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Experiments show that proteins are translated in sharp bursts; similar bursty phenomena have been
observed for protein import into compartments. Here we investigate the effect of burstiness in protein
expression and import on the stochastic properties of downstream pathways. We consider two identical
pathways with equal mean input rates, except in one pathway proteins are input one at a time and in the
other proteins are input in bursts. Deterministically the dynamics of these two pathways are indistinguish-
able. However the stochastic behavior falls in three categories: (i) both pathways display or do not display
noise-induced oscillations; (ii) the non-bursty input pathway displays noise-induced oscillations whereas
the bursty one does not; (iii) the reverse of (ii). We derive necessary conditions for these three cases to classify
systems involving autocatalysis, trimerization and genetic feedback loops. Our results suggest that single cell
rhythms can be controlled by regulation of burstiness in protein production.

oise manifests itself and influences the dynamics of cellular systems at various spatial scales'>. Of

particular interest and acknowledged importance are concentration fluctuations stemming from the

random timing of unimolecular and bimolecular chemical events. The ratio of the standard deviation to
the mean of these fluctuations roughly scales as the inverse square root of the average number of molecules®, hence
its importance to the dynamics of intracellular pathways since many chemical species are present in low numbers
per cell’”.

Given a particular biochemical pathway of interest, noise can be further categorized as that coming from
sources external to the pathway and that originating from the individual reactions constituting the pathway. A
ubiquitous source of external noise is the mechanism by which molecules are input or injected into a biochemical
pathway. The classical model for this is a Poisson process in which a single molecule is injected at random points
in time. However, numerous experimental studies over the past decade have shown that such a description is
often inaccurate®'>.

Injection events have at least two physical interpretations for models of intracellular dynamics; injection can
describe protein expression when modelling a biochemical pathway in the cytosol, whereas for pathways in
membrane-bound subcellular compartments injection events can describe transport of molecules into the com-
partment by diffusive or active transport. A number of studies have confirmed that protein expression occurs in
sharp and random bursts®’. The bursts are found to be exponentially distributed and the expression events are
temporally uncorrelated. The origin of these bursts can be explained by a simple mechanism. For bacteria and
yeast, the lifetime of mRNA is typically short compared to that of proteins. In its short lifetime, each mRNA is
translated into a number of protein molecules leading to random uncorrelated bursty events of protein produc-
tion'®. Although such protein expression is the best studied example of burstiness in protein production, it is not
the only one. It has recently been found that protein translocation to the nucleus in response to an extracellular
stimulus in budding yeast also occurs in sharp bursts'’; indeed these bursts may be even more influential than
those in protein expression since the mean size of the translocation bursts are estimated to be hundreds of
molecules whereas those stemming from protein expressions are of the order of few tens or less'*.

It is interesting to ponder what effects burstiness in protein production has on the steady-state properties and
dynamics of the downstream biochemical pathway into which it feeds. Intuitively, a bursty input mechanism
introduces a larger degree of noise to the downstream pathway than a non-bursty one. Indeed, this increase in
noise has been quantified in very simple scenarios where the downstream pathway involves protein decay via a
first-order process; for a bursty production mechanism, it was found that the Fano factor (variance of number
fluctuations divided by the mean of molecule numbers) is equal to 1 plus the mean burst size, whereas for a
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non-bursty mechanism the Fano factor is 1'>". It is expected that this
noise amplification occurs for all species’ concentrations in more
complex downstream pathways; from this point of view, bursting
appears to be deleterious to the precise orchestration of cellular func-
tion. Consequently one might expect the cell to have developed
downstream mechanisms to reduce or control such unwanted
noise.

In this article we challenge this notion by demonstrating the non-
intuitive effects of bursty inputs on noise-induced concentration
oscillations. We compare the stochastic properties of two identical
biochemical pathways, in one of which the protein is produced via a
non-bursty input mechanism and in the other via a bursty input
mechanism where the number of molecules per burst are distributed
according to a general probability distribution. The mean rates of
protein production are chosen to be the same in the two pathways
and hence, according to the deterministic rate equation formalism,
the two systems are characterized by the same steady-state concen-
trations. However, we show that there exist pronounced differences
in the noise-induced oscillations generated by bursty and non-bursty
systems, and that the crucial non-dimensional parameter distin-
guishing the two is the sum of the mean and the Fano-factor of the
burst size probability distribution. By deriving necessary conditions
for noise-induced oscillations in the two systems we demonstrate a
method of classifying simple biochemical circuits by their response
to input bursting.

Results

A general framework for assessing the effects of bursty protein
production. In this section we introduce the two-system setup which
we will use to study the effects of bursting on the fluctuations in
downstream pathways.

Consider a two species system in which both species are injected
into a pathway, and subsequently interact via a number R of down-
stream reactions. The non-bursty version of this system can be
schematically represented as:

a - x,
o x,, (1)

k
SUX1 +$2jX2 — T’le1 +r2jX2’ jE [1’ R]

where X; denotes species i, s; and r;; (i = 1, 2) are the integer
stoichiometric coefficients and h; and k; are the associated rate
constants of the j* input and j* processing (downstream) reaction
respectively.

A bursty input version of this system can also be envisaged as
follows:

Hia1(0) Hia (1) e Ky ()
0X, O—2 58X, F—"0X, 7, i G VS

H0:(0) Has(1) e s (M)

0, B3 X, 92X, ... . 2 Mx,, (2)

k!
51jX1 + 55X —> X1+ X5, je [l R)]

where g;(m) is the probability that the input burst size is m for species
X;and h] is a proportionality constant such that h}q;(m) is an input
rate constant. The integer constants M; and M, are the maximum
burst sizes for species X; and X, respectively.

