol
included a T1-weighted image (acquisition matrix = 256 × 256
× 196, voxel size = 1.05 × 1.05 × 1.2 mm3, TR = 6.96ms,
TE = 2.83ms). Furthermore, the participants were scanned with
DWI echo planar imaging (EPI) protocol. Specifically, five images
with no diffusion sensitization (b0 images) and 41 images along
41 diffusion directions were acquired (b= 1,000 s/mm2) with the
following parameters: acquisitionmatrix= 128× 128× 55, voxel
size= 2.7× 2.7× 2.7 mm3, TR=7,200.0ms, TE= 56.0 ms.

SC Network Construction
We evaluated the influence of cortex parcellation schemes
on the topological characterization of AD propagation by
systematically varying the number of brain parcellated regions.

The cerebral cortex of each subject was parcellated into 62,
116, 180, or 333 regions, according to the parcellation templates
of OASIS-TRT-20 (Klein and Tourville, 2012), AAL (Tzourio-
Mazoyer et al., 2002), HCP-MMP (Glasser et al., 2016), and
Gordon-rsfMRI (Gordon et al., 2014), respectively. These
four parcellation templates were all spatially normalized into
Montreal Neurological Institute (MNI) space (Fonov et al., 2011),
and are visualized from different views in Figure S1. Before
tracking, the parcellation labels of these templates were used
to segment whole brain into clusters of cortical regions. The
parcellation templates were co-registered from MNI space (1
mm3) to DWI space via T1-weighted images using a 12-degree-
of-freedom transformation matrix, using Freesurfer 6.0.0 and
DSI Studio.

The construction of subject-specific SC networks requires a
number of complex steps, including cortical parcellation, fiber
tractography, and connection strength estimation, as shown in
Figure 1. To determine the structural connectivity between each
pair of cortical regions, deterministic ODF-based tractography
was used. First, the eddy current effects and motion artifacts
in the DWI images were corrected using the DiffusionKit
toolbox (Xie et al., 2016). DWI images were then denoised using
singular value decomposition and non-local means methods, as
described in Wu et al. (2018a). Second, a model-free general
q-ball imaging (GQI) reconstruction method was employed to
estimate ODFs from theHARDI images, with high sensitivity and
specificity to WM characteristics and pathology (Yeh and Tseng,
2011). The whole-brain fiber tracking was performed using DSI
Studio software (Yeh et al., 2013), with a fractional anisotropy
(FA) threshold of 0.2 and a track-turning angular threshold of
60◦ between each two connections. Cortical connections were
established between any set of cortical regions that a fiber bundle
passed through or ended in. ODF-based tracking was chosen
for this application, as it can resolve multiple fiber populations,
including crossing, branching, and merging fibers, and thereby
produces more accurate results than DT-based tracking methods
(Barnett, 2009; Zhan et al., 2015b; Wu et al., 2018b). The number
of reconstructed fibers between different regions were then used
to define SC network edges (Hagmann et al., 2007; Houenou
et al., 2007; Li et al., 2009), while each parcellated region was
regarded as a network node.

Network Topological Metrics
Graph theory provides a set of measures to concisely quantify
the topological properties of brain networks and describe
interrelationships between brain regions of interest (ROIs)
(represented by nodes in SC networks). Graph-based analysis
of brain SC topological patterns allows for the quantification
of a broad range of network characteristics. The most
common measures used to describe the integrity of healthy or
diseased brain networks include network strength, characteristic
path length, efficiency, clustering coefficient, k-core, rich-
club coefficient, and modularity (Sporns, 2010). Topological
characterization was performed using the GRETNA (http://
www.nitrc.org/projects/gretna/) (Wang et al., 2015) and Brain
Connectivity Toolbox (BCT) toolboxes (https://sites.google.com/
site/bctnet/) (Rubinov and Sporns, 2010). The utilized network
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FIGURE 1 | Flowchart of SC network topological analysis. Four parcellation atlases were employed to define the nodes of the SC networks, including OASIS-TRT-20

(62 regions) (Klein and Tourville, 2012), AAL (116 regions) (Tzourio-Mazoyer et al., 2002), HCP-MMP (180 regions) (Glasser et al., 2016), and Gordon-rsfMRI (333

regions) (Gordon et al., 2014). ODFs were computed from HARDI images with a general q-ball imaging (GQI) computational model. Whole-brain tractography was

performed using the DSI-Studio tool, and edges were determined by the number of neural connections between each pair of parcellated regions.

metrics are briefly described below (Cao et al., 2013; Daianu et al.,
2013a, 2015).

