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Abstract

Many models of gene expression do not explicitly in-
corporate a cell cycle description. Here we derive a
theory describing how mRNA fluctuations for consti-
tutive and bursty gene expression are influenced by the
stochasticity in the duration of the cell cycle and DNA
replication. By means of the analytical expressions for
the moments, we show that the error introduced in the
predicted mean number of mRNAs, when noise in the
cell cycle duration is omitted, is a monotonic decreasing
function of η which is proportional to the ratio of the
mean cell cycle duration and the mRNA lifetime; con-
trastingly, the error in the variance of the mRNA dis-
tribution peaks for intermediate values of η consistent
with genome-wide measurements in many organisms.
Using eukaryotic cell data, we estimate the errors in the
mean and variance to be at most 3% and 25%. Further-
more we derive an accurate negative binomial mixture
approximation to the mRNA distribution and show that
under certain conditions, bimodality can result from
the doubling of the transcription rate when DNA dupli-
cates. Finally, we show that for real genomic data, dis-
regarding cell cycle stochasticity can introduce errors in
the inference of transcription rates larger than 10%, sup-
porting the relevance of the analysis presented.

Introduction

Intrinsic noise in gene expression induces variability
in the transcript number across a population of cells.
Current microscopy techniques are able to capture
this variability, which can be used to infer the kinetic
parameters of transcription, thereby letting us quantify
mechanisms in charge of the regulation of gene expres-
sion [1–3]. In order to make this inference possible, it
is necessary to have an accurate stochastic dynamical
model that is able to relate the details of the mRNA

number distribution to the different transcriptional and
post-transcriptional molecular mechanisms involved
in mRNA processing. This has been extensively done
by describing the dynamics of the system by means of
the Master Equation, a Markovian description whose
solution gives the probability of observing a certain
number of mRNAs in a cell at a certain time [4]. Since
the exact analytical solution of the Master Equation is
only available for a few scenarios (e.g. [5–7]), the study
of the probability distribution of mRNA transcript
number is usually limited to calculating the moments
of the distribution.

One particular mechanism that has been difficult to
study analytically is the influence of the cell cycle on the
distribution of mRNAs in a population of cells. The du-
ration of the different phases of the cell cycle is stochas-
tic, introducing noise not only in the time of mitosis
when the molecular content is diluted, but also in the
time at which DNA is replicated, which in turn in-
creases the mRNA production rate [3]. In addition, dur-
ing mitosis, the cellular content is divided, leading to a
stochastic transcript bipartition [8].

Due to these different challenges, mathematical effort
has been focused on limit cases, such as when the cell
cycle duration is considered constant [6, 7, 9], or when
DNA replication is omitted [10, 11]. Other studies have
considered the effect of the cell cycle on protein fluctu-
ations [5, 12–14]; the analysis in this case is simplified
because unlike mRNA, protein lifetimes are very long
and hence degradation is mostly due to dilution at cell
division.

In addition, there are other factors beyond details of
the cell cycle progression that can have a profound in-
fluence on transcript fluctuations. The symmetry of
cellular division affects the number of transcripts in a
cellular population. For instance, in a growing prolif-
erating tissue, the continuous exponential appearance
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of young cells in a population introduces an asymme-
try in the population cell age, favouring the propor-
tion of cells at early stages of their cell cycle. This con-
trasts with the age structure of a homeostatic popula-
tion where it is expected to find the cells equally dis-
tributed along their cell cycle [15, 16]. Since the aver-
age number of mRNAs in a cell increases with the time
position in the cell cycle, we expect to observe larger
mRNA content for the same type of cell in a homeo-
static population compared to a growing population.
Similar discrepancies arise when mRNA distributions
measured from snapshots of a growing cell population
are compared with the temporal tracking of the expres-
sion levels of a single cell over time, apparently contra-
dicting ergodicity between single cells and the popula-
tion. While this effect has been formalised mathemati-
cally [11], its relevance to the distributions of mRNA, or
to the inference of different kinetic parameters, remains
a conundrum.

In this paper we study the distribution of mRNA tran-
scripts in single cells where expression can be bursty
or non-bursty (both commonly observed, see for ex-
ample [2]), with a cell cycle progression described as
a number of stages having a stochastic duration. Our
model also includes DNA replication, and differentiates
between population and lineage (single cell trajectory)
measurements of the mRNA distribution. Keeping the
framework relevant to the experimental inference of ki-
netic parameters, we aim to answer the following ques-
tion: how important is the inclusion of cell cycle vari-
ability for predicting the statistics of stochastic mRNA
expression? With this objective in mind, we derive and
analyze expressions for the error made in different ob-
servables of transcript abundance when a deterministic
cell cycle (one of fixed length) is considered instead of a
stochastic one. Furthermore, we apply our results to a
genome-wide expression dataset to address the magni-
tude of the error made in the inference of the transcrip-
tion rate when mathematical models with different cell
cycle details are employed.

Model Description

We consider a general model of stochastic gene expres-
sion that takes into account cell cycle variability (for an
illustration see Fig. 1a and b) with the following prop-
erties:

1. The cell cycle is divided into N stages. The dura-
tion of each stage i is exponentially distributed with
a rate ki. This implies that the total cell cycle dura-
tion follows a hypoexponential distribution. Note
that the number of stages in general will not coin-
cide with the cell cycle phases. The number and
duration of the different stages can be chosen by

fitting the experimental cell cycle duration distri-
bution.

2. The length of the mitotic phase is negligible and
hence it is assumed to occur instantaneously af-
ter the end of the N-th stage. This leads to bi-
nomial partitioning of the mRNA between mother
and daughter cells.

3. There is bursty or constitutive transcription of
mRNA with rate ri of producing mRNAs per unit
of time, and a decay rate di. When the transcription
is bursty, the burst size follows a geometric distri-
bution with mean βi. All the parameters ri, di, βi

can vary depending on the stage i along the cell cy-
cle.

This constitutes the general model studied in this
manuscript. Detailing cell stage specific rates of tran-
scription and degradation is particularly relevant since
it will bestow our model with the ability of accurately
describing the dynamic nature of mRNA transcription
[3, 17]. In addition, for the sake of clarity of our analy-
sis we will also consider a particular case of the general
model:

1. All the cell stage rates are identical along the cell
cycle ki = k. This implies that the total cell cycle
duration follows an Erlang distribution. The num-
ber of cell cycle stages in this case can be easily de-
termined from a best fit of an Erlang distribution to
the experimental cell cycle duration [18]. In partic-
ular, the coefficient of variation (CV) of the Erlang
distribution is equal to

√
1/N.

