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Effects of bubble deformation on the viscosity
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Abstract

The relative viscosity (µrel = suspension viscosity/suspending fluid viscosity) of low Reynolds number, dilute
and surfactant-free bubble suspensions in simple shear is studied with a rotating cylinder, Couette rheometer. The
conditions of the experiments correspond to capillary numbers (Ca) of order 1 and bridge previous experimental,
theoretical and numerical results that focused on eitherCa � 1 or Ca � 1. The suspensions are shear thinning
with µrel > 1 for smallCa. At largeCa, µrel approaches a constant that is less than 1. These results are explained
by a scaling analysis that considers how regions of viscous dissipation in and around bubbles change as bubbles are
deformed by the flow. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a low Reynolds number shear flow, the rheological properties of a two fluid phase suspension
depend on the viscosity and volume fractions of the fluids, microstructures (shape, size, orientation and
distribution of the dispersed phase) and interfacial properties (surface tension, concentration and behavior
of surfactants). One useful rheological property of suspensions is the relative viscosity,µrel, defined for
simple shear flow as the ratio of the shear viscosity of the suspension (µ) to the shear viscosity of the
suspending fluid (µs). In a dilute suspension:

µrel = 1 + f φ, (1)

whereφ is the volume fraction of the dispersed phase, andf a function that depends on the properties
of the suspended particles. For example, Einstein [1] showed thatf = 5/2 for rigid, spherical parti-
cles. Taylor [2] generalized this result for spherical particles of arbitrary viscosity ratio,λ (the ratio of the
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viscosity of the dispersed to the suspending phases), and showed that:

f (λ) = 5λ + 2

2(λ + 1)
. (2)

If the dispersed phase is deformable,f also depends on the shape of the particles. If the system is
isothermal and surfactant-free so that the surface tension,Γ , is constant, then the magnitude of deformation
scales with the capillary number:

Ca = aGµs

Γ
, (3)

whereG is the shear rate anda the undeformed particle or bubble (λ + 1) radius. The capillary number
is the ratio of shear stresses that deform bubbles to the surface tension stresses that tend to keep bubbles
spherical. At the zero shear limit (Ca → 0), deformable particles remain spherical and the results of
Taylor apply (Eq. (2)).

Since bubble deformation produces an anisotropic microstructure, a scalar shear viscosity is not suf-
ficient to describe the suspension viscosity. Theoretical (e.g. [3–5]) and numerical [6] studies show, for
example, that large normal stress differences are generated by bubble deformations. In this study, we focus
on the relative shear viscosity because it is the pertinent property to calculate the velocity distribution in
many commonly encountered situations, such as undirectional flow through a tube or slot. We also con-
sider only steady conditions, i.e. the bubbles have deformed to their steady shapes. The complementary
problem for unsteady flows was recently studied experimentally by Llewellin et al. [7] forCa � 1 and
oscillatory flows.

The rheology of low Re emulsions is relevant to the manufacturing processes involving mixing and
extrusion. A further application, and the impetus for the present study, is modeling flow of bubbly
magma (silicate melts containing bubbles). Capillary numbers for natural magmatic systems (e.g. volcanic
conduits, lava flows) range fromCa � 1 toCa � 1 due to large ranges in melt viscosity and shear rates
[8]. Viscosities of bubbly suspensions are best constrained theoretically [5,9,10] and numerically [6,11]
at smallCa. Experiments on the rheology of bubble suspensions focus onCa � 1, e.g. [12] orCa � 1,
e.g. [13] though a recently published study by Thompson et al. [14] also considersCa = O(1). Foams are
relatively well studied; however, foam rheology is different from the problem considered here because
surfactants play a large dynamic role in foam rheology.

In this study, we bridge the gap between the high and lowCa limits. We use Couette flow experiments
to determine the viscosity of low Reynolds number (Re), dilute surfactant-free bubble suspensions under
conditions where the relative viscosity is most sensitive to changes in shear rate (Ca=O(1)). We combine
these results with experimental data, numerical simulations and theoretical results for higher and lowerCa.

2. Methods

The viscosity of suspensions of deformable bubbles in a viscous, Newtonian fluid is studied using
corn syrup as a suspending fluid (µs = 180 Pa s at 22◦C) and air bubbles as the dispersed phase. Corn
syrup is used because it is nontoxic, water soluble, Newtonian and inexpensive. We assume the syrup is
surfactant-free. In experiments on the deformation of air bubbles in corn syrup in simple shear flow [15],
we observe no tip streaming and find the shape and orientation of air bubbles in corn syrup agrees with
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Fig. 1. The Couette flow viscometer.

theoretical predictions (e.g. [16,17]) for a surfactant-free system. Therefore, if surfactants are present
they do not significantly influence bubble deformation.