In the limit of large molecule numbers, the time evolution of the
mean concentrations for the two systems is given by the conventional
rate equations:

oo ()10 (). %2
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where the first terms describe the input reactions and the second
terms describe the processing reactions. The vector

(Eb /= (¢1,b /s Do /s> is the concentration vector for bursty (b) and

non-bursty, i.e., single-molecule input (s) systems. The processing

rates are given by g; ((]51’,, /s Dop /S) = Zle Sijqujilh/squz‘lb/s where S;;

rij — s are the elements of the stoichiometric matrix. The factors
1y and p, are the mean input burst size for species X; and X, respect-
ively, i.e., ;= S.M_ mq;(m). Note that the input rates h; and h}
may be constants, e.g., when modelling diffusive transport, or func-
tions of the concentrations, e.g., when modeling repression or activa-
tion of gene transcription.

If the two systems have the same initial conditions and if the mean
number of molecules injected per unit time is the same, ie., if
hy = I}y, ho = b 1y, then they are indistinguishable from measure-
ments of their mean concentrations, i.e., ¢, = ¢, for all times. Given
this condition, it can be shown (see Methods) using the linear-noise
approximation (LNA)" that the time-evolution equations for the
probability distribution of concentration fluctuations about the
mean concentration solution of the above rate equations are given by:

”5(61—’62’_ Z]”‘< ) &6, € 1)
- : )
QT,;;{ ’kh( ) lk(aﬂ ﬂea% T €2 1),
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where €; is the noise about the mean concentration of species X;,
Ji= M m2qi(m) is the second moment of the distribution of

bursts, Ji (@) =0/0¢; [h,<$> +gi (4_5‘)} is the Jacobian matrix
(describing linear stability) of the two rate equations above and
Dy (qb) Z C, SiiSkiki¢1'§5”. Note that since the bursty and non-

bursty input systems have the same vector of mean concentrations
and the same Jacobian (under the condition of equal mean input

rates), we have denoted these as a =(¢,, ¢,) and J respectively, for
both systems.

An inspection of the Fokker-Planck equations, Egs. (5) and (6),
shows that they have the same drift terms but different diffusion
terms. This implies that while the bursty and non-bursty systems
have the same mean concentrations, their fluctuation properties
are different. The crucial set of non-dimensional parameters deter-
mining the differences in the fluctuations between the bursty and
non-bursty input systems are:

h: j.,' /l,' g 12
L hi i e

i=1,2 7)

where 67 is the variance of the probability distribution of the bursts in
species X;. When #5; = 1 then the differences between the Fokker-
Planck equations for the bursty and non-bursty input systems van-
ish. As expected, this occurs in the limit that the variance approaches
zero and the mean burst size is one. As discussed in the Introduction,
experiments show that the mean burst size is larger than one and
hence we shall exclusively consider #; > 1. The implication of
equation (7) is that the larger is ; — 1, the larger are the expected
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differences in the fluctuation properties of the downstream pathways
in the two systems. For example for a Poissonian distribution of
bursts, it is found #; — 1 = p; whereas for a geometric distribution
of bursts we have 1; — 1 = 2y; and hence we expect the burstiness-
induced effects to be more prominent for systems with the latter
burst input.

We finish this section by noting that we now have a convenient
analytical setup with which to understand the effects of burstiness on
the fluctuations of a downstream pathway. In the next sections we
use the Fokker-Planck equations to understand how the fluctuations
from bursty input change the downstream pathway’s ability to gen-
erate noise-induced oscillations.

Necessary conditions for bursty input alteration of the oscillatory
properties of the downstream pathway. In the setup described in
the previous section, the bursty and non-bursty input systems are
indistinguishable from a rate equation perspective and hence it
follows that the deterministic dynamics of the two systems,
including their ability to generate deterministic oscillations (limit
cycles) are one and the same. However it is well appreciated that
noise can induce oscillations in systems whose rate equations
predict none. Given that the noise in the bursty and non-bursty
input systems is different, it is plausible that the noise-induced
oscillations displayed by both systems can also be different. In
what follows we use the Fokker-Planck equations of the last
section to probe this question.

We consider a general two variable Fokker-Planck equation with
linear drift and diffusion coefficients of the form:

07[(61, €, t) _ 2 - 0 . )
—a ikX::ILk (¢) 646;61( (€, €, t)

(8)
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One can use this equation to derive an equation for the power spec-
trum of the fluctuations in the number of molecules of species X;

(Q¢;) and this is found to be'*:

S'((U) — Q ai(]& D) +ﬁl(D)w2
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where o; =JZ Dy — 2Dy J12)22 + D11J2, o, is the same as o; but with
1 and 2 interchanged, f;; = Dy, p = [Det(])]> and q = [Tr(J)]> —
2Det(J). Here Tr and Det refer to the matrix trace and determinant
respectively. The power spectrum of the fluctuations in a given spe-
cies is the Fourier transform of the autocorrelation function of the
fluctuations of that species. Hence for a system in steady-state con-
ditions, a peak in the power spectrum of a species at some frequency
o indicates a noise-induced oscillation of the same frequency in the
concentration fluctuations of that species'®. The sharpness of the
peak indicates the quality of the oscillation; see Ref. 15 for a detailed
discussion of quality measures for noisy oscillators.

By comparing Egs. (5) and (6) with the general form equation (8),
we can deduce that the power spectrum of the fluctuations in the
bursty and non-bursty input systems are given by equation (9) with
Dy = 0uhin; + D?k and Dy, = 0;ch; + D?k respectively. These two spec-
tra we shall refer to as S(w) and () respectively.

