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Abstract

Landscape pattern is spatially correlated and scale-dependent. Thus, understanding landscape structure and func-

tioning requires multiscale information, and scaling functions are the most precise and concise way of quantify-

ing multiscale characteristics explicitly. The major objective of this study was to explore if there are any scaling

relations for landscape pattern when it is measured over a range of scales �grain size and extent�. The results

showed that the responses of landscape metrics to changing scale fell into two categories when computed at the

class level �i.e., for individual land cover types�: simple scaling functions and unpredictable behavior. Similarly,

three categories were found at the landscape level, with the third being staircase pattern, in a previous study

when all land cover types were combined together. In general, scaling relations were more variable at the class

level than at the landscape level, and more consistent and predictable with changing grain size than with chang-

ing extent at both levels. Considering that the landscapes under study were quite diverse in terms of both com-

position and configuration, these results seem robust. This study highlights the need for multiscale analysis in

order to adequately characterize and monitor landscape heterogeneity, and provides insights into the scaling of

landscape patterns.

Introduction

Spatial heterogeneity is ubiquitous across all scales

and forms the fundamental basis of the structure and

functioning of landscapes, be they natural or cultural.

To understand how landscapes affect, and are affected

by, biophysical and socioeconomic activities, we

must be able to quantify spatial heterogeneity and its

scale dependence �i.e., how patterns change with

scale�. Indeed, much of what has been done in geog-

raphy, remote sensing and ecology has to do with de-

scribing, manipulating, and understanding spatial

heterogeneity. With the increasing recognition of the

importance of spatial heterogeneity by ecologists in

the past two decades, landscape ecology has come of

age with a distinctive emphasis on the spatial dimen-

sion of ecological pattern and process �Turner et al.

2001; Wu and Hobbs 2002�. An important unifying

concept in dealing with heterogeneity and integrating

ecological and geographical sciences is scale. While

the term “scale” may refer to any one or combinations

of several concepts, including grain �or resolution,

support�, extent, lag �or spacing�, and cartographic

ratio �Wiens 1989; Lam and Quatrochi 1992;

Schneider 2001; Dungan et al. 2002�, in this paper it

refers only to “grain” �the spatial resolution of a map�

and “extent” �the map size, or “geographic scale” as

defined by Lam and Quatrochi 1992�.

The scale dependence of spatial heterogeneity has

been recognized in both geography and ecology for

decades. Two different but related connotations of

scale dependence of spatial heterogeneity may be

distinguished. The first implies that spatial heteroge-

neity exhibits various patterns at different scales, or
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patterns have distinctive “operational” scales �sensu

Lam and Quattrochi 1992� at which they can be best

characterized. Apparently, this perspective is consis-

tent with the concepts of characteristic scale and hi-

erarchy that have been prevalent in ecological

literature since the 1980s �Allen and Starr 1982; Allen

et al. 1984; O’Neill et al. 1986; Urban et al. 1987;

Wu and Loucks 1995; Wu 1999�. The second conno-

tation refers to the dependence of observed spatial

heterogeneity on the scale of observation and analy-

sis – often discussed in terms of scale effects on im-

age classification and spatial pattern analysis. Scale

effects have long been studied in human geography

as part of the modifiable areal unit problem or MAUP

– the problem in spatial analysis that occurs when

area-based data are aggregated �Openshaw 1984; Ar-

bia et al. 1996; Jelinski and Wu 1996; Wrigley et al.

1996; Marceau 1999�. MAUP includes two distinct

but related aspects: the result of statistical analysis is

affected by both the level of data aggregation or grain

size �so-called “scale problem”� and by alternative

ways of aggregating pixels at a given grain size �of-

ten called the “zoning problem” or “aggregation

problem”�. MAUP has frequently been discussed to-

gether with the so-called “ecological fallacy” �sensu

Robinson 1950� which refers to inappropriate extrap-

olation of statistical relationships from one scale to

another. Unfortunately, the term “ecological fallacy”

is misleading and can be irritating because the prob-

lem it refers to occurs across all natural and social

sciences whenever heterogeneity and nonlinearity ex-

ist and because the use of the term “ecological” here

is not at all scientifically rigorous. A more appropri-

ate term for this kind of scale-related problems may

be “spatial transmutation” �sensu O’Neill 1979; also

see King et al. 1991; Wu and Levin 1994�.