Viscosity measurements are made in a rotating cylinder (Couette) rheometer sketched in Fig. 1. The
inner and outer cylinders have a diameter of 20.3 and 29.2 cm, respectively, and are made of transpar-
ent acrylic to allow observation of potentially problematic phenomena such as bubble coalescence and
large-scale flow patterns. The Reynolds number, based on the shear rate and bubble size, is always<10−5.
To simplify the subtraction of end effects, the lower gap between the cylinders is filled with bubble-free
syrup for which viscosity is independent of shear rate. Viscosities of bubbly corn syrup as a function of
rotation rate are determined by subtracting the torque associated with the gap-filling syrup (determined
before adding bubbly syrup) from measurements of the torque required to rotate the inner cylinder im-
mersed in bubbly syrup underlain by bubble-free syrup. Relative viscosities are determined by comparing
the torque required to shear the annulus of bubbly syrup to the torque to shear an annulus of the same
height of bubble-free syrup at the same shear rate and temperature. Temperature corrections are based
on measurements with a Cole Parmer® 98936 series rotational viscometer of corn syrup viscosity at
multiple temperatures.

Emulsions (e.g. Fig. 2) are formed by the mechanical mixing and breakup of air bubbles injected into
corn syrup. Compressed air enters the syrup from the end of a hollow, rotating shaft with a propeller
blade at the end. The propeller breaks the emerging air bubbles into numerous bubbles as the shaft rotates
and is moved through the syrup, stirring it. We determine the bubble volume fractions (φ) from the bulk
density measurements of the pure and bubbly corn syrups and present results forφ = 0.035, 0.115, and
0.163. Largeφ are difficult to achieve presumably because of the lack of surfactants.

The incorporation of bubbles into the syrup may cause changes in water content, and thus viscosity
of the suspending fluid (µs). To reduce systematic errors from water content, temperature and fluid
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Fig. 2. Photomicrograph of corn syrup with 16% air bubbles by volume. Note the range in bubble sizes. The large bubble in the
center is the largest bubble imaged.

heights, we adjust theµs value for each experiment so thatµrel approaches the zero-shear limit (µrel,0)
based on the Kreiger–Dougherty [18] equation:

µrel =
(

1 − φ

φm

)−f φm

, (4)

whereφm is the maximum packing fraction of bubbles andf, the intrinsic viscosity, is the same function
that appears in Eq. (1). For these calculations we useφm = 0.6 andf = 1 [2]. Numerical simulations
for Ca � 1 (presented later) agree with the predictions of the Kreiger–Dougherty equation for the range
of φ considered in this study.

As the syrup contains a range in bubble sizes (Fig. 2) and shear rates vary radially in the rheometer,
we define a characteristic capillary number, denotedCa∗, using the shear rate,Gi , at the wall of the inner
(rotating) cylinder and a characteristic bubble radius,a∗, i.e.:

Ca∗ = Gia
∗µs

Γ
. (5)

The characteristic bubble radius,a∗, is determined from:

a∗ =
∑n

i=1a
3
i∑n

i=1a
2
i

=
∑

(bubble radius)(bubble area in photo)∑
bubble area in photo

, (6)

whereai is the radius of theith bubble. Bubble sizes are measured from multiple digital photographs
(1600× 1200 pixels) taken at 100× and 40× magnification under a microscope. The number of bubbles
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measured ranges from 150 to 300. A volume averaged bubble radius is the most appropriate average to
define a characteristic radius [19]. We use a photograph area average in Eq. (6) because the probability
of imaging a given bubble is proportional to its radius. Values ofa∗ are 0.24, 0.29 and 0.26 mm for the
experiments withφ = 0.035, 0.115 and 0.163, respectively. All bubbles are at least an order of magnitude
smaller than the gap between the cylinders of the rheometer.

Our relative viscosity measurements are limited toCa∗ <3 due to complications related to viscous
dissipation and bubble coalescence at high shear rates. Higher shear rates require greater strains to
achieve steady bubble shapes. Large strains lead to viscous dissipation and as a result, a reduction in the
viscosity of the suspending fluid as the temperature rises. Here, the fluid temperature changes by less
than 0.2◦C for each set of measurements at a givenφ.