By differentiating S!(w) and S;(w) with respect to o, we can find
the sufficient conditions for the power spectra to have a maximum,
i.e., for the two systems to exhibit noise-induced oscillations. If g < 0,
it can be shown that both S¢(w) and Si(w) display a peak in their
power spectrum; hence in this case burstiness does not lead to any
qualitative change in the oscillatory properties of the downstream
pathway. However for g > 0 the situation is more interesting. The
positive g condition describes downstream pathways which, when
parameterized, are far from a Hopf bifurcation'’; the equilibrium is

described by a node (which satisfies Tr[J]* > 4Det(J)) or by a focus
close to the node-focus borderline in phase space (which satisfies
2Det(J) < Tr[J]* = 4Det(])). In this case the conditions for noise-
induced oscillations in the concentration of species X; in the bursty
and non-bursty input systems are different and given by

J? 209, 1
0, >00=—12 (4 DY — 712 s 10
o hyny + DY, ( 22T Ji2 (10)
s ]122 ( 0 2D(1)2]22>
0,>0=—=—hy,+D,,— S 11
1 1 h1—|—D‘1’1 2 22 T2 ( )

respectively. The parameter 0, is a function of the Jacobian elements
only and is given by:

[Det(l)]2 2
0, = 2 —J2 |-
(((Tr[]}) —2Det(J)) J )

The conditions for noise-induced oscillations in species X, are as
above but with 1 and 2 interchanged. Note that although not expli-
citly shown, the elements of the D and J matrices in Egs. (10)-(12) are

(12)

functions of the mean concentration vector ¢.

Hence for g > 0 we can identify three distinct cases: (i) 9? =0, (ii)
611’ >0 and (iii) Hll’ < 0. These are illustrated in Fig. 1. For case (i)
either both systems display no oscillations or they both show noise-
induced oscillations. For case (ii), there is the possibility of a special
regime (05 <0< 0%) in which the non-bursty input system displays
noise-induced oscillations but the bursty input system does not. For
case (iii), there is the possibility of a special regime (9? <0<#))in
which the non-bursty input system displays no oscillations but the
bursty input system exhibits noise-induced oscillations. Hence bur-
stiness has no effect in case (i), may cause destruction of noise-
induced oscillations in case (ii) and may promote noise-induced
oscillations in case (iii).

Note that 0 > 63 is only a necessary condition for the destruction
of noise-induced oscillations by burstiness in the input reactions;
sufficient conditions ensue when we further have (6] <0 < 0?) which
may not be always possible to satisfy. Similarly 0° <63 should be
construed as a necessary condition for the creation of noise-induced
oscillations by burstiness in the input reactions.

By inspection of Egs. (10)-(11), we can make further specific
statements regarding the importance of burstiness in the input reac-
tions to the oscillatory dynamics of the two species pathway:

e If the species X, does not activate or inhibit X}, i.e., J;; = 0, then
0" = 0%, =0 and hence burstiness in the inputs of X; or X, do not
cause a qualitative change in the oscillatory dynamics of X;. Thus
it is clear that bursting on its own is insufficient to affect oscillat-
ory dynamics, rather an interplay of bursting with a downstream
pathway featuring the interaction of two or more species is
required.

e For all other (ie., J;; # 0) pathways, an increase in the input
burstiness of species X, (for example by increasing the variance
of the burst fluctuations at constant burst size mean) always
increases the term 011’ —0). Thus, since it is possible to induce
the condition 6% >0 but not the condition 0 > 0%, bursting in
species X, may destroy noise-induced oscillations in species X;
but can never promote noise-induced oscillations in species X;.

o Tor pathways that obeys the condition D}, —2DY,J5,J ;! >0, an
increase in the input burstiness of species X; decreases the term
0" — 0. Thus, since it is possible to induce the condition 6 > 6",
bursting in species X, for these pathways may promote noise-
induced oscillations in species X;. An exemplary class of such
pathways are those in which the reactions are stoichiometrically
uncoupled (DY, =0) but kinetically coupled (J;, # 0), i.e., in each
reaction there is only a net change in the number of molecules of
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Figure 1| The impact of burstiness in the input reaction on the
oscillatory properties of species X; in a two species downstream pathway.
The figure illustrates the three possibilities: Case I in which both bursty and
non-bursty input systems have qualitatively similar oscillatory properties,
i.e., both $¢(w) and S} () have a peak or not; Case II in which there is the
possibility that the non-bursty input system displays noise-induced
oscillations while the bursty input system does not (peak in S} (w) only);
Case III in which there is the possibility that the bursty input system
displays noise-induced oscillations while the non-bursty input system does
not (peak in S¥(w) only). The parameters 6%, 65 and 6, are defined in the
main text by Egs. (10)—(12) respectively. Burstiness in the input reactions
has no effect in Case I, is deleterious in Case II (BDO — bursting destroys
oscillations) and promotes noise-induced oscillations in Case III (BIO —
bursting induces oscillations).

one species yet the kinetics of the two species are coupled (see the
Applications section for examples)'®.

In the next section we investigate the effects of input bursting in
exemplary biochemical circuits, in particular verifying our theor-
etical prediction that burstiness in the input reactions can both pro-
mote and destroy noise-induced oscillations far from the Hopf
bifurcation. We conclude here by highlighting a simple four point
recipe, provided in the Methods section, which can be used to cal-
culate the necessary conditions derived in this section for any two
species biochemical circuit.

Applications. Modified brusselator. Here we consider a modified
form of the Brusselator'®, which was introduced by Tyson and
Kauffman in an early attempt to model dynamics within the
process of mitosis. The non-bursty reaction scheme for this model is:

(13)

As previously explained, the bursty input version of this scheme
having the same mean concentrations as the non-bursty version

h ki k> ks
B X1,2X%+X — 3%, X1 — X5, Xh — .

. . . . h
involve replacing the input reaction ¢ —- X; by the set of

h1q1(0)/n hiqi(1)/n hiq1(2)/n
reactions = 3 0X;, @;I)Xl, Q;)ZXl,

I (M)/

—> M;X;, where M, is some positive integer representing
the maximum input burst size, g;(m) is the probability of an input
burst of size m in species X; and u; = > ,,mq; (m) is the mean burst
size.