Scale effects on spatial pattern analysis may occur

in each of the following three situations: �1� chang-

ing grain size �or resolution� only, �2� changing ex-

tent only, and �3� changing both grain and extent. As

noted earlier, the modifiable areal unit problem

involves both the effect of altered grain size and the

way of this alteration. Similarly, there are also differ-

ent ways of changing extent: e.g., boxing out from the

center of a map or starting from one corner along a

diagonal direction. In general, much more research

has been done into the effects of changing grain size

�particularly in the context of MAUP� than those of

changing extent, and a quantitative understanding of

these two kinds of scale effects across different sys-

tems and methods is still lacking. Scale effects do not

necessarily have to be considered as problems

because they can be used for understanding the mul-

tiple-scale characteristics of landscapes �Jelinski and

Wu 1996; Wu et al. 2000; Wu et al. 2003�. In prin-

ciple, the relevant pattern is revealed only when the

scale of analysis approaches the operational scale of

the phenomenon under study �Allen et al. 1984; Wu

and Loucks 1995; Wu 1999�. In practice, however,

not all scale breaks revealed in multiscale analysis by

resampling data correspond to actual operational

scales or hierarchical levels due to inaccuracies

caused by the methods of data aggregation and

analysis �Wu et al. 2000; Hay et al. 2001�.

While most of the MAUP studies prior to the

1990’s focused on traditional statistical measures

�e.g., mean, variance, regression and correlation co-

efficients� and spatial interaction models, scale effects

have been increasingly studied using landscape met-

rics �or indices� in ecology, remote sensing, and ge-

ography in the past two decades �Meentemeyer and

Box 1987; Turner et al. 1989; Turner et al. 2001; Bian

and Walsh 1993; Moody and Woodcock 1994; Ben-

son and Mackenzie 1995; Wickham and Riitters

1995; Jelinski and Wu 1996; O’Neill et al. 1996; Qi

and Wu 1996; Wu et al. 2003�. These studies have

shed new light on the problems of scale effects in

pattern analysis as well as the multiscaled nature of

spatial heterogeneity. Yet, most of the existing stud-

ies that used landscape metrics considered only a few

indices with a narrow range of scales, and few have

gone beyond merely reporting the existence of scale

effects to explore their generalities across different

landscapes. Thus, although ecologists are well aware

that changing scale often affects landscape metrics,

scaling relations are yet to be developed.

To systematically explore the effects of changing

scale on pattern analysis, using simulated landscapes

with known structural characteristics is both neces-

sary and effective �Gardner et al. 1987; Amrhein

1995; Arbia et al. 1996; Hargis et al. 1998; Wu et al.

2000; Saura and Martinez-Millan 2001�. However,

comprehensive empirical studies using real landscape

data are needed because only such studies can tell us

what kinds of scaling relations may exist and how

variable or consistent they are in actual �not just

simulated� landscapes. Such information is indispens-

able for more in-depth and systematic investigations

using simulated or artificially constructed landscapes.

Therefore, this study was focused on data sets from

real landscapes, while our results from simulated

landscapes, which generally support findings here,
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will be reported elsewhere. We also note that,

although two general types of methods have been

used in landscape pattern analysis – spatial statistics

�including geostatistics� and pattern metrics, this pa-

per deals only with the second. Excellent reviews on

spatial statistical methods and their applications can

be found in Rossi et al. �1992�, Goovaerts �1997�, and

Fortin �1999�. This study was designed to address the

following specific questions: �1� How do changing

grain size and changing extent affect different land-

scape metrics for a given landscape? �2� How does

the behavior of various landscape metrics differ

among distinctive landscapes? �3� Are there general

scaling relations for certain landscape metrics that are

consistent across landscapes?

These questions need to be addressed using land-

scape metrics computed both at the entire landscape

level �taking account of all patch types altogether�

and at the class level �each patch type being consid-

ered separately�. Although many of the landscape-

and class-level metrics are mathematically similar,

their physical meanings are usually quite distinct �see

McGarigal and Marks 1995�. While the landscape-

level metrics are synoptic measures of the landscape

as a whole, the class-level metrics provide informa-

tion on each patch �or land cover� type in the land-

scape, which is necessary for most ecological or

planning considerations. Wu et al. �2003� examined

19 landscape-level metrics based on five landscape

data sets �4 of them used here in this study�. This pa-

pers focuses on 17 class-level metrics and compares

the scaling relations at the levels of the individual

patch type and the whole landscape.

Data and methods

Seventeen class-level landscape metrics were exam-

ined in this study: Class Area �CA�, Percent of Land-

scape �CA%�, Number of Patches �NP�, Patch

Density �PD�, Total Edge �TE�, Edge Density �ED�,

Largest Patch Index �LPI�, Mean Patch Size �MPS�,

Patch Size Standard Deviation �PSSD�, Patch Size

Coefficient of Variation �PSCV�, Landscape Shape

Index �LSI�, Mean Patch Shape Index �MPSI�, Area-

Weighted Mean Shape Index �AWMSI�, Double-Log

Fractal Dimension �DLFD�, Mean Patch Fractal Di-

mension �MPFD�, Area Weighted Mean Patch Fractal

Dimension �AWMFD�, and Square Pixel �SqP�. The

software package, FRAGSTATS 2.0 �McGarigal and

Marks 1995�, was used to compute the selected land-

scape metrics, with Square Pixel Index �Frohn 1998�

being added to the package by modifying the source

code.