2. The degradation rate of the mRNA is independent
of the cell cycle stage di = d.

3. There are W stages prior to DNA replication and
N −W stages postreplication. The production rate
of mRNA is proportional to the DNA content of the
cell at each stage without dosage compensation, be-
ing ri = r for i ≤ W and ri = 2r for i > W. If
transcription is considered to be bursty, the aver-
age burst size is constant along the cycle βi = β.

Since in this particular scenario the cell cycle dura-
tion follows an Erlang distribution, it will be referred
hereon as the Erlang model to distinguish it from the
general model.

Stochastic simulations of the model can be used to
study the effect of changing parameter values on the
mRNA transcript number (Fig. 1c). Alternatively, we
can study analytically the evolution of the probability
Pi(n, t) of finding a cell in stage i with n mRNAs at
time t by using a Master Equation description, that for
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Figure 1: a,b) Schematic of the general model where mRNA dynamics take into account details of the cell cycle (a) including DNA
replication, phase duration variability and bipartition at mitosis. During each cell cycle stage (b) mRNA dynamics is described
as a production term (constitutive or bursty), and a linear degradation. c) Comparison of stochastic mRNA trajectories between a
case where cell cycle duration is constant (blue) or stochastic (orange), for different degradation rates d. Arrows indicate stochastic
division times. Stochastic cell cycle simulations use the Erlang model with a production rate per chromosome equal to is r = 50d
for a cell cycle with N = 4 stages, from which W = 3 stages occur prior to DNA replication (w = W/N = 3/4) indicated by dashed
lines for the deterministic simulations.

the general model with constitutive mRNA transcrip-
tion (bursty case is detailed in the Appendix A) reads,

∂P1(n, t)

∂t
=− k1P1(n, t) + kN P′

N(n, t)+

r1 (P1(n − 1, t)− P1(n, t)) +

d1 ((n + 1)P1(n + 1, t)− nP1(n, t)) , (1)
∂Pi(n, t)

∂t
=− kiPi(n, t) + ki−1Pi−1(n, t)+

ri (Pi(n − 1, t)− Pi(n, t)) +

di ((n + 1)Pi(n + 1, t)− nPi(n, t)) , i ∈ [2, N].
(2)

The first and second terms in these equations describe
the exit from, and entrance to, the present cell cycle
stage. The third term models transcription and the
fourth term mRNA decay. Note that binomial partition-
ing during mitosis is explicitly taken into account by the
second term of Eq. (1). This process implies:

P′
N(n, t) =

∞

∑
m=0

(
m

n

)

2−mPN(m, t), (3)

where we take the convention m choose n equals zero
when n > m.

Factorial Moments in Cyclo-stationary Con-
ditions

Defining the generating function Gi = ∑n znPi(n), the
Master Equations Eqs. (1)-(2) can be written as

∂G1(z, t)

∂t
= −k1G1(z, t) + kNGN

(
1 + z

2
, t

)

+

r1(z − 1)G1(z, t)+

d1(1 − z)
d

dz
G1(z, t), (4)

∂Gi(z, t)

∂t
= −kiGi(z, t) + ki−1Gi−1(z, t)+

ri(z − 1)Gi(z, t)+

di(1 − z)
d

dz
Gi(z, t), i ∈ [2, N]. (5)

From the definition of the generating function it fol-
lows that the unnormalised ℓ-th factorial moment of the
mRNA distribution in stage j is given by:

(nj)ℓ ≡ ∑
n

n(n − 1)...(n − ℓ+ 1)Pj(n) = G
(ℓ)
j (1), (6)

where the superscript (ℓ) means differentiating ℓ times.
Enforcing cyclo-stationary conditions (steady-state for
the mRNA distribution of each individual cell stage) by
setting the time derivatives in Eqs. (4)-(5) to zero, differ-
entiating p times the resulting equations and using the
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definition of the factorial moments above, we obtain:

0 = −k1(n1)p + kN

(
1

2

)p

(nN)p

+r1 p(n1)p−1 − d1 p(n1)p, (7)
0 = −ki(ni)p + ki−1(ni−1)p

+ri p(ni)p−1 − di p(ni)p, i ∈ [2, N]. (8)

Eq. (8) can be brought into the form:

(ni+1)p = fi(ni)p + gi, i ∈ [2, N], (9)

where we have used the definitions:

fi =
ki

ki+1 + pdi+1
, gi =

ri+1 p(ni+1)p−1

ki+1 + pdi+1
. (10)

Since these are first-order non-homogeneous recur-
rence relations with variable coefficients, their solution
can be written as:

(nj)p = δj(n1)p + θj, j ∈ [2, N], (11)

where we have used the definitions:

θj = δj

j−1

∑
m=1

gm

δm+1
, δj =

j−1

∏
k=1

fk. (12)

Solving Eq. (11) for (nN)p and substituting in Eq. (7),
after some simplification we obtain:

(n1)p =
2r1 p(n1)p−1 + kN

(
1
2

)p−1
θN

2(d1 p + k1)− kN

(
1
2

)p−1
δN

. (13)

Note that the solution of the unnormalised p-th factorial
moment depends on knowledge of the unnormalised
p − 1-th factorial moment. Hence, because of this de-
pendency, all factorial moments need knowledge of the
zeroth order factorial moment (nj)0, which corresponds
with the probability of finding the cell at stage j. By the
definition of Eq. (6) we see that (nj)0 = Gj(1). Setting
p = 0 in Eqs (7) and (8) one obtains:

(ni)0 =

(

ki

N

∑
j=1

k−1
j

)−1

. (14)

Hence summarising, Eqs. (11), (13), and (14) together
give the solution to the unnormalised p-th factorial
moment of the mRNA numbers in cell stage j. Note
that to obtain the normalised p-th factorial moment
one divides the unnormalised p-th factorial moment by
Gj(1) = ∑n Pj(n) = (nj)0.

The factorial moments for the general model with
bursty transcription can be derived following the same
steps. This procedure shows that the first factorial mo-
ment is equal to the constitutive case, whereas the fac-

torial moments for higher orders in the bursty case are
larger than in the constitutive case (see Appendix A).