Network Strength
For a SC network G with N nodes and K edges, we calculated the
strength of G as Cao et al. (2013):

Sp (G) =
1

N

∑

i∈G
S(i) (1)

where S(i) is the sum of the edge weights linking to node i. The
strength of a network is the average of the connection strengths
across all of the nodes in the network. This metric reflects the
extent to which network nodes are connected.

Clustering Coefficient
The clustering coefficient Cp of a network is the average of the
clustering coefficient over all nodes, which indicates the extent of

local interconnectivity or cliquishness in a network (Watts and
Strogatz, 1998).

C (i) =
2

ki(ki − 1)

∑

j,k
(wijwjkwki)

1/3 (2)

Where ki is the degree of node i, and w is connection
weight. The clustering coefficient will be zero if
all nodes are isolated or have just one connection
(Watts and Strogatz, 1998).

Cp =
1

N

∑

i∈G
C(i) (3)

Characteristic Path Length
The path length between any pair of nodes is defined as the sum
of the edge lengths along this path. In this study, the length
of each edge was assigned by computing the reciprocal of the
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edge weight, 1
wij

. The characteristic path length of G was then

computed as Cao et al. (2013):

Lc(G) =
1

N(N − 1)

∑

i6=j∈G
Lij (4)

where Lij defined as the shortest path between node i and
node j. This metric quantifies the ability for information to be
propagated in parallel.

Network Efficiency
The global efficiency of G measures the efficiency of parallel
information transfer throughout the network, which can be
computed as follows (Cao et al., 2013):

Eglob (G) =
1

N(N − 1)

∑

i6=j∈G

1

Lij
(5)

where Lij is the shortest path length between nodes i and j in G.

k-Core Decomposition
To model the basic architecture of SC networks, a k-core
decomposition algorithm that disentangles the hierarchical
structure of the networks was proposed in Daianu et al.
(2013b). This k-core decomposition outputs a network core that
consists of highly and mutually interconnected nodes. This is
accomplished by recursively removing nodes with degrees lower
than k, such that k serves as a degree threshold for nodes,
ultimately identifying dense subsets of the graph.

Rich-Club Coefficient
“Rich-club” is a network property that describes how high-degree
network nodes are more interconnected than would be expected
by chance. The rich-club coefficient is the ratio of the number
of connections among nodes of degree k (or higher) to the total
possible number of connections for those nodes (Daianu et al.,
2015). In this study, Rich-club coefficients were calculated at
a range of degree thresholds. The rich-club coefficient can be
determined as:

R
(

k
)

=
E>k

N>k(N>k − 1)
(6)

where R is rich-club coefficient, E>k is the number of connections
among nodes of degree k or higher, and N>k(N>k − 1) is
the total possible number of connections if those nodes were
fully connected.

Modularity
Modularity or community structure is a property that is common
to brain SC networks, which divides SC network nodes into
groups such that structural connections within each group are
dense while connections between the groups are sparse. The
study of modularity structures in SC networks can provide
invaluable help in understanding and visualizing the structure of
SC networks. Modularization is an optimization process in which
the maximal value of Q—the quantity known as modularity—
is obtained over all possible divisions of a network (Newman, T
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2006). Larger Q values are indicative of a highly modular
network organization, while lower Q values indicate a more
uniform network structure (Newman and Girvan, 2004). In this
study, the community_louvain function of the BCT was used
to calculate the modularity for the identified SC networks. The
employed Louvain optimization is a simple, efficient, and easy-
to-implement method for identifying modules in large networks.
The optimization comprises two steps. First, the method searches
for small modules by optimizing modularity locally. Second, it
aggregates the nodes that belong to the samemodule and builds a
new network wherein each node represents a module identified
in the first step. These steps are iterated until a maximum
of modularity value is attained and a hierarchy of modules is
generated (Blondel et al., 2008; Lancichinetti and Fortunato,
2009). Modularity (Q) is defined as:

Q =
1

2m

∑

i,j

[

wij −
kikj

2m

]

δ(ci, cj) (7)

where wij denotes the linking weight between node i and node
j; ki, and kj are the sums of the weights of the edges attached

to nodes i and j, respectively; m is the total link weight in the
network overall; and δ(ci, cj) is 1 when nodes i and j are assigned
to the same module and 0 otherwise.