Four land use and land cover maps with contrast-

ing spatial patterns were used for this study: �A� a

boreal forest landscape with 11 land use and land

cover types including various forest stands, disturbed

areas and water, �B� Minden landscape in the Great

Basin, USA with 15 land use and land cover types in-

cluding native arid plant communities, burned areas,

and urban and agricultural land uses, �C� Washoe

landscape in the Great Basin, USA with 11 land use

and land cover types most of which were shrublands,

and �D� Phoenix urban landscape with 24 land use

and land cover types, dominated by various urban and

agricultural land uses. The boreal forest landscape in

Canada showed little human disturbance, the two

Great Basin landscapes in Nevada exhibited moder-

ate urbanization and cultivation, and the metropolitan

Phoenix landscape was a highly urbanized environ-

ment. Land use and land cover types varied consid-

erably across these landscapes in terms of both the

number and the content of patch types. The spatial

resolution of all data sets was 30 by 30 meters, and

the spatial extent varied from 357 km2 �630�630

pixels� for the boreal landscape to 2025 km2

�1500�1500 pixels� for the Phoenix landscape. De-

tails of these study areas have been given elsewhere

�Wu et al. 2003; Luck and Wu 2002�.

To investigate the effects of changing grain size,

the spatial resolution of three landscape maps �Boreal,

Minden, and Phoenix� was systematically changed

from 1 by 1 to 100 by 100 pixels with the extent kept

constant, which was consistent with Wu et al. �2003�.

As the grain size increased, data were aggregated fol-

lowing the majority rule, which is one of the most

commonly used methods for aggregating categorical

data in ecology and remote sensing. Each new map,

with progressively larger grain size �e.g., 1�1, 2�2,

..., 100�100�, was created by directly aggregating the

original data set, instead of using a cumulative pro-

cedure that would introduce more errors. When the

grain size could not wholly divide the number of rows

or columns of the data set, the remainder of rows or

columns at the edge were excluded from the new

map. This omission of edge rows and columns did not

seem to be a problem as long as the extent/grain ratio

was sufficiently large. To investigate the effects of

changing extent, we systematically increased the ex-

tent of the maps diagonally starting from the north-
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west corner while keeping the grain size constant �Wu

et al. 2003�.

Results

Scaling relations with respect to changing grain size

With changing grain size through spatial aggregation,

the responses of the 17 class-level metrics fell into

two general groups: metrics showing consistent scal-

ing relations �Type I� and metrics showing unpredict-

able scaling behavior �Type II�. The first group was

further divided into those showing both consistent

and robust scaling relations �Type IA� and those

showing consistent but less robust scaling relations

�Type IB�. Note that the word “consistent” here refers

to the consistence of scaling relations between differ-

ent landscapes, whereas the word “robust” indicates

the similarity of scaling relations between different

patch types within the same landscape.

Figure 1 shows examples of how different metrics

responded to changing grain size for three study

landscapes in the form of scalograms, i.e., plots of

landscape metrics against scale �grain size or extent�.

Table 1 is a summary of the scaling relations and their

characteristics with respect to changing grain size. Of

the 17 metrics, 5 belonged to Type IA: Number of

Patches �NP�, Patch Density �PD�, Total Edge �TE�,

Edge Density �ED�, and Landscape Shape Index

�LSI�; and 7 to Type IB: Largest Patch Index �LPI�,

Square Pixel Index �SqP�, Mean Patch Size �MPS�,

Patch Size Standard Deviation �PSSD�, Patch Size

Coefficient of Variation �PSCV�, Area-Weighted

Mean Shape Index �AWMSI�, and Area-Weighted

Mean Fractal Dimension �AWMFD�. Type IA metrics

exhibited a power-law scaling relation which was

highly consistent and robust over a range of scales,

i.e.,

y � axb, a � 0, b � 0 �1�

where y is the value of a landscape metric, a and b

are constants, and�is the grain size expressed as the

number of pixels along a side.

Type IB metrics showed several different scaling

relations with a consistent “global pattern” between

different landscapes, but rather high “short-range

variations” between different patch types which may,

in part, have been caused by the low abundance of

some patch types. Specifically, AWMSI, AWMFD,

MPS, and PSCV followed a power-law scaling rela-

tion �Equation 1�, PSSD a linear function, and LPI a

logarithmic function of the form,

y � a ln x � b �2�

where y is the value of a landscape metric, a and b

are constants, and x is the grain size expressed as the

number of pixels along a side. SqP seemed to exhibit

two forms of scaling relations: a linear decreasing

function for dominant patch types and an exponential

decay function for less abundant patch types. The

simple parimeter/area ratio increased linearly for

most land cover types �not shown in Figure 1�.