The quantities 05’ —0; (for i = 1, 2) which determine the necessary
conditions for promotion or destruction of noise-induced oscilla-
tions by burstiness can be computed by following a four step recipe
(see the Methods section). Here we simply state the results:

2k3 A (i, — 1)

O =— 30
b (A1 +Az)(1+m)

(14)

1

where A; =h?k; /k} and A, = k/k; are non-dimensional parameters

of the system. Thus we have 6 <6 and 0% > ¢ for 5, > 1, i.e., for all
possible distributions of the burst size with mean burst size greater
than 1. These are Case III and Case II in Fig. 1 respectively, implying
necessary conditions for bursting in the input to promote noise-
induced oscillations in species X; and for it to destroy noise-induced
oscillations in species X,.

We investigated these predicted phenomena in further detail as
follows. We chose the burst size distribution such that it was geo-
metric with a mean burst size u; = 12 (and hence 1, = 25; see
equation (7) and the discussion which follows it) and varied A,
and A, over the range 107> to 10°. The geometric distribution is
the discrete analog of the exponential distribution which has been
measured in experiments’ and has also been predicted from theory".
For each parameter set we deduced the nature of the stable steady-
state from linear stability analysis (focus, i.e., Tr[J] < 0, Det[J] > 0
and Tr[J]*> < 4Det(]) or node, i.e., Tr[J] < 0, Det[J] > 0 and Tr[J]*> >
4Det(])"”) and also checked if there is a peak at some non-zero fre-
quency in the LNA power spectrum as given by equation (9) (which
implies noise-induced oscillations). The results for both species X;
and X, are shown in Fig. 2. The red regions in Figs. 2 (a) and (b)
denote the regions in parameter space where there are noise-induced
oscillations in species X; for non-bursty and bursty input systems
respectively. Similarly the blue regions in Figs. 2 (c) and (d) denote
the regions in parameter space where there are noise-induced oscil-
lations in species X, for non-bursty and bursty input systems respect-
ively. Notice that in accordance with the predictions based on the
necessary conditions discussed in the previous paragraph, we find
that the burstiness in the input reaction promotes noise-induced
oscillations in X (increased area of red region in Fig. 2 (b) compared
to Fig. 2(a)) and destroys noise-induced oscillations in X, (decreased
area of blue region in Fig. 2 (d) compared to Fig. 2 (c)). One also
notices that the changes mainly occur in regions of parameter space
characterized by a node and not by a focus (dotted region), which is
consistent with the earlier prediction that burstiness has an import-
ant effect in systems far from the Hopf bifurcation.

In Fig. 3 (a) and (c) we show the power spectra calculated from the
LNA and from stochastic simulations for two points in A;-A, space
for which the LNA analysis of Fig. 2 predicted that burstiness in the
input reaction should promote and destroy noise-induced oscilla-
tions respectively. The simulations confirm the predicted phenom-
ena by showing that the spectra of X; and X, exhibit the appearance
and disappearance of a peak at a non-zero frequency respectively,
when bursting in the input reaction is turned on. It is also shown that
the phenomena are more pronounced for geometric burst size dis-
tributions rather than for Poisson ones of the same mean burst size;
this is since given the same mean, the width of the former distri-
bution is larger than that of the latter. In Fig. 3 (b) and (d) we show
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Figure 2 | The impact of burstiness in the input reaction on the existence of noise-induced oscillations for the modified Brusselator model. The
regions in A;—A, space are numbered as follows: (0) unstable, (1) node with noise-induced oscillations (NIO), (2) focus with NIO, (3) node with no NIO
and (4) focus with no NIO. Solid black lines bound the regions of different linear stability: the dotted region corresponds to the stable focus regime; white
regions correspond to the stable node regimes and the grey region is where the fixed point is unstable (including the limit cycle regime). The red regions in
(a) and (b) show the parameter space region where there are noise-induced oscillations in the concentration of species X; for the non-bursty input and
bursty-input versions of the modified Brusselator respectively. The blue regions in (c) and (d) imply the same but for species X,. The burst input
distribution is geometric with mean burst size y; = 12. A comparison of (a) and (b) shows that burstiness in the input reaction promotes noise-induced
oscillations in X; while a comparison of (c) and (d) shows that it destroys them in X,. Note that the regions where most of these effects occur are not

dotted, indicating that they are stable node steady-states.

the quality factor of the noise-induced oscillations as a function of the
mean burst size i;. The quality factor is defined as Q=0 / A,
where @ is the frequency at which maximum power is obtained and
Aw*™ is the difference of the frequencies at which the power takes
99% of its maximum value; this measure was introduced in'® and
shown to be highly reflective of the rhythmicity visible in a time series
of noise-induced oscillations. For these far-from Hopf oscillations
the maximum possible value of Q** is = 5 (Ref 15). Of particular
interest is the saturation observed in Fig. 3 (b) which implies that there
are limits to how much burstiness in the input reaction can improve
the quality of noise-induced oscillations. This also means that in the
limit of large burst sizes the quality of noise-induced oscillations is
independent of the precise type of the burst size distribution.

Other simple circuits. Next we report the results of a detailed invest-
igation of the effect of burstiness on the oscillatory properties of 8
biochemical pathways. The reaction schemes for the latter including
their rate equations and the non-dimensional parameters character-
izing the steady-state behavior are shown in Table I. Note that for the
gene circuits we have set some of the rate constants to 1; the model’s
behavior can then be described by at most three non-dimensional
parameters which considerably simplifies our analysis.