Topological Metric Estimation
After SC network nodes were determined using four different
parcellation schemes, ODF-based tractography was employed to
calculate the structural connectivity for each subject. Connection

TABLE 3 | P-values of Kruskal-Wallis testing for Sp, Eglob, Lc, and Cp differences

among the NC, EMCI, LMCI, and AD groups.

OASIS AAL HCP Gordon

Sp 0.0017 0.0782 0.0007 0.0032

Eglob 0.0080 0.8482 0.0015 0.9816

Lc 0.0637 0.3627 0.0019 0.0003

Cp 0.0514 0.9988 0.0207 0.9538

The significant p-values are shown in bold. OASIS, AAL, HCP, and Gordon represent

OASIS-TRT-20 (62 regions), AAL (116 regions), HCP-MMP (180 regions), and Gordon-

rsfMRI (333 regions), respectively. Sp denotes network strength. Eglob is global network

efficiency. Lc is characterized path length. Cp is clustering coefficient.

FIGURE 2 | Group median and interquartile ranges of the SC topological metrics for each group, including network strength Sp, global efficiency Eglob, characterized

path length Lc, and cluster coefficient Cp. P-values derived from Kruskal-Wallis tests assessing SC topological differences among NC, EMCI, LMCI, and AD for each

parcellation scheme are reported in Table 3.
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strength values were normalized from [0, 1] and self-connections
were excluded. Group average SC matrices were computed for
each parcellation scheme. Afterwards, topological measures were
estimated using the codes provided in the BCT and GRETNA,
including network strength, global efficiency, characterized path
length, cluster coefficient, k-core, rich-club coefficient, and
modularity. Separate from other measures, k-core measurement
directly reflects how the SC network breaks down as cognitive
impairment increases, quantifying how AD affects the human
connectome (Daianu et al., 2013b). k acts as a degree threshold
for network nodes by which k-core decomposition creates a
subnetwork that consists of highly and mutually interconnected
nodes by recursively removing the nodes with degrees lower
than k. In this study, we used k-core analysis to access AD-
related anatomical network changes under different whole-brain
parcellation schemes including OASIS-TRT-20, AAL, HCP-
MMP, and Gordon-rsfMRI. When using a k threshold <17, AD
subjects cannot be discriminated from NC and MCI subjects
(Daianu et al., 2015). Thus, thresholds of k = 20 and k = 30
are typically chosen for comparative computations. The rich-
club coefficient is the ratio of the number of connections among
nodes of degree k or higher to the total possible number
of connections if those nodes were fully connected (Daianu
et al., 2015). This coefficient was computed at a range of k-
value thresholds from 17 to 39. When the threshold is <17,
the coefficient is close to 1 (Daianu et al., 2015). Modularity
optimization is a complete subdivision of the network into non-
overlapping modules (Fortunato, 2010), which maximizes the
number of within-module edges and minimizes the number
of between-module edges. In this study, we used a Louvain
community detection algorithm provided in BCT to achieve
sub-module decomposition.

Statistical Analysis
To evaluate discriminating power for AD progressing phases
of the network metrices corresponding to different parcellation

schemes, statistical analyses were separately performed on each of
them using Kruskal-Wallis tests. Additionally, a linear regression
model was fitted to rich-club coefficient over a range of k-levels
from 17 to 39 (Daianu et al., 2015), which was calculated using
different whole-brain parcellation schemes. The intercepts and
slopes of these regressionmodels generally reflect the associations
between rich-club coefficient and progressive AD phases. P-
values lower than 0.05 were considered statistically significant.