Type II metrics included: Class Area �CA�, Percent

of Landscape �CA%�, Mean Patch Shape Index

�MSI�, Mean Patch Fractal Dimension �MPFD�, and

Double-Log Fractal Dimension �DLFD�. The values

of these indices varied unpredictably with changing

grain size, resulting in response curves of various

forms – relatively constant, monotonic changes, or

fluctuations. This suggested that these metrics were

highly sensitive to the specific patterns of the land-

scapes under study, and thus general scaling relations

were not possible to derive.

Not all 17 metrics are shown in Figure 1 due to

space limitation. Some metrics showed similar scalo-

grams because of mathematical similarity. For exam-

ple, CA and CA�%� showed exactly the same pattern

because CA�%� � CA/A, where A is the landscape

area which is a constant in the case of changing grain

size. For the same reason, NP and PD exhibited an

identical scaling relation, and so did TE and ED. As

discussed later, however, this apparently was not the

case with changing extent. On the other hand, MSI

and MPFD exhibited similar patterns in response to

both changing grain size and extent because of their

mathematical similarity:

MSI

MPFD
� �

i�1

N �0.25Pi

�ai
� ⁄ �

i�1

N �ln�0.25Pi�
ln�ai

� �3�

That is, while MSI is simply a perimeter-area ratio

normalized based on the square shape and averaged

over all patches, MPDF requires that both the

numerator and denominator be log-transformed be-

fore the summation for the entire class across the

landscape. However, the range of change for MPDF

was rather small �usually � 0.05 and not exceeding
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Figure 1. Examples of landscape metric scalograms with changing grain size: �A� a boreal forest landscape, �B� the Minden landscape, and

�C� the central Phoenix urban landscape. The lines in each scalogram represent different patch types �i.e., land use and land cover types�.

Landscape-level metrics �the thick black lines� are also plotted for comparison.
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0.1� in both cases of changing grain size and extent,

which made it less desirable for comparison. Simi-

larly, the scale response curves of AWMSI and AW-

MFD resembled each other because:

AWMSI ⁄ AWMFD � �
i�1

N ��0.25Pi

�ai
�

�ai

A
�� ⁄ �

i�1

N �ln�0.25Pi�
ln�ai

�ai

A
��

�4�

In this case, AWMFD seemed more preferable be-

cause it was bale to suppress somewhat the abrupt

large fluctuations that occurred with AWMSI, so that

a comparison between patch types became more fea-

sible.

Scaling relations with respect to changing extent

The responses of class-level metrics to changing ex-

tent could also be classified into two groups: Type I

metrics showing consistent and relatively robust scal-

ing relations and Type II metrics with unpredictable

scaling behavior �Table 2 and Figure 2�. Type I met-

rics included NP, TE, LSI, SqP, and CA, whereas the

other 12 belonged to Type II. NP, TE, and CA exhib-

ited a power law scaling relation that was consistent

between different landscapes but varied noticeably

between patch types within the same landscape. With

increasing extent, SqP increased rapidly initially and

then began to approach a maximum value, whereas

LSI tended to increase continuously. For relatively

abundant patch types, a logarithmic function for SqP

and a linear scaling function for LSI could be

obtained by regression. These trends seemed consis-

Table 1. Scaling relations of class-level metrics with respect to grainsize.

IA. Metrics showing consistent and robust scaling relations

Number of Patches �NP� Edge Density �ED�

Patch Density �PD� Landscape Shape Index �LSI�

Total Edge �TE�

Characteristics of the scaling relations:

Power law:

y�axb, a�0, b�0

where y is the value of a metric, a and b are constants, and�is the grain size expressed as the number of pixels along a side.

The scaling relation is consistent between patch types within the same landscape as well as among different landscapes.

IB. Metrics showing consistent, but less robust scaling relations

Largest Patch Index �LPI� Patch Size Standard Deviation �PSSD�

Square Pixel Index �SqP� Patch Size Coefficient of Variation �PSCV�

Mean Patch Size �MPS� Area-Weighted Mean Shape Index �AWMSI�

Area-Weighted Mean Fractal Dimension �AWMFD�

Characteristics of the scaling relations:

Power law �y�axb�: AWMSI, AWMFD, MPS, PSCV

Linear function �y�ax�b �: PSSD

Logarithmic function �y�alnx�b �: LPI

Linear or exponential decay: SqP

The scaling relations tend to be consistent among different landscapes, but the variability between patch types within the same landscape

is much greater than Type IA metrics. This between-patch type variability tends to decrease with the dominance of patch types.

II. Metrics exhibiting no consistent scaling relations

Class Area �CA� Mean Patch Fractal Dimension �MPFD�

Percent of Landscape �CA%� Double-Log Fractal Dimension �DLFD�

Mean Patch Shape Index �MSI�

Characteristics of the scaling relations:

No consistent scaling relations among different landscapes.