Next we used the four point calculational recipe in the Methods
section to obtain the quantity 0Y — 63 for each of these 8 pathways.
The sign of this quantity determines which of the three cases shown
in Fig. 1 each pathway falls into and hence constitutes necessary
conditions for promotion and destruction of noise-induced

| 3:2438 | DOI: 10.1038/srep02438

5



-8 Geometric Bursts, f11 = 12

30004 -e- Poisson Bursts, 1y = 12

—— Non-bursty Input

2000
Si(w)
10009
O T T massssisss A T }
0 1 2 3 4 5
w
(CL) A1 = 55, A2 =1.5
A
4000
-2~ Geometric Bursts, (1 = 12
-e- Poisson Bursts, (1 = 12
—— Non-bursty input
3000+
Sa(w)
2000
1000~
0
0

() Ay =5 x 1073, Ay = 1072

5A S

Q99%

0 . . : >
0 5 10 15 20
M1

sA e

Q99%

0 T T T }
0 5 10 15 20
231

(d)

Figure 3 | Verification of LNA predictions by stochastic simulations. In (a) and (c) we plot the power spectra of the concentration fluctuations in
X, and X, respectively using the LNA (solid lines) and also from stochastic simulations using the stochastic simulation algorithm (data points). Note that
in (a) burstiness in the input reaction promotes noise-induced oscillations (induces a peak in the spectrum of X;) and in (¢) it destroys them (removes the
peak in the spectrum of X, for non-bursty input). In (b) and (d) we plot the quality of the noise-induced oscillations whose spectra are shown in (a) and
(c) respectively. See text for definition of the quality factor Q”*. Note that the quality of the noise-induced oscillations can only be improved by burstiness
in the input reaction to a certain extent (saturation of Q”* with mean burst size y,). The constants are (a) h;Q N, = 1000 molecules s™', k; = 2.805 X
10" M~2s™ !, k, = 0.375 s " and k3 = 0.25 s™'; (b) h;Q N, = 500 molecules s™', k; = 6.528 X 10" M~?s™ ', k, = 0.01 s 'and ks = 1 s™". The
compartment volume in each case is Q = 3 X 10~ " |, which gives mean molecule numbers of (a) (nx, )=571 molecules and (b) (nx,)=500 molecules.
Note that the units for concentration, time and frequency w are Molar (M), second (s) and radians per second (rad s™') respectively. See Methods for a

discussion of biologically relevant parameter ranges.

oscillations in species X; by bursting, The expressions for 0% — 0 are
shown in the second column of Table II. It is simple to determine the
sign of this quantity since all constants a, to ag are positive, as are A,
A, and Aj and 7, 7, > 1 (mean burst size is greater than 1). If the
sign can take negative values then Case III is possible; if the sign can
take positive values then Case II is possible. Which case can be dis-
played by each pathway is shown in columns 4 and 6 of Table II.

Notice that 6 out of 8 pathways can display Case III behavior, i.e.,
bursting may induce oscillations; 6 out of 8 pathways can display
Case II behavior, i.e., bursting may destroy oscillations; 4 out of 8
pathways can display both Case IT and Case III behavior, i.e., bursting
may promote or destroy oscillations.

As we have shown the simple necessary conditions are very easily
determined in practice, and give a quick indication of whether input
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Table | | Details of the eight chemical reaction systems studied. The symbol ¢; denotes the concentration of species X;and ¢, are the molar
gene concentrations (see Methods). The upper four circuits feature input burstiness in only one species while the lower four feature input
burstiness in both species
Reaction Model Rate Equations Dimensionless Parameters
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burstiness could cause a qualitative change in oscillatory behaviour
in a system. However these conditions are not sufficient by them-
selves to prove that the systems do actually display the burstiness-
induced destruction or promotion of noise-induced oscillations. As
previously explained and shown in Fig. 1, one needs to further deter-
mine if 0, falls in the correct range of values. This is considerably
more involved analytically and hence we determine it numerically by
an extensive parameter scan.

The parameter scan algorithm involved the following steps. We
randomly picked 10° sets of non-dimensional parameters (the A/’s in
Table I are uniformly distributed in log-space over the range [107°,
10°] and the burstiness parameters #; are uniformly distributed inte-
gers in the range [1, 25]) for which the system has a steady-state. For
each of the models, this chosen range of non-dimensional kinetic
parameters falls within the biologically relevant range for sub-cel-
lular processes (see Methods). For each parameter set we calculated
the quantities g, 0}, 911’ and 0. 1f g < 0 then for this parameter set both
bursty and non-bursty input systems display noise-induced

oscillations. If g > 0, then 0y, 0° and 65 are used to obtain which
case and which particular region of the case shown in Fig. 1 describes
the system’s behavior for the chosen parameter set. These classifica-
tions are recorded for each parameter set.

Information regarding whether the sufficient conditions were
found to be satisfied or not is reported in columns 5 and 7 of
Table II. A more detailed classification is shown in bar chart form
in Fig. 4 for six of the eight pathways in Table I. Note that the two
remaining pathways (One Gene Model B and Two Gene Model C)
are similar in behaviour to Two Gene Model A and hence not shown
in the latter figure. At least one of Case II or Case III behaviour
was possible for each model. The necessary conditions for bursts
destroying or promoting noise-induced oscillations were also suf-
ficient, with three exceptions: One Gene Model B, Two Gene
Model A and Two Gene Model C. Interestingly, these three excep-
tions are unique among the models in that they are the only ones
which cannot exhibit noise-induced oscillations for any parameter
choices for both bursty and non-bursty systems.
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Figure 4 | Numerical investigation into the effect of bursting in the input reactions on six of the eight biochemical models shown in Table I. See main
text for details of the numerical algorithm used. g < 0 refers to the cases close to the Hopf bifurcation where both bursty and non-bursty input systems
show noise-induced oscillations. Cases I, I and III are for g > 0 (far from Hopf bifurcation) described in Fig. 1. Ticks/crosses indicate that noise-induced
oscillations are/are not observed for both bursty and non-bursty-input systems. BDO and BIO refer to the cases where burstiness destroys or promotes
noise-induced oscillations, i.e., the behavior of the two systems is different. The heights of the bars for each behavior are directly proportional to the
fraction of the 100, 000 parameter sets which exhibit that behavior.
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We noticed that the effect of burstiness on each system was strongly
linked to two main features: (a) whether burstiness is possible in one
or both species; and (b) the pathway’s feedback motif, as described by
the signs of the off-diagonal elements of the Jacobian matrix (column
3 in Table II). The three exceptional models (One Gene Model B, Two
Gene Model A and Two Gene Model C) which never exhibited noise-
induced oscillations, and for which the necessary conditions for bursts
destroying or promoting noise-induced oscillations did not also
translate to sufficient conditions, all feature either mutual promotion
or mutual inhibition between the two species.