Lineage Measurements

The moments of the distribution can be used to com-
pute the mRNA distribution statistics for different tis-
sues. For instance, the mean number of mRNAs
can be calculated as the average along the cell cycle
stages of the expected number of mRNAs at each stage
((ni)1/(ni)0) weighted by the probability πi of find-
ing a cell in a tissue at a certain stage i. Following
this methodology, the expressions for the mean and the
variance are,

⟨n⟩ =
N

∑
i=1

πi
(ni)1

(ni)0
, σ2 =

N

∑
i=1

πi
(ni)2

(ni)0
+ ⟨n⟩(1 − ⟨n⟩).

(15)
We will start our analysis studying the scenario in

which the mRNA content of a single cell is tracked in
time at regular intervals and, after division, the tracking
keeps following only one of the daughter cells. This sce-
nario is equivalent to the mRNA distribution of the cells
forming a homeostatic tissue, where after each division
one of the cells leaves the population, keeping constant
the number of cells in the tissue [15, 16]. This scenario
will be referenced in the text as the “lineage” case, to
differentiate it from the mRNA distribution across a
growing proliferating population of cells, that will be
referred to as the “population” case. In the lineage case,
the probability πi of finding a cell at the i-th cell cycle
stage corresponds with (ni)0 (Eq. 14) being inversely
proportional to the cell stage advance rate ki,

πi = (ni)0. (16)

For the Erlang model this is πi = 1/N, and the ex-
plicit expression for the mean transcript can be obtained
by introducing Eqs. (13), (14) and (16) in (15), obtaining,

⟨n⟩ = n̂ + (1 − w)n̂ − n̂

η

(

1 −
( 1

1+η∆
)(1−w)/∆

2 − ( 1
1+η∆

)1/∆

)

, (17)

where for the sake of clarity we have written the expres-
sion in terms of the coefficient of variation of the cell
cycle

√
∆ =

√
1/N. In addition, we have introduced

the mean mRNA number in the absence of cell cycle
n̂ = r/d, the fraction of the cell cycle before DNA repli-
cation w = W/N, and the nondimensional parameter
η = dT that compares the degradation timescale with
the dilution timescale given by the average cycle dura-
tion T = N/k (see Table 1). Note that η is proportional
to the ratio between the mRNA half-life t1/2 and the cell
cycle duration T following η = Tln(2)/t1/2.

4

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted March 25, 2020. . https://doi.org/10.1101/2020.03.24.006494doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.006494
http://creativecommons.org/licenses/by/4.0/


Erlang
Meaning model

N Number of cell stages
W Cell stages prior to replication
ki Rate of advance of cell cycle stage i k
ri Transcription rate during stage i r if i ≤ W

2r if i>W
di mRNA degradation during stage i d
βi mean burst size during stage i β
w Proportion of cell cycle

before DNA replication W/N
n̂ Stationary average mRNA number

in absence of cell cycle r/d
T Average cell cycle duration N/k
∆ Squared coefficient of variation

of cell cycle duration 1/N
η mRNA degradation relative

to cell division rate dT

Table 1: Description of the different parameters used to de-
scribe the cell cycle, mRNA dynamics, and their relationship
in the Erlang model. Parameters in shadowed rows can be
derived from the rest of the parameters.

The first term of Eq. (17) corresponds to the clas-
sical scenario without cell cycle. The second term of
Eq. (17) introduces the effect of DNA replication for
the case in which the mRNA degradation timescale is
much shorter than the cell cycle length (η → ∞). Fi-
nally, the third term in Eq. (17) describes the contri-
bution when mRNA degradation occurs at comparable
timescale to the cell cycle duration. This latter contri-
bution increases monotonically with the cell cycle vari-
ability ∆ (see Appendix B), and is minimal in the limit
of ∆ → 0 (deterministic cell cycle duration). In this de-
terministic limit Eq. (17) reduces to the simpler form

⟨n⟩∗ = lim
∆→0

⟨n⟩ = n̂ + (1 − w)n̂ − n̂

η

(

1 − e−η(1−w)

2 − e−η

)

,

(18)

which agrees with a different calculation using deter-
ministic rate equations (see Appendix C). Comparison
of Eqs. (17) and (18) allows us to quantify the relative er-
ror R made in the expected number of mRNA when the
cell cycle variability is not considered in the description
of the mRNA dynamics,

R ≡ ⟨n⟩ − ⟨n⟩∗
⟨n⟩ = 1−

η(2 − w)−
(

1 − e−η(1−w)

2−e−η

)

η(2 − w)−
(

1 − (1+η∆)−(1−w)/∆

2−(1+η∆)−1/∆

) .

(19)
Note that R is only a function of η, w and ∆, and there-
fore independent of the mRNA production rate (see
Fig. 2a). The error is always positive (see Appendix

B) and increases with the cell cycle time variability
∆, reaching its maximum for ∆ = 1 (which is the
maximum ∆ attainable for an Erlang process since
N ≥ 1). Similarly, since the expression for the first
moment is identical in the bursty and constitutive
cases (see Appendix A), the mean transcript number
and its error are also independent of how bursty the
transcription is.

For a given cell type, the average time at which repli-
cation of a given gene occurs and the cell cycle duration
variability can be considered constant (provided exter-
nal conditions are not changed), and hence the value of
the error R for different genes will be determined ex-
clusively by η, which compares the mean cell cycle du-
ration and mRNA lifetime, and can vary significantly
from gene to gene [19]. The error decreases with η (see
Fig 2a,b), vanishing for η ≫ 1 corresponding with the
scenario where mRNA lifetime is much shorter than the
cell cycle duration. On the other hand, the relative error
R is maximum for low values of η, describing the case
of stable mRNAs for which degradation rates are much
lower than the proliferation rate of the cell (analytical
expressions for the mRNA distribution for this case can
be found following the method described in [5]),

lim
η→0

R =
∆

∆ + (2 − w) + 2
2−w

.

Interestingly, this maximal error depends on the
properties of the cell cycle through w and ∆ and it is
maximised for intermediate levels of the DNA replica-
tion time w = 2 −

√
2 ≃ 0.6, which is comparable to bi-

ological values of the relative duration of the G1 phase
which typically varies between w = 0.25 and w = 0.75
[3, 24] (excluding cells which have arrested G1 phases),
achieving a maximal relative error of R ≃ 15%, corre-
sponding to ∆ = 1/2 and w = 2 −

√
2.