Response curves may take various forms: relatively constant, monotonic changes, or fluctuations.Response curves are sensitive to the spe-

cific pattern of the landscape, and thus do not show consistent patterns across different landscapes.
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tent among different landscapes, and the variability

between patch types tended to decrease with the in-

creasing abundance of patch types. The response

curves of Type II metrics showed no consistent scal-

ing patterns, and were highly dependent upon the

specifics of the landscapes.

Overall, the effects of changing extent on land-

scape metrics were much less predictable than those

of changing grain size. This was evident from two

facts: �1� the number of Type I metrics was much

smaller for changing extent than for changing grain

size �5 vs. 12�; and �2� Type I metrics for grain size

were less variable than those for extent between patch

types and among landscapes. Several differences be-

tween changing grain size and extent are noteworthy.

Unlike in the case of changing grain size, PD and ED

did not show any consistent scaling functions

although their behavioral patterns seemed to resemble

each other. As grain size increased, PSSD tended to

increase linearly, while PSCV declined and MPS in-

creased both in a power-law fashion. In contrast, as

extent increased, MPS changed unpredictably, but

with a much smaller magnitude than in the case of

changing grain size. Thus, PSSD and PSCV both

tended to increase in a similar way for most land

cover types �PSCV = PSSD/MPS�. This was most ob-

vious for the boreal landscape, in which the behav-

ioral patterns of PSSD and PSCV resembled each

other closely because MPS changed little over the

entire range of extent.

BecauseLSI�0.25TE⁄�TA �where TA is the total

area of the landscape�, LSI and TE behaved the same

way in response to changing grain size. However, in

the case of changing extent, if TE increases as a

power function �y�axb� with extent �measured as the

number of pixels on a side�, LSI should follow a scal-

ing function of the form,y�xb�1. Then, if b is close to

2, then LSI should behave nearly linearly. Our results

indeed showed that for most patch types LSI tended

to increase linearly, but with considerable variations.

The deviations of the observed patterns for LSI from

a linear function were attributable to the considerably

variable scale responses of TE. Also, LSI and SqP are

numerically related to each other, i.e.,LSI��1�

SqP��1. Thus, the response curves of LSI and SqP re-

flected this relationship. Both of them showed much

greater variations, and thus less predictability, be-

tween patch types and among landscapes in the case

of changing extent. Another interesting finding was

that DLFD, for most patch types, was unpredictable

and varied increasingly with increasing grain size, but

appeared to be relatively constant with continuing in-

crease in extent after initial fluctuations at smaller

scales. The latter was reminiscent of the notion that

Table 2. Scaling relations of class-level metrics with respect to extent.

I. Metrics showing consistent and relatively robust scaling relations

Number of Patches �NP� Square Pixel Index �SqP�

Total Edge �TE� Class Area �CA�

Landscape Shape Index �LSI�

Characteristics of the scaling relations:

Power law �y�axb, a�0, b�0�: NP, TE, CA

Logarithmic function �y�alnx�b �: SqP

Linear function �y�ax�b �: LSI

The general scaling relations are consistent among disparate landscapes, but vary considerably between patch types within the same land-

scape. This between-patch type variability tends to decrease with the dominance of patch types.

II. Metrics showing no consistent scaling relations

Percent of Landscape �CA%� Patch Size Coefficient of Variation �PSCV�

Patch Density �PD� Mean Patch Shape Index �MSI�

Edge Density �ED� Area-Weighted Mean Shape Index �AWMSI�

Mean Patch Size �MPS� Mean Patch Fractal Dimension �MPFD�

Largest Patch Index �LPI� Double-Log Fractal Dimension �DLFD�

Patch Size Standard Deviation �PSSD� Area-Weighted Mean Fractal Dimension �AWMFD�

Characteristics of scaling relations:

No consistent scaling relations among different landscapes.

Response curves may take various forms: relatively constant, monotonic changes, or fluctuations.

Response curves are sensitive to the specific pattern of the landscape, and do not show consistent patterns across different landscapes.
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Figure 2. Examples of landscape metric scalograms with changing extent: �A� a boreal forest landscape, �B� the Minden landscape, �C� the

central Phoenix urban landscape �Washoe landscape exhibited similar patterns, but was not shown here due to space limitation�. The lines in

each scalogram represent different patch types �i.e., land use and land cover types�. Landscape-level metrics �the thick black lines� are also

plotted for comparison. Note that for the ease of visualization, the second y-axis is used for landscape-level metrics and individual patch

types �lines with open circles� whose values are too large or too small as compared to the rest of the patch types �the bottom row�.
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landscapes may exhibit self-similarity over a finite

range of spatial extent �Milne 1991; Milne 1992; Lam

and Quatrochi 1992�.