RESULTS

The group-averaged SC matrices of NC, EMCI, LMCI, and
AD groups are depicted in Figure S2. The calculated network
metrics (mean ± std) for each parcellation method are listed
in Table 2, including network strength Sp, global efficiency
Eglob, characterized path length Lc, and cluster coefficient Cp.
The mean and standard deviation of group network metrics
computed for each parcellation scheme are reported in Table 2,
with median values and interquartile differences represented in
Figure 2. P-values derived from Kruskal-Wallis tests assessing
the SC differences among NC, EMCI, LMCI, and AD groups
for each parcellation scheme are reported in Table 3 (significant
values are shown in bold). Significant group differences in
Sp, Eglob, Lc, and Cp values were observed when HCP-MMP

TABLE 4 | P-values of Kruskal-Wallis testing for k-core differences among the NC,

EMCI, LMCI, and AD groups.

OASIS AAL HCP Gordon

k = 20 0.0038 0.2345 0.0105 0.0014

k = 30 0.0040 0.1696 0.0024 0.0023

The significant p-values are shown in bold. OASIS, AAL, HCP, and Gordon represent

OASIS-TRT-20 (62 regions), AAL (116 regions), HCP-MMP (180 regions), and Gordon-

rsfMRI (333 regions), respectively.

FIGURE 3 | Group median and interquartile ranges of k-core network nodes for each group, typically at the thresholds of k = 20 and k = 30. P-values derived from

Kruskal-Wallis tests assessing SC topological differences among NC, EMCI, LMCI, and AD for each parcellation scheme are reported in Table 4.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2019 | Volume 11 | Article 113

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wu et al. Parcellation Effects on Characterizing AD

FIGURE 4 | Group median and interquartile ranges of Q coefficient of modularity structure for each group. P-values derived from Kruskal-Wallis tests assessing SC

topological differences among NC, EMCI, LMCI, and AD for each parcellation scheme are reported in Table 5.

TABLE 5 | P-values of Kruskal-Wallis testing for modularity differences among the

NC, EMCI, LMCI, and AD groups.

OASIS AAL HCP Gordon

Q of modularity 0.0004 0.0008 0.0148 0.1540

The significant p-values are shown in bold. OASIS, AAL, HCP, and Gordon represent

OASIS-TRT-20 (62 regions), AAL (116 regions), HCP-MMP (180 regions), and Gordon-

rsfMRI (333 regions), respectively.

was used as parcellation scheme (p = 0.0007, p = 0.0015,
p = 0.0019, and p = 0.0207, respectively). No group differences
were found for any AAL-based SC indexes. Significant group
differences were found in Sp and Lc (p = 0.0032 and p = 0.0003,
respectively) but not in f Eglob and Cp for SCmatrices constructed
with Gordon-rsfMRI nodes. For OASIS-TRT-20 parcellation,
significant differences in Sp and Eglob were found among the NC,
EMCI, LMCI and AD (p = 0.0017 and p = 0.0080, respectively).
No significant group differences in Lc and Cp values were
observed for OASIS parcellation.

At the typical thresholds of k= 20 and k= 30, Kruskal-Wallis
tests were performed on the number of k-core network nodes
of NC, EMCI, LMCI, and AD groups. Figure 3 shows group
median and interquartile ranges, and the corresponding p-values
are provided in Table 4. The results indicate that significant
group differences in terms of k-core were detected when
OASIS-TRT-20, HCP-MMP, and Gordon-rsfMRI were used as
parcellation schemes (p = 0.0038/0.0040, p = 0.0105/0.0024,
and p = 0.0014/0.0023, respectively). For AAL parcellation, no
significant group differences in k-core number were observed (p
= 0.2345/0.1696).

The topological metric of Q quantifies the extent to which
SC networks may be subdivided into clearly delineated groups.
Figure 4 shows group median and interquartile ranges of
modularity statistic Q across different parcellation schemes, and
Table 5 shows the p-values with significant values in bold. Results
indicate that significant group differences were detected when
OASIS-TRT-20, AAL, and HCP-MMP parcellation schemes were
used to define network nodes (p = 0.0004, p = 0.0008, and
p = 0.0148, respectively). For Gordon-rsfMRI parcellation, no
significant group differences in Q were observed (p= 0.1540).