Models with negative feedback, whereby one species promotes the
other and that species inhibits the first (indicated by different signs
on the off-diagonals of J) were sensitive to burstiness destroying or
promoting noise-induced oscillations. When burstiness is possible in
both species (Autocatalysis and Two Gene Model B), necessary con-
ditions for both BIO and BDO can be satisfied and BIO and BDO
were indeed observed. Therefore, our results suggest that the com-
bination of a negative feedback motif and burstiness in both species
allows a wide range of bursting-induced oscillatory behaviour. When
burstiness is only possible in one of the species, the matching of
necessary and sufficient conditions is again observed, but here the
asymmetry of the Jacobian is important; when J;, is positive
(Brusselator) the necessary conditions indicate that burstiness tends
to destroy noise-induced oscillations in X, but when J;, is negative
(Trimerization and One Gene Model A) the necessary conditions
indicate that noise tends to promote noise-induced oscillations in X;.

Although the regions of parameter space for which bursts promote
or destroy noise-induced oscillations is quite small in some models,
e.g., Two Gene Model B, we note that this region can be considerably
enlarged by choosing a smaller range for the burstiness parameters
(e.g. if n; and #, are fixed to 25 and 2 respectively rather than the
range [1, 25] used in our parameter scan). The fact that a large
proportion of the considered pathways display burstiness alteration
of the noisy oscillatory dynamics suggests that such phenomena may
be common in many biochemical systems.

Discussion
In this paper we have shown using the LNA that burstiness in the
input reactions can have a considerable impact on the oscillatory
properties of the downstream pathway. In particular we showed that
for two identical pathways, one with bursty and one with non-bursty
input, the two pathways may differ in their ability to produce noise-
induced oscillations. We derived necessary conditions for the bursti-
ness to promote oscillations and for the burstiness to destroy
oscillations and confirmed the existence of these phenomena using
stochastic simulations. Our work is the first to investigate the effect of
burstiness on the noisy oscillatory dynamics of biochemical path-
ways; previous work focused on deriving expressions for the steady-
state distributions (or the moments) of protein concentrations in the
presence of bursting'**°"** and on elucidating the link between circuit
architecture and the susceptibility to bursts in gene expressions>.
We note that our analysis is based on the LNA which is a good
approximation when describing pathways involving small levels of
noise, i.e., pathways characterized by a sufficiently large number of
molecules. This is not always the case since a number of species inside
cells occur in small molecule numbers’. Our theory can be extended
to account for such cases by considering higher-order terms than the
LNA in the system size expansion of the master equation .
Preliminary investigations show that in non-bursty systems if the
LNA predicts a peak in the power spectrum of fluctuations for sys-
tems far from the Hopf bifurcation then the spectrum calculated
from stochastic simulations shows a peak even if the molecule num-
bers are very small (see Fig. 6 in**); the quality of the oscillations may,
however, be lower than that predicted by the LNA. Hence we expect
the consideration of terms of higher order than the LNA to have little
or no effect on the necessary conditions derived in this paper since

these are specifically for the existence or non-existence of a peak in
the power spectrum.

Our results can also be interpreted in the context of single cell
rhythms, as follows. Rate equation models are typically constrained
to experimental measurements from an ensemble of cells, e.g.””. They
are only accurate models of single-cell pathway dynamics when the
cells are dynamically non-coupled and each cell is characterized by
negligible noise. Hence, experimentally observed oscillating concen-
trations correspond to rate equation predictions of limit cycles and
experimentally observed constant concentrations correspond to rate
equation predictions of steady-state conditions in single cells.
However, when noise is non-negligible each realization of the stoch-
astic simulation algorithm provides the behavior of a particular cell in
the ensemble*® and the power spectrum provides information of the
rhythmicity present at the single-cell level. From this point of view,
the noise-induced oscillations described in this article correspond to
the biological scenario where ensemble level experiments suggest that
cells are non-oscillatory while in reality non-synchronized rhythms
are present in each cell. This phenomenon has been experimentally
observed by comparing ensemble and single cell measurements®. In
this context, our bursty and non-bursty systems correspond to two
independent populations of non-coupled cells, in one of which the
oscillatory pathway has a bursty production of proteins and in the
other it does not. At the ensemble level both populations appear non-
oscillatory and indistinguishable (both their rate equations have the
same steady-state) but at the single cell level they are sometimes
distinguishable since bursts can either promote or destroy single cell
rhythms (noise-induced oscillations).

We finish by discussing how our theoretical results could be
experimentally tested. The procedure consists of three parts: (i) the
synthetic engineering of one of the pathways considered in this paper
in a single cell; (ii) the variation of burstiness in protein production at
fixed protein production rates; (iii) the measurement of single cell
power spectra of protein fluctuations in the synthetic pathway.
Points (i) and (iii) have been done in various contexts; see for
example®®. Point (ii) is the subtlest of the three as it requires regu-
lation of burstiness at the gene level. A rate equation analysis of the
the standard linear model of gene expression®leads to the conclusion
that whenever the mRNA lifetime is much shorter than that of pro-
teins (the typical case in bacteria and yeast), the overall rate of protein
production is equal to the product of the transcription and trans-
lation rates divided by the rate of mRNA degradation while the burst
size is equal to the translation rate divided by the mRNA degradation
rate. Thus one can conclude that by varying the transcription and
translation rates independently, it is possible to increase the burst size
at a constant overall rate of protein production and to hence test our
predictions. A method to achieve this has been reported in Ref 8 and
hence it follows that the results of our theory can be tested by cur-
rently available experimental techniques.