Discussion

Comparing scaling relations of class- and

landscape-level metrics

In a related study, Wu et al. �2003� showed that the

responses of 19 landscape-level metrics to changing

grain size and extent could be categorized as three

general types: �1� Type I metrics exhibiting consistent

and robust scaling relations in the forms of linear,

power, or logarithmic functions over a range of

scales; �2� Type II metrics showing staircase-like re-

sponses with changing scale; and �3� Type III metrics

behaving erratically in response to changing scale and

with no consistent scaling relations among different

landscapes. In the case of changing grain size, 12

metrics belonged to Type I: NP, PD, TE, ED, LSI,

AWMSI, AWMFD, PSCV, MPS, SqP, PSSD, and

LPI; 3 to Type II: PR �Patch Richness�, PRD �Patch

Richness Density�, and SHDI �Shannon’s Diversity

Index�; and 4 to Type III: DLFD, CONT �Contagion�,

MPFD, and MSI. In the case of changing extent, the

number of Type I metrics reduced to 6: NP, TE, SqP,

PRD, SHDI, and LSI; the number of Type II metrics

was 5: PR, PSSD, PSCV, AWMSI, and AWMFD; and

the number of Type III metrics increased to 8: PD,

ED, DLFD, MPS, LPI, CONT, MSI, and MPFD. In

addition, Wu et al. �2003� showed that the starting

position and the direction of changing extent could

also significantly influence the scaling patterns for

certain landscape metrics.

In this study, four landscape-level metrics �PR,

PRD, SHDI, and CONT�, not applicable at the level

of individual patch types, were not used, and the ab-

solute and relative areas of each patch type �i.e., class

area, CA and percent of landscape, CA%� were

added. By comparing the class-level curves �thin

lines� with the landscape-level curve �thick line� in

each landscape metric scalogram in Figure 1, Figure

2, the similarities and differences between them be-

come apparent. Table 3 is a summary of the compari-

Table 3. Comparison of scaling relations of class- and landscape-level metrics.

Types of Scaling Relations

Grain Size Extent

Landscape Metrics Class-Level Landscape-Level Class-Level Landscape-Level

Number of Patches power law power law power law power law

Patch Density power law power law unpredictable unpredictable

Total Edge power law power law power law power law

Edge Density power law power law unpredictable unpredictable

Landscape Shape Index power law power law linear linear

Area-Weighted Mean Shape Index power law power law unpredictable staircase

Area-Weighted Mean Fractal Dimension power law power law unpredictable staircase

Mean Patch Size power law power law unpredictable unpredictable

Patch Size Coefficient of Variation power law power law unpredictable staircase

Patch Size Standard Deviation linear linear unpredictable staircase

Square Pixel linear or exponential linear logarithmic logarithmic or power

law

Largest Patch Index logarithmic logarithmic or power

law

unpredictable unpredictable

Mean Patch Shape Index no scaling relation no scaling relation unpredictable unpredictable

Double-Log Fractal Dimension unpredictable unpredictable unpredictable unpredictable

Mean Patch Fractal Dimension unpredictable unpredictable unpredictable unpredictable

Patch Richness n/a staircase n/a staircase

Patch Richness Density n/a staircase n/a power law

Shannon’s Diversity Index n/a staircase n/a logarithmic

Contagion n/a unpredictable n/a unpredictable

Class Area unpredictable n/a power law n/a

Percent of Landscape unpredictable n/a linear or power

law

n/a
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son of scaling relations between the class and

landscape levels. The same 15 metrics used at both

the class and landscape levels showed rather similar

scaling patterns in terms of both the specific metrics

and the scaling relations. In general, effects of chang-

ing grain size were more predictable than changing

extent in that more metrics showed consistent scaling

relations across different landscapes in the former

case. However, it must be emphasized here that arti-

facts due to data aggregation and consequent analysis

may become overwhelming for classes with ex-

tremely low abundance. Because of the high between-

patch type variability at the class level, the staircase-

like responses of such metrics as AWMSI, AWMFD,

PSCV, and PSSD with respect to changing extent ap-

peared consistent only at the landscape level.

It is important to note that this study only used one

of the several methods of aggregating spatial data –

the majority rule method. Although this may be the

most commonly used one in ecological and remote

sensing applications, it would be interesting to com-

pare how different aggregation methods affect the

characteristics of landscape metric scalograms. A

number of studies have shown that different aggrega-

tion methods may have significant effects on spatial

model evaluation, land cover classification, and land-

scape pattern analysis �Costanza 1989; Justice et al.

1989; Bian and Butler 1999; Turner et al. 2001�.

Thus, aggregation methods may also affect scaling

relations of landscape metrics.

Scale multiplicity of landscapes and multiscale

pattern analysis

The relationship between pattern and scale has been

a central issue in ecology and geography �MacArthur

1972; Meentemeyer 1989; Levin 1992; Wu and

Loucks 1995�. Pattern is rooted in spatial heterogene-

ity which in turn stems from variations of spatial de-

pendence. The first law in geography – “Everything

is related to everything else, but near things are more

related than distant things” �sensu Tobler 1970� – is

essentially a law of spatial autocorrelation. However,

heterogeneity manifests itself as patchiness and gra-

dients intertwined over a wide range of spatial scales.