The relative error can be more precisely estimated
given data for specific types of cells. For example the
cell cycle duration distribution in NIH 3T3 mouse em-
bryonic fibroblasts has been described by an Erlang dis-
tribution with CV2 ≃ 1/12 (which implies N = 12 ef-
fective cell cycle stages) [18] and the G1 phase occupies
roughly a fraction w = 0.4 of the cell cycle [24]. The
maximum error R for these parameters shows a relative
error around 3% (Fig. 2b), while for most of the tran-
scriptome (η ∼ 1, see Fig. 2c) is R ≃ 1%, indicating that
in these cases the cell cycle duration variability can be
ignored if the mean mRNA is all that we are interested
in.

Making use of the second order moments of the dis-
tribution, we can extend the analysis to other statistic
observables, allowing us to quantify the error in the
variance, Rσ, of mRNA fluctuations made when ne-
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Figure 2: Relative error made in the average number of mRNAs (R) and its variance (Rσ) when considering the cell cycle to be
deterministic instead of Erlang distributed in a non-proliferating population or a lineage. Panels compare the theoretical results
(lines) with stochastic simulations (circles). a,b) Relative error R of the mean number of mRNA. c) Genome-wide values of η for
three different cell types. NIH3T3 mouse fibroblast data was obtained from [19]. Degradation rates for S. cerevisiae cultured in yeast
extract peptone dextrose were obtained from [20] and its cell cycle duration from [21]. Stability data for the transcripts of E. coli
cultured in Lysogeny broth were obtained from [22], while its cell cycle duration from [23]. Averages are done over trajectories of
duration t = 600T max(1/dT, 1/ρT, 1). Panels a), b) and f) show averages over 50 trajectories for all conditions except for n̂ = 1
that shows an average of 500 trajectories. Panels c) and d) show averages over 200 trajectories. Error bars indicate the standard
error of the mean.

glecting cell-cycle variability,

Rσ =
σ2 − σ2∗

σ2
, (20)

where σ2∗ is the variance of the mRNA distribution in
the deterministic cell cycle limit (∆ → 0). For the Er-
lang model, combining the expression for the variance
(Eq. 15) with the factorial moments (Eqs. 13-14) we
obtain an error for the variance Rσ that is much larger
than the one observed in the mean. Additionally, Rσ

does not have a monotonic dependence on the degra-
dation rate, but is maximal for intermediate values of
the degradation rate (η ∼ 1, see Fig. 2d,e,f). Interest-
ingly, this region of values of η corresponds with most
of the transcripts genome-wide for different species (see
Fig. 2c). In particular, for the NIH 3T3 cells the error
reaches Rσ ≃ 25% (Fig. 2e), and can reach values as
high as 80% for ∆ = 1/2 (Fig.2d). In contrast to the er-
ror in the mean, the error in the variance will depend
on the transcription rate and the transcriptional bursti-
ness. Analysis of Rσ for the bursty model shows that Rσ

decreases with the burst size, reflecting that increase in
the variance due to the bursty gene expression reduces
the relative impact of the contribution from cell cycle
variability (Fig. 2f). Nevertheless, despite this reduc-
tion, the error Rσ is still above 10% for many scenar-
ios including both bursty and constitutive expression
(Fig. 2d,e,f). Furthermore, in contrast to the error in

the mean, Rσ depends on the DNA replication position
w in such a way that genes replicating later in the cell
cycle (larger w) not only show larger errors, but also for
a broader range of degradation rates (see Fig. 2 e).

Population Measurements

When considering a proliferating population of cells,
the continuous appearance of synchronised cells at an
initial cell cycle stage establishes a different age distri-
bution than the one derived in the lineage scenario (Fig.
3a). Specifically, after mitosis, one cell at stage N leaves
the population to give rise to two cells at stage 1, en-
hancing the probability of finding cells in the popula-
tion at initial stages of their cell cycle. The population
values for the probability of observing a cell in the i-th
cell stage πi, can be obtained by considering the evolu-
tion of the average number of cells in cell cycle stage i
at time t, denoted by Ci(t).

dC1(t)

dt
= −k1C1(t) + 2kNCN(t), (21)

dCi(t)

dt
= −kiCi(t) + ki−1Ci−1(t) i = 2, . . . , N, (22)

where the factor 2 in the first equation stands for cel-
lular division: every time a cell divides (leaving stage
N), two cells start at stage 1. In the lineage case this
factor becomes 1. More generally, for cases with asym-
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Figure 3: a) Comparison between the mRNA content over a single cell trajectory in time (blue) with the mRNA distribution of a
proliferating population (orange). Histograms for both mRNA distributions (right) compare the average of 100 trajectory realiza-
tions with the snapshot of a single population at t = 7T. Parameters used are T = 1 , N = 4, W = 2 , n̂ = 50, η = 1. Inset)
Probability distribution πi of finding a cell at different cell cycle stages for single trajectory (blue) and a proliferating population
(orange). Stochastic simulations for πi (circles) are compared with theoretical results (bars) obtained from Eq. (16) (that for the
Erlang case is constant πi = 1/N) and from Eq. (24). b,c) Relative error made in the average number of mRNAs (R) and its vari-
ance (Rσ) when considering the cell cycle to be deterministic instead of Erlang distributed in a growing proliferative population.
Comparison includes theoretical results (lines) and stochastic simulations (circles). Simulations in b) show the average of 5000
snapshots at a time 10T and in c) the average of 25000 snapshots at a time 10T. Error bars indicate the standard error of the mean.

metric division (after mitosis some cells leave the popu-
lation with a certain probability) this factor 2 can be re-
placed by a factor α ∈ [0, 2] [16]. While for eqs. (21,22)
the number of cells Ci(t) will grow in time, the relative
cell stage distribution in the population will eventually
reach a steady-state for which we can write the ansatz
Ci(t)/C1(t) ≡ λi. Specifically, for the Erlang case, in-
troducing the definition of λi in Eq. (22) yields the rela-
tionship

λi = 2(1−i)/N , (23)

that gives the explicit values for the probability πi of
observing a cell in the population at stage i,

πi(t) =
Ci(t)

∑
N
i=1 Ci(t)

=
21/N − 1

2(i/N)−1
, i = 1, . . . , N, (24)

differing from the lineage stage distribution (Eq. (16),
which for the Erlang case is constant (πi = 1/N). This
discrepancy was confirmed by simulations (see inset of
Fig 3a).