To evaluate discriminatory efficacy of different parcellation
schemes on rich-club coefficient, Kruskal-Wallis tests on the
rich-club coefficient R

(

k
)

at each of the k-levels from 17 to 39

TABLE 6 | P-values of Kruskal-Wallis testing for rich-club coefficient differences

among the NC, EMCI, LMCI, and AD groups.

k-level OASIS AAL HCP Gordon

17 0.0965 0.0002 0.0013 <0.0001

18 0.0045 0.0002 0.0007 <0.0001

19 <0.0001 0.0002 0.0008 <0.0001

20 <0.0001 <0.0001 0.0006 <0.0001

21 <0.0001 0.0002 0.0004 <0.0001

22 <0.0001 0.0004 0.0005 <0.0001

23 <0.0001 0.0015 0.0007 <0.0001

24 0.0002 0.0005 0.0004 <0.0001

25 <0.0001 0.0005 0.0005 <0.0001

26 0.0004 0.0005 0.0003 <0.0001

27 0.0002 0.0002 0.0003 <0.0001

28 0.0001 0.0002 0.0002 <0.0001

29 <0.0001 0.0001 0.0006 <0.0001

30 <0.0001 0.0003 0.0009 <0.0001

31 <0.0001 0.0005 0.0006 <0.0001

32 <0.0001 0.0005 0.0006 <0.0001

33 <0.0001 0.0006 0.0007 <0.0001

34 <0.0001 0.0006 0.0005 0.0002

35 <0.0001 0.0010 0.0006 0.0003

36 <0.0001 0.0007 0.0009 0.0005

37 0.0001 0.0008 <0.0001 0.0008

38 <0.0001 0.0006 0.0008 0.0012

39 0.0003 0.0007 0.0012 0.0032

The significant p-values are shown in bold. OASIS, AAL, HCP, and Gordon represent

OASIS-TRT-20 (62 regions), AAL (116 regions), HCP-MMP (180 regions), and Gordon-

rsfMRI (333 regions), respectively.

(Daianu et al., 2015) were performed (p-values at each k-level are
shown in Table 6), a linear regression model was fit to R

(

k
)

as
it was calculated over the k-levels from 17 to 39. The results in
Table 6 indicate that the rich-club coefficients computed based
on AAL, HCP-MMP, and Gordon-rsfMRI over the k-levels from
17 to 39 are significantly sensitive to the group differences across
NC, EMCI, LMCI, and AD (the corresponding p-values are
<0.05). Except for the rich-club coefficients computed based
on the OASIS_TRT_20 atlas at k-level = 17 (p = 0.0965), the
coefficients at k-level between 18 and 39 are able to significantly
differentiate the groups (the corresponding p-values are <0.05).
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Figure 5 shows the linear regression fitted results which reflects
the changing trend of rich-club coefficient over the k-levels from
17 to 39.

DISCUSSION

To this point, evaluating the effects of brain parcellation
on the topological characterization of SC networks has been
a challenging task, largely due to the lack of universally-
accepted parcellation templates that can be used as a reference
(Arslan et al., 2017). To provide an effective comparison, this
study applied different parcellation schemes and ODF-based
tractography to build SC networks for NC, EMCI, LMCI, and
AD subjects. Four whole-brain parcellation techniques were used
to define the nodes of these SC networks with different number
of parcels, and connections were estimated by measuring the
pairwise number of neural fiber bundles. To assess the impact
of parcellation scheme on the ability to identify differences
among NC, EMCI, LMCI, and AD, we explored the topological
organization of SC networks. Our findings provide evidence
that parcellation schemes have significant impact on topological
characterization of brain structural connectivity networks in
AD propagation.

After the topological measures were derived from subject-
specific adjacency matrices, Kruskal-Wallis tests were employed
to investigate their sensitivity to the NC, EMCI, LMCI, and AD
groups under each parcellation scheme. Tested measures
included network strength, global efficiency, clustering
coefficient, characteristic path length, k-core, rich-club
coefficient, and modularity. We found that these measures
were generally sensitive to the selection of parcellation scheme.
When interpreting the SC-related results of AD-related studies,
the parcellation effect on the calculated measures is a factor that
needs to be taken into consideration.