Large strains also change the emulsion textures because of greater numbers of bubble–bubble inter-
actions. In preliminary experiments, significant coalescence occurred at high shear rates, as evidenced
by a reduction in the height of the bubbly fluid due to new, large bubbles rising to the upper surface.
Observations on individual bubbles in the syrup-filled rheometer indicate that bubble migration is not
significant on the time scales and shear rates of the experiments (see also [20]).

Measurements for determining viscosity as a function of shear rate are made at progressively increasing
shear rates. At each shear rate, once the apparatus torque and shear rate appear steady, measurements are
made over a period of tens of seconds. Returning to lower shear rates after completion of the experiments
reproduces the results suggesting that the size and spatial distribution of the bubbles does not change.
We do not observe the hysteresis that Vinckier et al. [21] attribute to changing droplet size. Capillary
numbers are sufficiently small that bubbles do not break [22].

3. Results

As expected, the relative viscosity,µrel, depends on both the volume fraction of bubbles,φ, and the
capillary number,Ca (Figs. 3 and 4). Suspensions are shear thinning andµrel > 1 for smallCa∗, and
µrel < 1 for Ca∗ greater than about 0.5. That is, the viscosity of the suspension is greater than that of
the suspending fluid at low shear rates where the bubbles remain nearly spherical due to surface tension.
At shear rates that are high enough to significantly deform bubbles, bubbles reduce the viscosity of the
mixture. Asφ increases,µrel becomes increasingly sensitive to changes in shear rate (G); however, we
are able to discern shear-thinning rheology atφ as low as 0.035.

We compare our data with two theoretical equations developed by Frankel and Acrivos [9] and Han
and King [10] relating relative viscosity andCa (Fig. 3b). Both equations assume that bubbles are only
slightly deformed and are relevant to dilute and semi-dilute suspensions, respectively. Forλ = 0, the
Frankel and Acrivos equation is:

µrel = 1 + ((6/5)Ca)2 + φ(1 − (12/5)Ca2)

1 + ((6/5)Ca)2
. (7)

The Han and King model which is based on Choi and Schowalter [5] is:

µrel = 1 + ((6/5)Ca)2(1 + (20/3)φ)(1 + 4φ)

1 + ((6/5)Ca)2(1 + (20/3)φ)2
(1 + φ + 5

2φ
2), (8)
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Fig. 3. Relative viscosity as a function of characteristic capillary number (experimental data) or capillary number (numerical
simulation data and theoretical model curves) for bubbly corn syrup with 16.3% air bubbles. Experimental and numerical data are
represented by open and filled circles, respectively. One standard deviation error bars are given for experimental data with errors
greater than the symbol size. A power law curve (a) fits the experimental data well except at lowCa∗ where an exponential curve
(b) is better (thick black lines). The discrepancy between the numerical and experimental data suggests thatCa∗ overestimates
Ca. Also plotted, are the theoretical predictions of Frankel and Acrivos [9] (dashed line) and Han and King [10] (thin solid line)
based on small deformation theories (see text for details).

for λ = 0. Both theoretical equations describe the experimental data well forCa < 1 (Fig. 3b). Given that
the models are based on small deformation theories, it is not surprising they are less accurate at highCa.
ForCa > 1, the Han and King relationship greatly overpredicts the suspension viscosity. The Frankel and
Acrivos model is much closer to the experimental data. AsCa → ∞, the Frankel and Acrivos equation
reduces to Eq. (1) withf = −5/3 which is the solution for spherical, inviscid inclusions in the limit of
no surface tension [23,24].

We also compare our experimental data with numerical simulations of monodisperse suspensions
of ordered bubbles (Fig. 3). The numerical simulation methods are identical to those of Manga and
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Fig. 4. Relative viscosity as a function of characteristic capillary number for bubbly corn syrup with 3.5% (black), 11.5% (grey),
and 16.3% (white) air bubbles. Error bars are same as in Fig. 3. The horizontal lineµrel = 1 is the relative viscosity of pure
(bubble-free) syrup. The set of solid curves plotted are derived from simultaneously fitting the Cross equation (Eq. (9)) to the
three data sets (φ = 0.035, 0.115 and 0.163). We setµrel,0 to the Kreiger–Dougherty equation (Eq. (4))Ca � 1 limit (φm = 0.6
andf0 = 1) and setµrel,∞ = 1 + c1φ + c2φ

2. The best least-squared residual fit isK = 0.72, m = 1.43, c1 = −1.14, and
c2 = −9.80. The dashed curves are theoretical predictions of Frankel and Acrivos [9] for the three bubble volume fractions of
the experiments.