In addition to differences in πi, cells in the popula-
tion case are also found more likely at earlier times in-
side each stage than in the lineage case. For the Erlang
model, the distribution of times that each cell has been
in its current cell stage follows an exponential distribu-
tion ∼ Exp(k21/N) (see Appendix D and [5]). Given the
Markovian nature of the process, this effect is equiv-
alent to reducing k and having a faster cell advance
through the cell cycle. Therefore, using the expressions

for πi from Eq. (24), and the new effective rates of cell
stage advance k → k21/N in Eqs. (11) and (13-14), al-
lows us to obtain the factorial moments for population
measurements. The mean number of mRNA in this sce-
nario is

⟨n⟩ = n̂
21−wη∆

2∆ + η∆ − 1
. (25)

It is straightforward to show that ⟨n⟩ increases mono-
tonically with ∆ (similar to the lineage case). The exact-
ness of Eq. (25) is confirmed by stochastic simulations
in Figure 3. In the limit of a deterministic cell cycle, Eq.
(25) reduces to the simpler form:

⟨n⟩∗ = lim
∆→0

⟨n⟩ = 21−wηn̂

η + ln (2)
. (26)

This agrees with a different calculation using determin-
istic rate equations (see Appendix C). Similar to the lin-
eage case, this allows us to write explicitly an expression
for the relative error R in the average number of mRNAs
made when omitting the stochasticity of the cell cycle,

R ≡ ⟨n⟩ − ⟨n⟩∗
⟨n⟩ = 1 − 2∆ + η∆ − 1

∆(η + ln(2))
. (27)

As in the lineage case, the error is a monotonic de-
creasing function of η, and increases with ∆ reaching
an error that is similar to the single cell case (R ≃ 20%)
(see Fig. 3b,c). Nevertheless, in contrast to the lineage
case, the error is negative, indicating that the expected
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6 · 106T/d · max(1/dT, 1/ρT, 1) for lineage measurements, and t = 20T for population measurements.

number of mRNA decreases with the variability of the
cell cycle duration. Strikingly, the error is independent
of w, hence independent of the relative duration of G1
and G2 phases. Analysis of the error in the variance,
Rσ, results in similar observations to those of the lineage
measurements, where Rσ depends on the transcription
rate and the transcription burstiness, resulting in errors
much larger than R (Rσ > 50%) that peaks at interme-
diate values of the degradation rate corresponding to
the most frequent values of η measured genome-wide
for different species (see Fig. 2c). As in the lineage case,
the error Rσ depends on the replication position dur-
ing the cell cycle w, so genes replicating later in the cell
cycle show larger errors for broader ranges of mRNA
stability.

mRNA Distribution Approximation

The exact mRNA distribution of our model is known
only for some limit cases such as η → 0 [5]. Never-
theless, for more general realistic cases, we can use the
moment derivation to reconstruct an approximate dis-
tribution. In particular, our analysis provides analytical
expressions for the moments of the distribution at each
cell stage i. Exclusively using the first moments, we can
approximate the total mRNA population as a mixture
of N Poisson distributions P̃(N, t) = ∑i πiPois(⟨n⟩i),
where the weights πi correspond to the probability of

finding a cell at cell stage i obtained in Eqs. (16) and
(24). Similarly, including the second moments, we can
describe the probability as a mixture of negative bino-
mial distributions P̃(n, t) = ∑i πiNB(⟨n⟩i, σi), where
each component NB(⟨n⟩i, σ2

i ) is a negative binomial dis-
tribution with mean ⟨n⟩i and variance σ2

i (see Eq. 15 ).
Results for the lineage case, show that while the Poisson
mixture failed to recover the distribution obtained from
stochastic simulations in most scenarios (see Fig. 4a),
the negative binomial mixture resulted in a very good
prediction, able to recover the broad tails and bimodal-
ity of the mRNA distribution. In order to accurately as-
sess the goodness of the reconstructed distribution, we
computed the Kullback-Leibler divergence of the nega-
tive binomial mixture P̃(n, t) from the simulated exact
distribution (see Fig. 4b). We observed that the approx-
imation only fails for regimes with very unstable mR-
NAs that are highly expressed. On the other hand, the
approximation improves for larger values of N, closer to
experimental values for the cell cycle duration variabil-
ity (CV2 = 1/N = 1/12) [18] (compare left and right
panels of Fig. 4b). Comparison of the distributions for
bursty expression and population measurements, using
their corresponding moments and stages distributions,
πi, yielded an even better approximation with values
of the Kullback-Leibler divergence orders of magnitude
lower than the lineage case (see Fig. 4c).
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the inferred transcription rate for the 5028 genes reported in [19], as a function of the relative degradation rate η and the reported
transcription rate. The relative errors are calculated between different models with stochastic cell cycle and the deterministic cell
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Genome-wide Transcription Rate Inference
Error

Our results so far have been focused on analyzing the
errors that different models introduce on the mRNA
statistics. Likewise, it is relevant to assess the error that
different models introduce in the inference of biochem-
ical parameters from experimental data. For this pur-
pose we analyzed the genome-wide data from [19] and
compared their transcription rate inference based on a
lineage model with constant cell cycle and no replica-
tion (obtained by solving an expression equivalent to
⟨n∗⟩ with w = 0 in Eq. (18), see Appendix F) against
different models incorporating stochastic cell cycle du-
ration (see Fig. 5 and Appendix F). Interestingly, since
the average mRNA number is proportional to the tran-
scription rate (see eqs. 17 and 25), for given values of
the cell cycle duration and gene replication, the relative
error made when omitting cell cycle variation is a func-
tion depending only on the degradation rate through
the parameter η (Fig. 5a). Since [19] reported no corre-
lation between mRNA stability and transcription rate,
this resulted in an absence of correlation between the
error and the speed at which genes are transcribed (Fig.
5a). Additionally, in agreement with the error of the
average mRNA number R, the error in the transcrip-
tional rate estimate increases with the stability of the
mRNA. When comparing the error expected for differ-
ent models, small errors were observed for the lineage
case with no DNA replication (See Fig. 5b). Neverthe-
less, for more realistic scenarios where the error is eval-
uated for a growing population case with DNA replica-
tion [19], more than 90% of the genes detected under-
stimate the transcription rate with an error bigger than
10% (see Fig. 5b).