Overall, characteristic path length increased with AD
progression in all tested parcellation schemes while network
strength, global efficiency, and clustering coefficient decreased, as
shown in Table 2 and Figure 2. This is consistent with the results
in Lo et al. (2010), Yao et al. (2010), and Daianu et al. (2013a).
When the HCP-MMP (180 nodes) parcellation was used to define
network nodes, the metrics, including Sp, Eglob, Lc, and Cp,

displayed significant differences between the NC, EMCI, LMCI,
and AD groups. In contrary, AAL atlas cannot discriminate
group differences in terms of Sp, Eglob, Cp, Lc. The OASIS-TRT-
20 scheme was unable to differentiate group differences in terms
of Cp and Lc, while Gordon_rsfMRI scheme cannot recognize
group differences in terms of Eglob and Cp. From the results, we
could conclude that network strength Spwas most robust and
sensitive to the characterization of topological deterioration in
MCI and AD, while clustering coefficient Cp lacked robustness
to whole-brain parcellation atlases. These findings align with a
previous study which investigated structural connectivity and
the sensitivity of network measures to the parcel number of the
parcellation scheme (Zalesky et al., 2010).

k-core patterns in the SC networks were then explored,
from which the most highly interconnected subnetworks

were determined. Kruskal-Wallis test was then performed to
determine if k-core regions remained intact or were altered
by AD progression by eliminating the least reliable anatomical
connections (Daianu et al., 2013b). In this study, we analyzed
the k-core feature at k = 20 and k = 30, as k = 16 has been
reported as the minimum value at which the majority of nodes
in networks would remain connected. As Daianu et al. (2013b)
explored, some k-core nodes are lost with AD progression
(Figure 3). We used the number of k-core nodes as a measure
to investigate AD-related network disruption. Significant group
differences in the k-core patterns of the NC, EMCI, LMCI, and
AD groups were found under the OASIS-TRT-20, HCP-MMP,
and Gordon_rsfMRI parcellation schemes. Regardless of k-level,
group difference could not be detected when using AAL atlas.

Modularity was then used to measure the extent to which
a network is optimally partitioned into functional subgroups
(Rubinov and Sporns, 2011). Due to the breakdown of anatomical
connections, the modularity structures of the SC networks
exhibited apparent alterations (Figure 4). The breakdown of
global informative connections involving the medial prefrontal,
posterior parietal, and insular cortices were already apparent in
MCI, suggesting that progressive damage to fiber connections
begins during the predementia stages of AD (Acosta-Cabronero
et al., 2009; Sorg et al., 2009; Sperling et al., 2010; Shao
et al., 2012). AD patients then show reduced associative
white matter fiber density in the cingulum, the splenium of
the corpus callosum, and the superior longitudinal fasciculus
(Rose et al., 2000). Coherence studies have further identified
disturbed interhemispheric functional connectivity in AD (Brun
and Englund, 1986; Wada et al., 1998; Delbeuck et al.,
2003). According to Kruskal-Wallis testing, the NC, EMCI,
LMCI, and AD groups showed significantly different Q values
under most parcellation schemes, with the lone exception
of the Gordon_rsfMRI333 parcellation. Further, our results
indicate that a loss of k-core nodes should increase modularity
(Figure 4). This supports the concept that, in addition to
mediating internetwork interactions, k-core nodes are involved
in maintaining the modular structure of functional networks
through decreasing network connectivity (Hwang et al., 2017).
In accordance with (Daianu et al., 2015), findings here indicate
that the breakdown of anatomical connections affected by MCI
and AD could increase the modularity coefficient.