Loewenberg [25] and are based on the boundary integral method technique described in Loewenberg and
Hinch [6]. Calculations are limited toCa ≤ 0.4 because more deformed bubbles develop pointed ends
with curvature that cannot be adequately resolved numerically. The numerical results are similar to the
experimental data but predict lowerµrel at the largestCa (e.g. Fig. 3b). A possible source of this disparity
is an overestimate of allCa∗ due to employing the shear rate at the inner cylinder which is the highest
shear rate in the fluid. The experimental data would also be shifted into agreement with the numerical
results by using differenta∗ orΓ (we use 0.080 N/m from [26]). We should not necessarily expect perfect
agreement between the numerical and experimental data sets, however, because the corn syrup-bubble
suspensions are unordered and contain a range of bubble sizes (Fig. 2).

Since numerical solutions are limited to lowCa and there are only analytical solutions for the shape
of bubbles atCa � 1 [27] andCa � 1 [28], we also fit our data with empirical equations. A power-law
model fits theµrel (Ca) data well except at very lowG (i.e. lowCa), where an exponential model fits the
data better (Fig. 3). To fit the data to a single empirical curve we use the Cross [29] equation, which has
been shown to fit viscosity data as a function of stress or strain rate for suspensions of ‘squishy’ spheres
[30] such as blood [31] and aqueous dispersions of polymer latex spheres [32]. We use a modified Cross
equation given by:

µrel = µrel,∞ + µrel,0 − µrel,∞
1 + (K Ca∗)m

, (9)

whereµrel,0 andµrel,∞ refer to the asymptotic values of relative viscosity at very low and very high shear
rates, respectively, andK andm are dimensionless constants.
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Fig. 5. Relative viscosity as a function of characteristic capillary number for bubbly corn syrup and bubbly silicate melt. The
symbols for our syrup experiments (circles) are the same as in Fig. 4. The black, grey and open squares correspond to bubbly
silicate melt experiments withφ = 0.29, 0.42 and 0.45, respectively, of Stein and Spera [13]. The three bubbly syrup data
sets (φ = 0.35, 0.115 and 0.163) are simultaneously fit to the Cross equation (Eq. (9)) as in Fig. 4. However, in this case,
µrel,∞ is estimated with the Krieger–Dougherty equation (Eq. (4)) withφm = 0.9, the maximum packing for cylinders, to
allow extrapolation to non-dilute suspensions. The best-fit parameters areK = 0.86, m = 1.61, andf∞ = −2.37. The
high Ca limits are in reasonable agreement with the Stein and Spera data despite not including the latter in the curve fitting
analysis.

To produce a general equation describingµrel as a function ofCa andφ, we simultaneously fit the
Cross equation to the three data sets (φ = 0.35, 0.115 and 0.163). We setµrel,0 to the Kreiger–Dougherty
equation (Eq. (4))Ca � 1 limit (φm = 0.6 andf0 = 1) and setµrel,∞ = 1+ c1φ + c2φ

2. Solving forK,
m, c1 andc2, the best least-squared residual fit isK = 0.72,m = 1.43,c1 = −1.14, andc2 = −9.80. The
resulting set of curves fits the data well (Fig. 4) but it is clearly not applicable to non-dilute suspensions
becauseµrel,∞ is negative forφ > 0.27.

To extrapolate the Cross equation to higherφ, we apply the Krieger–Dougherty equation (Eq. (4)) with
φm = 0.9, the maximum packing for cylinders to estimateµrel,∞. We must also determine the high shear
rate intrinsic viscosity,f(Ca → ∞) ≡ f∞, as well as,K andm in the Cross equation (Eq. (9)). The best-fit
parameters areK = 0.86,m = 1.61 andf∞ = −2.37. For comparison,f = −5/3 for spherical, inviscid
inclusions in the limit of no surface tension [23,24] and the Frankel and Acrivos [9] equation approaches
this solution at highCa. In Fig. 5 we plot the resulting Cross equation curves along with data from Stein
and Spera [13] for bubbly, surfactant-free, silicate melts (µs = 106.4–108.6) andφ = 0.29, 0.42 and
0.45. The experiments performed by Stein and Spera are restricted to largeCa. The highCa limits of the
Cross equation fits based on the Krieger–Dougherty equation withφm = 0.9 are in reasonable agreement
with the higherφ measurements of Stein and Spera [13], despite not including the latter in the best fit
analysis. The Frankel and Acrivos equation also fit the Stein and Spera data despite being based on small
deformations in dilute suspensions.
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Fig. 6. (a) Three regions in and around bubbles that contribute to viscous dissipation in a sheared bubbly suspension. In regions
1 and 2, dissipation is reduced relative to that in the undisturbed simple shear flow. In region 3, dissipation is enhanced; (b)
Contributions to the intrinsic viscosity,f in Eq. (1), from regions 1, 2 and 3 (f1, f2, andf3, respectively) as a function of bubble
deformation (l/a or D). See text for details.