Discussion

Most of the models employed to study gene regula-
tion ignore the effect that a detailed stochastic cell
cycle description has on gene expression. The model
and methodology developed in this paper not only
allows one to analytically evaluate the role of features
such as cell duration stochasticity or DNA replica-
tion in the transcript population, but also provides a
straightforward way of discriminating the scenarios
for which such details are relevant for the description
of the system. This is of paramount importance when
mathematical models are used to infer parameters
from experimental data, where the precision of the
information demands the use of the right level of
abstraction [25].

Specifically, this approach contrasts with alternative
strategies that either ignore cell cycle effects or fit
mRNA populations to arbitrary population mixtures,
impeding the inference of mechanistic information of
the transcriptional parameters. This is of particular
relevance for current data analysis where mRNA
labelling techniques give access to mRNA abundance
distributions in populations of cells. In order to extract
mechanistic information of the transcriptional process
from these distributions, it is paramount to link the
details of the distribution to the properties of the dif-
ferent biomolecular mechanisms [3, 26]. While in this
paper we analysed the error in the transcription rate
estimation due to neglecting cell cycle variability and
replication, future work will address how taking into
account such details may also affect the inference of
other biochemical parameters such as gene activation
and deactivation rates, or the mean burst size. The
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necessity of such study becomes apparent from the
mRNA distributions obtained, which can be approx-
imated accurately by negative binomials in scenarios
with constitutive gene expression, challenging the
common practice to use negative binomial distribu-
tions as a signature of bursty transcription [1, 26, 27].

In addition, incorporating the methodology devel-
oped in this paper to gene regulatory networks will pro-
vide a route to better understanding the stochastic de-
tails of gene expression in growing tissues. This is of
special relevance in embryo development, where the
details of intrinsic noise are known to play a major role
in the formation of spatial domains of gene expression
in the patterning of embryonic tissues [28–30].
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Appendix

A Bursty mRNA transcription model

Considering the general model, we can introduce
bursty mRNA as a reaction with a burst rate νi at cell
stage i. The number of mRNAs ℓ produced in a burst
at cell stage i follows a geometric distribution ξi(ℓ) with
average number βi of transcripts produced per burst i.e.
an average rate ri = νiβi of mRNAs produced per unit
of time [31]. The explicit geometric probability distri-
bution follows

ξi(ℓ) =
1

1 + βi

(
βi

1 + βi

)ℓ

. (28)

The resulting Master Equation reads,

∂P1(n, t)

∂t
= −k1P1(n, t) + kN P′

N(n, t)+

r1

β1

(
n

∑
ℓ=1

[P1(n − ℓ, t)ξ1(ℓ)]− P1(n) (1 − ξ1(0))

)

+

d1((n + 1)P1(n + 1, t)− nP1(n, t)), (29)
∂Pi(n, t)

∂t
= −kiPi(n, t) + ki−1Pi−1(n, t)

+
ri

βi

(
n

∑
ℓ=1

[Pi(n − ℓ, t)ξi(ℓ)]− Pi(n) (1 − ξi(0))

)

+

di((n + 1)Pi(n + 1, t)− nPi(n, t)), i ∈ [2, N].
(30)

As in the constitutive case, we can use these system of
differential equations to obtain the steady state factorial
moments of the distribution by introducing the gener-
ating function Gi = ∑n znPi(n). In particular the terms
corresponding to bursty transcription follow the sum,

∞

∑
n=0

n

∑
ℓ=1

znP(n − ℓ, t)ξi(ℓ) =
∞

∑
ℓ=1

∞

∑
n=0

znP(n − ℓ, t)ξi(ℓ) =

∞

∑
ℓ=1

ξi(ℓ)z
ℓG(z) = G(z)

(
1

1 + βi(1 − z)
− 1

1 + βi

)

.

(31)

This results in the system of differential equations,

∂G1(z, t)

∂t
= −k1G1(z, t) + kNGN

(
1 + z

2
, t

)

+

(
1

1 + β1(1 − z)
− 1

)
r1

β1
G1(z, t)+

d1(1 − z)
d

dz
G1(z, t), (32)

∂Gi(z, t)

∂t
= −kiGi(z, t) + ki−1Gi−1(z, t)+ (33)

(
1

1 + βi(1 − z)
− 1

)
ri

βi
Gi(z, t)+

di(1 − z)
d

dz
Gi(z, t), i ∈ [2, N]. (34)

Enforcing the steady-state by setting the time deriva-
tives in Eqs. (32) and (33) to zero, differentiating p times
the resulting equations and using the definition of the
factorial moments (ni)k we obtain:

0 =− k1(n1)p + kN

(
1

2

)p

(nN)p+

r1

p−1

∑
j=0

p!

j!
β

p−j−1
1 (n1)j − d1 p(n1)p, (35)

0 =− ki(ni)p + ki−1(ni−1)p+

ri

p−1

∑
j=0

p!

j!
β

p−j−1
i (ni)j − di p(ni)p, i ∈ [2, N]. (36)

The normalization of the factorial moments (nj)0, ob-
tained for p = 0 with the normalization condition
∑j Gj(1) = 1, is the same as in the constitutive case, and
only depends on the cell stage advance rates

(n1)0 =

(

1 +
N

∑
i=2

i

∏
j=2

k j−1

k j

)−1

, (37)

(ni)0 = (n1)0

i

∏
j=2

k j−1

k j
, i ∈ [2, N]. (38)

Similarly to the constitutive case, equation (36) can be
written in the form,

(ni)p = fi−1(ni−1)p + g̃i−1, i ∈ [2, N], (39)

where we have used same definition for fi as in the con-
stittutive production case, but g̃i replaces gi, which in-
stead of depending on the immediately lower order fac-
torial moment p− 1, depends on all the moments lower
than p:

fi =
ki

ki+1 + pdi+1
, g̃i =

ri+1 ∑
p−1
j=0

p!
j! β

p−j−1
i+1 (ni+1)j

ki+1 + pdi+1
.

(40)
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These first-order non-homogeneous recurrence rela-
tions have the solution

(nj)p = δj(n1)p + θ̃j, j ∈ [2, N], (41)

where we have used the definitions:

θ̃j = δj

j−1

∑
m=1

g̃m

δm+1
, δj =

j−1

∏
k=1

fk. (42)

Substituting this solution in Eq. (35) we obtain

(n1)p =
2r1 ∑

p−1
j=0

p!
j! β

p−j−1
1 (n1)j + kN

(
1
2

)p−1
θ̃N

2(d1 p + k1)− kN

(
1
2

)p−1
δN

. (43)

Comparing these results we can immediately see that
the expected value of mRNAs is the same in the bursty
case and the constitutive case considering the same av-
erage rate of mRNA production at cell stage i: ri = νiβi.
Differences arise for higher moments. In particular all
the factorial moments of the bursty scenario with p > 1
are larger than the factorial moments of the constitutive
case since,

ri

p−1

∑
j=0

p!

j!
β

p−j−1
i (ni)j = (44)

ri p(ni)p−1 + ri

p−2

∑
j=0

p!

j!
β

p−j−1
i (ni)j > pri(ni)p−1.