Thus, scale dependence is as essential a property of

heterogeneity as is spatial dependence. This has led

to the claim of “the second law in geography” �sensu

Arbia et al. 1996�: “Everything is related to every-

thing else, but things observed at a coarse spatial

resolution are more related than things observed at a

finer resolution.” This is simply a law of scale depen-

dence of correlation, which was developed based on

both empirical and analytical results that the correla-

tion between variables increases while variance

decreases as the resolution �grain size� of spatial data

is increased �Amrhein 1995; Arbia et al. 1996; Wu et

al. 2000�. Of course, not only are correlation coeffi-

cients and variance scale dependent, so are a variety

of landscape indices, statistical methods, and mathe-

matical models as well.

Many, if not most, landscapes are hierarchically

structured �Urban et al. 1987; Woodcock and Har-

ward 1992; Wu and Loucks 1995; Reynolds and Wu

1999; Wu 1999�. Even before hierarchy theory

became an influential perspective in ecology and be-

fore multi-scale pattern analyses became commonly

practiced in earth sciences, the eminent ecologist

Robert MacArthur �1972� already unambiguously re-

cognized the scale multiplicity and hierarchical nature

of landscapes, as he said: “A real environment has a

hierarchical structure. That is to say, it is like a

checkerboard of habitats, each square of which has,

on closer examination, its own checkerboard structure

of component subhabitats. And even the tiny squares

of these component checkerboards are revealed as

themselves checkerboards, and so on. All environ-

ments have this kind of complexity, but not all have

equal amounts of it.”

To understand the structure and functioning of

landscapes, therefore, the scale dependence of spatial

heterogeneity must be quantified. Recent develop-

ments in landscape ecology have provided a new im-

petus as well as a suite of innovative theories and

methods for achieving this goal �Turner et al. 2001;

Wu and Hobbs 2002�. To identify the characteristic

scales or hierarchical levels of landscape structure,

two general approaches are available. The first is to

use statistical methods that are inherently multi-

scaled, such as semivariance analysis �Burrough

1995�, wavelet analysis �Bradshaw and Spies 1992�,

spectral analysis �Platt and Denman 1975�, fractal

analysis �Milne 1997�, lacunarity analysis �Plotnick et

al. 1993�, and scale variance �Moellering and Tobler

1972; Wu et al. 2000�. The second is, as illustrated in

this study, to construct scalograms using simple mea-

sures such as landscape metrics computed progres-

sively over a series of scales and then to explore

scaling functions. Spatial statistical methods have

been known for their ability to detect characteristic

scales, and, in particular, semivariance analysis has

been frequently used for this purpose. However, re-
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cent studies have indicated that in semivariograms of

real landscapes fine-scale variability can be

“squeezed” by broad-scale variability, so that multi-

scale structure may be obscured �Meisel and Turner

1998; Wu et al. 2000�. In addition, the results of

semivariance analysis and their interpretations can

also be significantly affected by changing the grain

size, lag, and extent of the data sets �Dungan et al.

2002�.

Can landscape metrics detect hierarchical struc-

tures of landscapes when repeatedly computed at

multiple scales? Apparently, not all of them can. Our

earlier study showed that progressively increasing

extent allowed certain landscape metrics �e.g., PSCV,

PSSD, MPS, AWMSI, AWMFD� to reflect some dra-

matic shifts in the average properties of the landscape

concerning the size and shape of patches �Table 3; Wu

et al. 2003�. Other studies also demonstrated that

simple variance and correlation measures were able

to detect scale breaks in real and artificial landscapes

when calculated at different grain sizes �e.g., O’Neill

et al. 1991; Wu et al. 2000�. Nevertheless, there are

at least three reasons for the lack of scale breaks in

the landscape metric scalograms in this and other

similar studies. First, when grain size is increased al-

ways in a square shape following the majority rule,

the hierarchical structure in real landscapes may be

distorted or masked because of the high variability in

patch size, shape and orientation �Wu et al. 2000�.

This problem may be ameliorated by a “patch-based”

or “object-specific” aggregation scheme �Hay et al.

2001�. Second, different landscape metrics represent

different aspects of landscape structure, and for a

given landscape not all of them exhibit hierarchical

structure although they may all be scale-dependent.

Third, even for landscape attributes that do posses hi-

erarchical structure, be it structural or functional, they

may form multiple hierarchies in the same landscape

which may not correspond to each other precisely in

terms of spatial and temporal scales �Wu 1999�.

While the first reason is primarily methodological, the

last two involve both the theory of hierarchical sys-

tems and the understanding of the systems under

study.