Methods

Stochastic analysis via the Linear-noise approximation (LNA). The stochastic
dynamics of any chemical system in a well-mixed compartment are described by
chemical master equations'* which for the non-bursty and bursty systems shown in
schemes (1) and (2) take the respective form:

0P (ny, ny, t)

— —-1_
ot 79[(}21

Dhy+ (Ey ' = 1)y ] P(ny, ma, £) +
(16)

Ro/N .
QZ (‘H1 E, K 71)fj(n1, ny, Q)P*(ny, ny, t),

2‘12 ):|
(17)

Pb(ny, ny, t)+QZ (H E;~ ”—1>f(n1, 1y, Q)P (ny, my, t),

j=1

M, M,

Z hT% Z

m=0 m=0

(P nl,nz,

| 3:2438 | DOI: 10.1038/srep02438

10



where P”*(ny, n,, t) is the probability that there are n; molecules of species X; and n,
molecules of species X, at time ¢ for the bursty input (b) and non-bursty, i.e., single-
molecule input (s) systems, Q is the volume of the compartment in which the
downstream pathway operates, S;; = r;; — s; are the elements of the stoichiometric
matrix, E{ is the step operator which when it acts on some function w(n;) gives w(n; +
j)and f; is the microscopic rate function for the j* processing reaction which is given
by':
ny! n,!

(=)t (=)t

Note that the first term in each of the master equations above describes the input
reactions while the second term describes the processing reactions.

These master equations are typically unsolvable except in special cases (see for
example®) or for the case where all processing reactions are first-order®, a very
restrictive assumption given that most interactions inside a cell involve the binding of
two molecules. We circumvent this problem by using the LNA of the master equation,
a well known technique'* which approximates the master equation by a Fokker-
Planck equation with linear drift and diffusion coefficients. This approximation is
valid for an arbitrarily complex monostable reaction system provided the fluctuations
about the mean concentrations are quite small, i.e., provided the molecule numbers
are not too small. The general formalism has been described in**; here we simply
state the relevant results when the LNA is applied to the master equations (16) and
(17).

Within the LNA, the time evolution of the mean concentrations for the two systems
is given by the conventional rate equations, Egs. (3) and (4), in the main text. The
LNA analysis also shows that the Fokker-Planck equations describing the probability
distribution of concentration fluctuations about the mean concentration solution of
the above rate equations are given by:

Zf,k() ekn(el,ez,t)

]3’(”1, Ny, Q):ka’(Slﬁ'sz/) (18)

(61,62, _

974121 [5ikh ((;s> +D <¢ )] (ﬁjp (€1, €2, 1),
m Z Ti (¢b) *Ekﬂ b, €, t)
Xfl | < 2 (20)
#5530 [ (B o () g a0

where ¢; is the noise about the mean concentration of species X;,

Ai= ZML o m*qi(m) is the second moment of the distribution of bursts,

1 (80) =2 /oot [ (4 )us+ai ()] 1 (8.) =0 /2 [ms( 8.) +:(4.)] are the
Jacobian matrices (describing linear stability) of the two rate equations, Egs. (3) and
e R 51 55,
(@, and DY (B ) = D21 SySukibs 3.
Enforcing the condition of equal mean input rates for the bursty and non-bursty
systems, i.e., h; =h; 1t;, Egs. (19)-(20) simplify to Egs. (5)—(6) in the main text.

Four step recipe for calculating the necessary conditions for burstiness-induced
effects in a two-species system.

Step 1. By comparison of the particular system under study with the general form of
the non-bursty input system described by scheme (1), one deduces the stoichiometric
coefficients s;; and r;; and constructs the elements of the stoichiometric matrix S;; = r;;
— s;jof the downstream pathway where i varies between 1 and 2 and j varies between 1
and the total number R of downstream reactions.

Step 2. Write down the rate equations d¢,/dt=h, ( ) +& (¢)
de,/dt=h, ((}5) + ((}‘) where g; ((b) Z 1 Siikid) ¢ . Solve these equations

with the time derivative set to zero to obtain the steady-state concentrations

$:(¢1: ¢2)

Step 3. Calculate the elements of the Jacobian matrix Ji $) =0 / 09y
{h,- ((/)) +gi (45)} . Calculate the elements of the diffusion matrix of the downstream
pathway DY, @) = Z].Rzl SiiSiikify'¢3 . Calculate the elements of the diffusion

matrices of the downstream path for bursty and non-bursty input:
D?k ($> =0ih; (‘;) 1+ D (‘E) and Dy, ($> =Jikh; (5) +D}; (&)

Step 4. Calculate 0° — 05 using their definitions in Eqs. (10)-(11) and from the sign of
this quantity identify which of the three cases illustrated in Fig. 1 the system under
study falls in.

Four step recipe applied to the modified Brusselator. Here we show in detail the
steps of the calculational recipe as applied to the modified Brusselator studied in the
Results section.

Step 1. Comparison of the modified Brusselator reaction scheme (13) with that in (1)
shows that the stoichiometric coefficients are: s;; = 1, s,; = 2,7, = 0,15, = 3 for the
first downstream reaction 2X, + X; — 3X5; 51, = 1, 855 = 0, 115, = 0, 15, = 1 for the
second downstream reaction X; — X5 and s;3 = 0, s53 = 1, 13 = 0, 1,3 = 0 for the
third downstream reaction X, — . Hence the stoichiometric matrix of the down-

stream pathway reads:
-1 -1 0
S= .
( 11 -1 >

Step 2. Next one uses the stoichiometric information of Step I to write the functions
g=—k¢, ¢2 —kyp, and g =k ¢, 4)2 + k¢ — k3¢, and hence the rate equations are
depy, = hy + g and d,¢, = g, which have a steady-state solution ¢, = h,/k; and
=R/ (K1 + k2.

(1)

Step 3. Using the functions g; and g, obtained in Step 2, the steady-state concentration
solutions also obtained in Step 2 and the stoichiometric information obtained in Step
1, we can now calculate the three relevant matrices:

2A
_(A1+A2> _A1+A2 . 1+;,h —1
J=k; A—A , D’=h ,
1— /2 —1 2
A+ A+, (22)

2 —1
=h ,
—1 2
where A; =hik / kg and A, = ky/k; are non-dimensional parameters of the system.