B Monotonic dependence of mean mRNA
on the coefficient of variation of the cell
cycle duration for lineage observations

By Eq. (17), we have for η > 0

⟨n⟩ = wn̂ + (1 − w)2n̂ − n̂

η




1 −

(
1

1+η∆

)(1−w)/∆

2 −
(

1
1+η∆

)1/∆






= C + D f (∆), (45)

where w is a fraction, C, D are constants (D is positive)
and

f (∆) =

(
1

1+η∆

)(1−w)/∆

2 −
(

1
1+η∆

)1/∆
. (46)

If we define x = (1 + η∆)1/∆ we note that since ∆ >

0 we have x ∈ (1, eη) and also x(∆) is monotonically

decreasing, which follows from

dx

d∆
=

(1 + η∆)−1+1/∆

∆2
︸ ︷︷ ︸

>0

(η∆ − (1 + η∆) log (1 + η∆))
︸ ︷︷ ︸

<0

< 0.

(47)
We then note that using this transformation we get:

f (∆) = g(x) =
xw

2x − 1
, (48)

which satisfies

dg(x)

dx
=

xw−1

(1 − 2x)2

︸ ︷︷ ︸

>0

(2x(w − 1)− w)
︸ ︷︷ ︸

<0

< 0. (49)

Using this we find

d f (∆)

d∆
=

dx

d∆
︸︷︷︸

<0

dg(x)

dx
︸ ︷︷ ︸

<0

> 0, (50)

which proves strict monotonicity of ⟨n⟩ as a function of
∆ > 0.

C Alternative derivation of Eqs. (18) and
(26) from deterministic rate equations

Consider a cell cycle of fixed duration T with replication
(and consequent doubling of transcription) occurring at
time τ = wT (where w is a fraction). If the transcription
rate before replication is r, the mRNA decay rate is d and
n(t) is the deterministic estimate for the mean number
of mRNA molecules at time t then a deterministic model
for this process is:

dn(t)

dt
=

{

r − dn(t), if 0 ≤ t < τ

2r − dn(t), if τ ≤ t ≤ T.
(51)

In the cyclo-stationary limit, binomial partitioning
(when cell division occurs at the end of the cell cycle)
leads to the boundary condition 2n(0) = n(T). Note
that t in this context means the cell age and not abso-
lute time and hence it can only vary between 0 and T.
Solving these differential equations we obtain the solu-
tion:

n(t) =

{

n̂(1 + ed(τ−t)

1−2eη ), if 0 ≤ t < τ

2n̂(1 + ed(τ−t+T)

1−2eη ), if τ ≤ t ≤ T,
(52)

where n̂ = r/d. Let f (t)dt be the probability of observ-
ing a cell of age between t and t + dt where dt is an
infinitesimal time interval. It then follows that:

f (t)dt = lim
N→∞

πj(j = Nt/T), (53)
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where πj is the probability of observing a cell in cell cy-
cle stage j. Note that since ∆ = 1/N, the limit of N → ∞

at constant T is the same as the limit of ∆ → 0. Since
T = N/k, in this limit we have infinite cell stages N
advancing with an infinite rate k i.e. the cell spends an
infinitesimal small time dt = 1/k at each stage. Know-
ing that πi = 1/N for lineage measurements we have

f (t) = lim
N→∞

πj

dt
=

1

T
. (54)

For the population case we substitute i/N = t/T in
Eq. (24) take limit of large N and finally use N = kT to
obtain,

f (t) =
ln (2)

T
2(1−t/T). (55)

Note that both Eqs. (54) and (55) are well known and
have been in common use for more than 40 years [32].
Finally we obtain the mean number of mRNA averaged
over the cell cycle n̄ =

∫ T
0 f (t)n(t)dt. For the lineage

measurements this yields

n̄ = wn̂ + (1 − w)2n̂ − n̂

η

(

1 − e−η(1−w)

2 − e−η

)

, (56)

whilst for the population measurements we obtain

n̄ =
21−wηn̂

η + ln (2)
. (57)

These expressions agree exactly with Eq. (18) and Eq.
(26) which were derived from a Master Equation ap-
proach in the limit of zero variability in the cell cycle
duration for the case of lineage and population mea-
surements, respectively.

D Derivation of the distribution of cell
stage durations in population measure-
ments

We let Ci(t, τ) denote the number of cells in a popula-
tion that are in cell stage i at time t that have been in that
cell state for a duration τ. After a small time duration
δ all the cells will either advance to an age τ + δ or ad-
vance to the next cell stage. Therefore we can write the
conservation equation

Ci(t + δ, τ + δ) = Ci(t, τ)− Ci(t, τ)kiδ. (58)

Assuming that there is a stationary distribution for
the stage age of the cell population at a stage i, pi(τ),
we can write Ci(t, τ) as Ci(t, τ) = Ci(t)pi(τ). Where
Ci(t) is the number of cells at cell stage i. Introducing
this factorization of Ci(t, τ) in (58), and taking the limit
δ → 0, we get the relationship,

dCi(t)

dt
pi(τ) +

dpi(τ)

dτ
Ci(τ) = −Ci(t)pi(τ)ki, (59)

where we have used the chain rule to compute the
derivative of dNi(x, x)/dx|t,τ . Since the probability of
finding a cell in a certain stage i, πi, is constant in time,
the number of cells at a given stage has to grow with
the same rate as the population, therefore dCi(t)/dt =
KCi(t), being K the growth rate of the population. Intro-
ducing this equality in equation 59, we get an equation
for pi(τ).