4. Discussion

In principle, from knowledge of the bubble shape and flow field, the relative viscosity can be calculated.
Unfortunately, while there are analytical solutions describing the shape of bubbles for bothCa � 1 [22]
and Ca � 1 [23], there is no general solution appropriate forCa = O(1). Thus, here we develop
scaling estimates that will help provide an insight into the three distinctive aspects of the rheological
measurements: (1) suspensions with smallCa, 0 < Ca < O(1), are shear thinning; (2) for smallCa, the
relative viscosity is greater than 1; (3) at greaterCa, the relative viscosity approaches a constant value
less than 1.

We model bubbles as cylinders with hemispherical caps (Fig. 6a) and consider viscous dissipation in
three volumes: (1) the bubble, (2) a deformed annulus of suspending fluid around the cylindrical portion
of the bubble, and (3) suspending fluid around the spherical caps of the bubble. Each of these regions
contributes to the intrinsic viscosity of the suspension,f (see Eq. (1)), and:

f = f1 + f2 + f3, (10)

where the subscripts correspond to the contributions from the three volumes defined above and in Fig. 6.
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For inviscid bubbles, viscous dissipation only occurs in the suspending phase, which occupies a volume
fraction of 1−φ. If we neglect effects of flow around bubbles, the replacement of viscous fluid by inviscid
bubbles in a given volume reduces the relative viscosity fromµrel = 1 toµrel = 1−φ. Therefore,f1 = −1
for all bubble shapes.

Viscous dissipation in fluid around a bubble (volumes 2 and 3, Fig. 6) depends on the shape of the
bubble. We characterize the bubble deformation byD = (l − b)/(l + b) or l/a wherel andb are the
semi-major and semi-minor axes of the bubble, respectively, anda is the radius of the undeformed bubble.
In a low Re simple shear flow,D ≈ Ca for Ca � 1 [22] andl/a ∝ Ca1/2at Ca � 1 [23].

Since the fluid–fluid interface at bubble margins is a free slip surface, velocity gradients are reduced
near the bubble and thus, there is less viscous dissipation in the annulus around the cylindrical portion of a
bubble (region 2, Fig. 6) than there would be if there was no bubble. Therefore,f2 ≤ 0. The magnitude of
f2 scales with the volume of region 2 which is a distorted cylindrical annulus. The characteristic thickness
of the annulus,b′, is set tob′ = cb, whereb is the semi-minor axis of the bubble andc is an unknown
constant. In Fig. 6 we normalizef2 by dividing by (c2 + 2c), which is proportional to the volume of the
annulus. Spherical bubbles (D = 0 andl/a = 1) have no cylindrical portions and thus,f2 = 0. A value
proportional to the volume of the bubble (assumed to be constant).

Streamlines in a simple shear flow field are deformed and deflected around bubbles resulting in greater
viscous dissipation around the caps of the bubbles (i.e.f3 > 0). For spherical bubbles with free slip
surfaces,f3 = 2 [2]. With increasing bubble deformation,f3 decreases and approaches zero atCa � 1
because highly deformed bubbles cause very little deflection of flow lines.

The variations inf1, f2, andf3 illustrated in Fig. 6 demonstrate why bubble suspensions are shear-thinning,
µrel > 1 at Ca � 1, µrel < 1 at Ca � 1 andµrel approaches a constant value atCa � 1. Relative
viscosities greater than 1 are dominated by the increased viscous dissipation around slightly deformed
bubbles (Ca � 1). Relative viscosities less than 1 at highCa result from decreased viscous dissipation
due to free slip surfaces, augmented by reduced volume fraction of viscous fluid due to the presence
of inviscid bubbles. The rheology is shear thinning because the volume of fluid with reduced viscous
dissipation (region 2) increases with greater bubble deformation. Furthermore, the volume with increased
viscous dissipation (region 3) decreases as bubbles become more deformed. For highly deformed bubbles,
dissipation in region 3 is negligible, the volume of fluid in region 2 approaches a constant, and thus the
relative viscosity approaches a constant forCa � 1.
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