Highly connected k-core nodes serve as communication hubs,
facilitating integrative information processing. These hubs have
high nodal degrees and tend to form a rich club—a set of nodes
that are densely interconnected. The rich-club coefficient is a
related but separate concept from k-core, as it evaluates a range
of k-core thresholds from 17 to 39. The rich-club coefficient is
defined as the ratio of the number of connections among nodes of
degree k or higher to the total possible number of connections if
those nodes were fully connected (Daianu et al., 2015). Significant
group differences in rich-club coefficient were detected when
AAL, HCP-MMP, and Gordon_rsfMRI333 parcellation schemes
were used to define SC network nodes. Under the OASIS scheme,
no significant group differences were detected at k-level = 17.
Although some conditional differences were limited, these results
help better understand nodal degree alterations in AD. Finally,

Frontiers in Aging Neuroscience | www.frontiersin.org 9 May 2019 | Volume 11 | Article 113

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Wu et al. Parcellation Effects on Characterizing AD

FIGURE 5 | Linear regression of rich-club coefficient over a range of k-level from 17 to 39. NC, EMCI, LMCI, and AD groups are represented by blue, cyan, magenta,

and green colors, respectively. (A) OASIS-TRT-20, (B) AAL, (C) HCP-MMP, and (D) Gordon-rsfMRI.

the changing trends of rich-club coefficients over k-level was
investigated using linear regression by fitting models with the
metrics as predictors for AD propagation. The results indicate
that the trends in this metric were different depending on
the parcellation scheme used during SC network construction
(Figure 5). Overall, rich-club coefficient changes in EMCI, LMCI,
and AD accompany a decrease in k-core nodes.

From these results, it can be concluded that whole-brain
parcellations exert significant influence on the topological
characterization of brain structural connectivity networks in
AD propagation. Future AD-related structural network studies
should attempt to use metrics that are largely robust to the
underlying parcellation scheme when attempting to predict
AD progression. While it was not possible in this study
due to limited available information, the incorporation of
clinical and neuropsychological information (such as the Clinical
Dementia Rating or Mini-Mental State Examination) should

also be considered during analysis. Further, the effect of
applied parcellation schemes should be considered during the
interpretation of results, as even the most robust measures
exhibit some degree of scheme-based variability. As tractography
methods could greatly influence the construction of SC networks,
a more sophisticated HARDI-based tractography approach may
improve the credibility of SC matrices in future.

CONCLUSION

Brain parcellation influences the construction of SC network and
their topological properties. This work aims to comprehensively
explore effect of brain parcellation atlases on characterization of
topological deterioration in MCI and AD. There is increasing
evidence that widespread network disruptions exist in MCI and
AD, and that topological characterization can provide useful
biomarkers for the detection of AD progression. In this study
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ODF-based tractography was employed to construct SC networks
from a mixed cohort of 20 NC, 20 EMCI, 20 LMCI, and 20 AD
from ADNI under different whole-brain parcellation schemes
across multiple spatial scales. The influence of parcellation
scheme on the differentiation of the NC, EMCI, LEMCI, and
AD groups was then demonstrated. Results suggest differences in
the parcellation schemes used to generate SC networks affect the
ability for network measures to distinguish structural differences
between the NC, EMCI, LMCI, and AD groups. While this study
has underlined the importance of the brain parcellation schemes
in the SC network analysis of AD progression, further research
is required to fully understand the relationship between SC
networks and the underlying neural substrates of EMCI, LMCI,
and AD at the network level.
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The four parcellation templates were all spatially normalized
into Montreal Neurological Institute (MNI) space (Fonov et al.,
2011), and are visualized from different views (left, right, top, and
bottom views) in Figure S1.

Group-averaged SC matrices were obtained by averaging the
matrices of all subjects within each group, as shown in Figure S2.

Figure S1 | Cerebral cortex parcellation schemes with different numbers of

parcels, including OASIS-TRT-20 (62 regions), AAL (116 regions), HCP-MMP (180

regions), and Gordon-rsfMRI (333 regions). The character M represents the

number of parcellated regions. These schemes are shown from left, right, bottom,

and top brain views, respectively. Full index of the parcellated regions can be

found in Tzourio-Mazoyer et al. (2002), Klein and Tourville (2012), Gordon et al.

(2014), and Glasser et al. (2016).

Figure S2 | The group-averaged structural connectivity matrices of NC, EMCI,

LMCI, and AD subjects. The strength values were normalized from [0, 1], and

self-connections were excluded. From top to bottom, the dimensions of the

adjacency matrices are 62 × 62, 116 × 116, 180 × 180, and 333 × 333,

respectively.
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