Step 4. Using the three matrices calculated in the previous step, and the definitions in
Egs. (10)-(11) we can finally calculate the two quantities relevant to deduce the
necessary conditions:

268 (1, — 1)

Y A Y
T (A A ()

(23)

1
0127*052=Eki(/\ﬁ/\z)z(ﬂrl), (24)

Calculation of numerical power spectra of the modified Brusselator. Firstly, SBML
reaction models were created describing the non-bursty input and bursty input
versions of the modified Brusselator (reaction scheme (13)). The upper burst size for
Poisson or Geometric burst distributions is unbounded, meaning that to be exact an
infinite number of input reactions is required in the simulation. For the chosen
distributions (with mean burst size equal to 12 molecules) we truncated this to a
maximum input burst size of 160 molecules. A simple python script was used to
generate such a large reaction scheme. After parameterizing the models with the
values given in the legend of Fig. 3, the models were simulated using the exact
stochastic simulation implementation in the freely available software iNA (intrinsic
noise analyser)™.

For a single realization of the stochastic simulation algorithm, the number of
molecules 7;(t) of species i over some time interval T was regularly sampled at L
discrete points separated by At, such that T = (L — 1)At. The time interval T'has to be
chosen much larger than the time taken for the simulations to reach steady-state.
Subsequently the steady-state mean is subtracted such that one is left with a time
series of fluctuations about the mean. The power spectrum estimate (the period-
ogram) is then obtained by a discrete Fourier transform of this time series (See
Appendix C of Ref. 15 for further details). The choices of sampling parameters for the
spectra in Fig. 3a and Fig. 3¢ were At = 0.1059 s, L = 600 and At = 0.5296 s, L = 600
respectively. Since the variance of the spectrum estimate is known to be high, the final
numerical power spectral density estimates plotted in Fig. 3 were obtained by aver-
aging over 2000 periodograms, each corresponding to an independent realization of
the stochastic simulation algorithm.

Use of biologically relevant parameter ranges.

Parameters for the 8-pathway numerical investigation. In our numerical investigation
of the eight biochemical pathways we used the range [1077, 10°] for each of non-
dimensional parameters A;. As we now show, this range falls within the biologically
relevant ranges for each of the circuits. The pathways feature zeroth order,
unimolecular, bimolecular and trimolecular reactions. The range of the rate constants
for each of these reactions is as follows.

1. Input reaction (zeroth order): We infer this rate as lying in the range [107'* M
s71, 107" M s™'] from the rate of protein production in mammalian cells, as
calculated from the product of mRNA copy numbers (1-1000) and the rate of
production of proteins per mRNA per hour (1-1000)* factored by Avogadro’s
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constant N and the typical volume of a mouse fibroblast NIH3T3 cell (2 = 3
X 1072 litres)*.

2. Unimolecular reaction (first order): In the same study®® protein half lives were
found to vary from 1-1000 hours, from which the range of protein degradation
rates can be calculated via k = In(2)/t,/, to be of the order [10™* s7', 107" s7'].

3. Bimolecular reaction (second order): For bimolecular reaction rates we use the
wide range of enzyme-substrate association rates which are roughly given by
the measured range of the ratio of the catalytic rate to the Michaelis-Menten
constant: [10° M~ 's™', 107 M 's '],

4. Trimolecular reaction (third order): The unit of the rate constant for such a
reaction is M~>s™'. Hence we can estimate this rate by dividing the bimolecular
rate constant by a concentration. Using the range of bimolecular rate constants
stated above and the range of typical intracellular concentrations (nanomolar
to micromolar), we estimate the range of trimolecular rate constants to be
[10° M~2s71, 10% M=%~

Using the above ranges one can calculate the range of the non-dimensional para-
meters in Table I. For example for the first non-dimensional parameter of the
autocatalysis reaction, A, the input rate constants h; and h, could vary to give the
range of possible values:

Jyzeroth) 1016 10-10
A=- €|——==10"%——=10°|, 25
1 h(zzemth) |:10—1() 1016 ( )

and for the second non-dimensional parameter we have the range:

10719107 o
ORI

Ay=

h(zcmth) k(bi) 10-16103
L Ly = (26)

kg(uni) (1071)2 -
Hence one can see that the range used in our simulations for non-dimensional
parameters A; € [107>, 10°] is a subset of the ranges calculated using typical rate
constant values.

Note that in the models where genes are explicitly shown (such as One Gene Model
A) the relevant input rate parameters ko or k) were chosen such that the typical input
range h; € [107'° M s™', 107" M s™'] describes the basal expression rate h; :koqﬁq

where ¢ = is the molar concentration of a single gene.

NAQ

Parameters for the modified Brusselator model. For input rates to the modified
Brusselator model (Fig. 3) we considered the alternative scenario in which proteins
are transported into the cell, instead of being expressed in the cell. Transporter
proteins are known to transport a large range of ions and molecules across the cell
membrane at rates typically in the range [10> molecules s, 10* molecules s~']*.
Converting our input h; parameters into these units requires us to write input rates as
h£ N4, where Qs the volume of a cell and N is Avogadro’s constant. The input rates
used in our study of 1000 and 500 molecules s~' were chosen to fall within this
biologically relevant range. The volume Q was chosen to be equal to 3 X 107" litres,
i.e., roughly that of a typical bacterial cell. Unimolecular and trimolecular rate con-
stants were motivated as for the other models discussed above.

Equipment and settings. [mage generation

e Fig. 2 was created using Maple (to draw the correct boundary lines), with axis
labels, area patterns/colours and numerical annotations added using Inkscape.

e Fig. 3 was created using Maple, with axis labels and legend annotations added in
Inkscape.

e TFig. 4 was created using Maple, with axis labels, bar chart colours and text
annotations added using Inkscape. The circuit diagrams were also added using
Inkscape.
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