Kpi(τ) +
dpi(τ)

dτ
= −pi(τ)ki. (60)

That gives,

pi(τ) = (K + ki) e−(K+ki)τ . (61)

In the Erlang distributed model, ki = k is constant,
and the rate of growth of the population can be calcu-
lated from the conservation equation for the total num-
ber of cells C(t),

C(t + δ) = C(t) + CN(t)knδ = C(t) + C(t)kNπNδ,
(62)

where n is the number of stages of the cell cycle. From
this equation, we obtain that the rate of exponential
growth of the population is K = kNπN . Using the
value of πN from Eq. (24), we obtain that for the Er-
lang model, the stage age distribution of cell cycle stage
i is

pi(τ) = k21/Ne−k21/N τ . (63)

E Computational analysis

The simulations for the general cell cycle model (includ-
ing Erlang distributed times), were made using a cus-
tom made Gillespie algorithm where cell cycle stages
are treated as one extra reaction (Algorithm 1). After
the last stage of the cell cycle is completed, the cell cy-
cle time is reset and the number of mRNAs is reduced
by sampling a binomial distribution B(n, 1/2) where n
is the number of mRNAs before cell division.

On the other hand, to simulate a cell cycle where the
different stages have deterministic duration, the Gille-
spie algorithm has been modified to take into account
if a deterministic cell stage change would take place be-
fore the next stochastic reaction time (see Algorithm 2).
The rest of the details of the algorithm are the same as
in the general cell cycle model.

To obtain statistics from lineage measurements, each
trajectory was sampled by choosing evenly distributed
time points. For population measurements, several
simulations are run in parallel, one for each cell. After
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Algorithm 1 General model with stochastic cell cycle with constitutive expression
1: n = n̂ ▷ Initial number of mRNA
2: j = 1 ▷ Initial cell stage
3: t = 0 ▷ Initial time
4: while t < tmax do
5: Compute reaction channels propensities
6: p+ = rj ▷ Propensity of mRNA production
7: p− = ndj ▷ Propensity of mRNA degradation
8: pc = ki ▷ Propensity of cell cycle advance
9: Select next reaction channel

10: u = UniformRandom(0, p+ + pm + pc) ▷ Random number to select next reaction channel
11: if u < p+ then ▷ mRNA production selected
12: n += 1
13: τ = ExponentialRandom(1/p+)
14: else if u < (p+ + p−) then ▷ mRNA degradation selected
15: n −= 1
16: τ = ExponentialRandom(1/p−)
17: else ▷ Cell cycle stage advance selected
18: j += 1
19: τ = ExponentialRandom(1/pc)
20: if j > N then ▷ Cell cycle has finished
21: n = BinomialRandom(n, 1/2) ▷ Bipartition of mRNA
22: j = 1 ▷ Reset cell cycle
23: t += τ

Algorithm 2 Deterministic cell cycle model
1: n = n̂ ▷ Initial number of mRNA
2: t = Random( f (t)) ▷ Initial time following cyclostationary distribution
3: j = ⌈Nt/T⌉ ▷ Initial cell stage
4: tnext = s1 ▷ Time left on the current cell state
5: while t < tmax do
6: Compute reaction channels propensities
7: p+ = rj ▷ Propensity of mRNA production
8: p− = ndj ▷ Propensity of mRNA degradation
9: Select next stochastic reaction channel

10: u = UniformRandom(0, p+ + pm) ▷ Random number to select next reaction channel
11: if u < p+ then ▷ mRNA production proposed
12: Dn = 1 ▷ Proposed change in number of mRNAs
13: τ = ExponentialRandom(1/p+)
14: else ▷ mRNA degradation proposed
15: Dn = −1 ▷ Proposed change in number of mRNAs
16: τ = ExponentialRandom(1/p−)
17: Comparison of proposed stochastic reaction channel with cell stage advance
18: if tnext > τ then ▷ Stochastic reaction selected
19: n += Dn ▷ Update number of mRNA
20: tnext −= τ ▷ Update time of current cell stage
21: else ▷ Cell cycle stage advance
22: j += 1
23: τ = tnext

24: if j > N then ▷ Cell cycle has finished
25: n = BinomialRandom(n, 1/2) ▷ Bipartition of mRNA
26: j = 1 ▷ Reset cell cycle
27: tnext = s1 ▷ Start timer of first cell cycle stage
28: else
29: tnext = sj ▷ Start timer of next cell cycle stage
30: t += τ
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each cell division event, a new cell is introduced in
the simulation containing the remaining mRNA from
the binomial partition of the mother cell. In order to
achieve a steady state behaviour with deterministic cell
cycle it was necessary to initiate each replicate follow-
ing the corresponding age distribution (Eq. (54) or Eq.
(55) ). Statistics from the population measurements are
done across all the cells at a particular time snapshot.

F Inference of transcription rates and error
calculation

Using the expression for the average number of mRNAs
in the lineage measurements given by Eq. (17), we can
write the transcription rate parameter r for the Erlang
model as a function of the average number of mRNAs
observed and the rest of the parameters of the model,

r =
⟨n⟩η

T

(

2 − w − 1

η

(

1 −
( 1

1+η∆
)(1−w)/∆

2 − ( 1
1+η∆

)1/∆

))−1

.

(64)
Similarly, we can write an expression for r for the pop-

ulation case using Eq. (25),

r =
⟨n⟩η

T

2∆ + η∆ − 1

21−wη∆
. (65)

We can use both Eqs. (64) and (65) to obtain the av-
erage transcription rate r̄ along the cell cycle for lineage
or population cases,

r̄ = rw + 2r(1 − w). (66)

In the limit with a deterministic cell cycle duration
and no replication rexp = r̄(∆ → 0, w = 1) we recover
the expression used in [19], which returns a value of
transcription rate for each gene given the measured
decay rate and average number of mRNA transcripts.
By contrast, in order to compute r̄ in a general case we
need to evaluate the cell cycle duration variability ∆.
For the reported average cell length 27.5h and its stan-
dard deviation of 13h, the number of effective states N
can be obtained from the coefficient of variation of the
cell cycle length N = 1/∆ = 1/CV2 ≃ 4.

Introducing the calculated value of ∆ in Eqs. (64-66),
we can evaluate r̄ for lineage and population cases
for different DNA replication positions along the cell
cycle. In the text we study a case without replication
w = 1 and a case with replication at the middle of the
cell cycle w = 1/2.

In order to evaluate how our predictions differ from
the reported transcription rates rexp, we compute the

relative error ε

ε =
rexp − r̄

rexp
. (67)

Note that since r̄ is linear in the average transcript
number ⟨n⟩, the resulting error is independent of ⟨n⟩.
Therefore, differences in the error ε among the different
genes reported in [19] will only depend on their degra-
dation rate.
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