Spatial allometry and landscape pattern

It is intriguing that several metrics were found to ex-

hibit power scaling relationships which were ostensi-

bly consistent between different classes within the

same landscape and among different landscapes.

Other measures of landscape pattern that were not

considered in this study may also scale spatially in a

power law fashion. For example, Costanza and Max-

well �1994� found that with increasing spatial resolu-

tion �i.e., decreasing grain size�, the spatial auto-

predictability �the reduction in uncertainty about the

state of a pixel in a scene given knowledge of the sate

of adjacent pixels in that scene� increases and spatial

cross-predictability �the reduction in uncertainty

about the state of a pixel in a scene given knowledge

of the state of corresponding pixels in other scenes�

decreases both linearly on a log-log scale. From this

study, it is evident that power-law scaling is more of-

ten and more consistent in the case of changing grain

size than changing extent. It is attempting to relate

these landscape metric scaling relations to other

power laws in biological and ecological systems –

particularly, body-size allometry �biological attributes

scale with body size following a power law; e.g.,

Brown et al. 2000� and spatial allometry �ecological

attributes scale with ecosystem size or spatial extent

following a power function; e.g., Schneider 2000�.

The power, elegance, and mystery of allometric scal-

ing all lie in the simple equation, y�axb, where the

dependent variable y is a biological or an ecological

variable of interest,�is mostly body size in traditional

biological allometry or a spatial scale measure �e.g.,

grain, extent, or their ratio�, a is the normalization

constant, and b is the scaling exponent. Thus, the

power laws of landscape metrics may be considered

as an extension of spatial allometry.

Do the power scaling relations in this study neces-

sarily imply that a single underlying process is

responsible for the landscape attributes these metrics

represent? Our knowledge of these rather different

landscapes suggests that a number of natural and an-

thropogenic processes, operating on distinctive spatial

and temporal scales, have generated these landscape

patterns. Does this, then, suggest that multiplicative

processes can give rise to seemingly scale-invariant

landscape patterns with simple allometric scaling re-

lations and no characteristic scales? These are

certainly intriguing questions that still await future

research. Although power laws have frequently been

related directly to, or cast in the light of, self-similar-

ity, scale-invariance, and universality, such interpre-

tations need to be made with caution. Power laws

may arise from different processes, either internal or

external to the system under consideration �Jensen

1998; Plotnick and Sepkoski 2001�, and they usually
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hold only over a finite ranges of spatiotemporal scales

�Wiens 1989; Milne 1991; Milne 1992; Lam and

Quatrochi 1992; Wu 1999�. More in-depth discus-

sions on these issues as well as other scaling theories

and methods are given in Wu et al. �2004�.

Conclusions

Landscape metrics have been widely used in ecologi-

cal and geographical studies and provided valuable

insight into the structural characteristics of complex

landscapes. However, the lack of a comprehensive

understanding of the scale sensitivity of these metrics

seriously undermines their interpretation and useful-

ness. This study has systematically investigated how

landscape metrics respond to changing grain size and

extent, allowing for exploration of general scaling re-

lations and idiosyncratic behaviors.

The results of this study showed that changing

grain size and extent had significant effects on both

the class- and landscape-level metrics. Although the

landscapes under study were quite different in both

the composition and configuration of patches, the ef-

fects of changing scale fell into two categories

�simple scaling functions and unpredictable� for the

class-level metrics, and three categories for the land-

scape-level metrics �simple scaling functions, stair-

case-like scaling behavior, and unpredictable�. Over-

all, more metrics showed consistent scaling relations

with changing grain size than with changing extent at

both the class and landscape levels – indicating that

effects of changing spatial resolution are generally

more predictable than those of changing map sizes.

While the same metrics tended to behave similarly at

the class level and the landscape level, the scale re-

sponses at the class level were much more variable.

These results appear robust not only across different

landscapes, but also independent of specific map

classification schemes.

This study corroborates the increasingly recog-

nized notions: there is no single “correct” or “opti-

mal” scale for characterizing spatial heterogeneity,

and comparison between landscapes using pattern in-

dices must be based on the same spatial resolution

and extent. In addition, these results may provide

practical guidelines for scaling of spatial pattern. For

example, landscape metrics with simple scaling rela-

tions reflect those landscape features that can be ex-

trapolated or interpolated across spatial scales readily

and accurately using only a few data points. In con-

trast, unpredictable metrics represent landscape fea-

tures whose extrapolation is difficult, which requires

information on the specifics of the landscape of con-

cern at many different scales. Finally, to quantify

spatial heterogeneity using landscape metrics, it is

both necessary and desirable to use landscape metric

scalograms, in stead of single-scale values. Indeed, a

comprehensive empirical database containing pattern

metric scalograms and other forms of multiple-scale

information of diverse landscapes is crucial for

achieving a general understanding of landscape pat-

terns and developing spatial scaling rules.
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