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4 School of Mathematics and Systems Science, Beihang University, 100191 Beijing, P.R. China

Received 12 January 2010 / Received in final form 19 July 2010
Published online 6 December 2010 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2010

Abstract. We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world
networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium
and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is
determined by the number of non-blocked ion channels, which depends on the fraction of working ion
channels and the membrane patch size with the assumption of homogeneous ion channel density. We find
that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of
channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks;
in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise,
sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover,
we declare that the observed phenomena are independent of the rewiring probability.

1 Introduction

In neuronal systems, information processing usually takes
place in a noisy environment. Noise in neuronal system
arises from many different sources, such as the quasi-
random release of neurotransmitters by the synapses, ran-
dom synaptic input from other neurons, and the random
switching of ion channels. The first two sources are consid-
ered to be synaptic noise, while the last is acknowledged as
channel noise. Synaptic noise is believed to be the domi-
nant source of membrane potential fluctuations in neurons
and can have a strong influence on their integrative prop-
erties [1]. The channel noise, because contributions of the
inherently stochastic nature of voltage-gated ion channels
to neuronal noise levels are widely assumed to be minimal,
is frequently ignored when a large number of ion channels
is involved. However, when the number of ion channels is
moderate, channel noise may have significant impacts on
the neuronal dynamics, as indicated both by experimen-
tal [2,3] and theoretical [4,5] studies.

The number of ion channels is determined by two fac-
tors, i.e. the channel density and the size of the mem-
brane patch. Furthermore, the intensity of channel noise
is mainly determined by the number of working ion chan-
nels participating in the generation of action potentials.
Therefore, discussing the effects of the number of work-
ing ion channels on the neuronal dynamics can help us
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to reveal the role of channel noise in neuronal systems.
Experimentally, for a given membrane patch size, tox-
ins such as tetrodotoxin (TTX) and tetraethylammonium
(TEA) allow to reduce the number of working sodium
or potassium ion channels, respectively [6]. It is also
possible to examine the effects of changing the number
of specific working ion channels on neuronal dynamics
based on computational models. In this context, Schmid
et al. [7,8] discussed the spiking activity of a single stochas-
tic Hodgkin-Huxley (HH) model. They found that the
spiking regularity of the single stochastic HH neuron can
be increased or decreased by blocking some portion of
either potassium or sodium ion channels. Then, Gong
et al. [9] extended the works of Schmid et al. [7,8] by
studying collective spiking regularity of an array of bi-
directionally coupled stochastic HH neurons. Through nu-
merical simulations, they found that sodium or potassium
ion channel blocking can either enhance or reduce the
collective spiking regularity. Additionally, Lago-Fernández
et al. [10] investigated the role of different connectivity
regimes on the dynamics of a network of HH neurons.
They showed that in order to provide fast response, which
is characteristic of random topologies, and coherence os-
cillations, which are more evident in regular topologies, a
small-world (SW) topology is required. Thus, SW topol-
ogy is a very important and meaningful network structure
in neuronal systems. Considering this, Ozer et al. [11]
extended the works of Schmid et al. [7,8] and Gong
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et al. [9] by using Newman-Watts SW network models
as the underlying interaction topology between neurons,
and showed that there exists an optimal faction of short-
cut links between physically distant neurons, as well as
an optimal intensity of intrinsic noise, which warrant an
optimal collective spiking regularity.

As we know, SW networks have two distinct character-
istics, one is that the normalized characteristic path length
between nodes is small (i.e. comparable with that of a ran-
dom network), and the other is that the normalized clus-
tering coefficient is still large (i.e. comparable with that
of a regular lattice). Watts-Strogatz [12] and Newman-
Watts [13] models are two typical models of SW networks.
These two types of SW network models can be generated
from a ring lattice with connections between neighbors.
For Watts-Strogatz models, the final topology is achieved
by rewiring each link at random with a probability p, re-
sulting in either a regular (p = 0), random (p = 1) or
SW networks (0 < p < 1) [12]. While for Newman-Watts
models, the random links are added between pairs of non-
adjacent-vertices chosen at random [13]. Thus, we can see
that Watts-Strogatz model has the same number of con-
nections as the original network, while the new long-range
random edges added in Newman-Watts model increase the
total number of connections from that of the original net-
work.

Our aim in this paper is to further extend the study
about the impact of ion channels on neuronal dynamics by
using Watts-Strogatz models as the network topology and
studying firing coherence of the neuronal network instead
of collective spiking regularity [9,11]. In fact, we investi-
gate the effects of ion channel noises on firing coherence of
a Watts-Strogatz SW neuronal network by controlling the
fractions of working sodium or potassium ion channels,
and the membrane patch size. We thus proceed with pre-
senting the mathematical model and the network topol-
ogy presently in use. Subsequently we describe the main
results and summarize the paper.

2 Neuronal network model

HH neurons have been frequently employed as local
neuronal models in discussing the dynamics of neuronal
systems [7–11,14–22]. In this paper, we also apply HH neu-
rons, but a stochastic version of them, to build up a neu-
ronal network. The stochastic HH neuronal model is an
extension of the original HH model [23] by taking into ac-
count the fluctuations of the numbers of open sodium and
potassium ion channels around the corresponding mean
value [24,25]. The dynamics of the studied neuronal net-
work is described by the following set of ordinary differ-
ential equations:

C
dVi

dt
= −GNa(mi, hi)(Vi − VNa) − GK(ni)(Vi − VK)

− GL(Vi − VL) + D
∑

j

εij(Vj − Vi), (1)

dmi

dt
= αmi(Vi)(1 − mi) − βmi(Vi)mi + ξmi(t), (2)

dhi

dt
= αhi(Vi)(1 − hi) − βhi(Vi)hi + ξhi(t), (3)

dni

dt
= αni(Vi)(1 − ni) − βni(Vi)ni + ξni(t), (4)

where 1 ≤ i ≤ N , with N being the system size. C =
1 μF cm−2 is the capacity of the cell membrane, and
VNa = 50.0 mV, VK = −77 mV and VL = −54.4 mV
are the reversal potentials for the sodium, potassium and
leakage currents, respectively. While the leakage conduc-
tance is assumed to be constant, GL = 0.3 mS cm−2, the
potassium and sodium conductance read as follows

GNa(mi, hi) = gmax
Na xNam

3
i hi, GK(ni) = gmax

K xKn4
i , (5)

where gmax
K = 36 mS cm−2 and gmax

Na = 120 mS cm−2 de-
note the maximal conductance (when all the channels are
open). The factor xK and xNa (0 ≤ xK, xNa ≤ 1) are the
fractions of working, i.e. non-blocked ion channels, to the
overall number of potassium and sodium ion channels [24],
respectively. xNa and xK are assumed to be equal for all
the neurons, i.e. each neuron has the same number of non-
blocked sodium or of non-blocked potassium ion channels.
D is the coupling strength of electrically coupled term∑

j εij(Vj − Vi), and assumed to be constant. D is taken
as 1.0 throughout this paper. The coupling matrix ele-
ment εij = 1 if neurons i and j are connected, and zero
otherwise. Here the coupling matrix is assumed to be sym-
metric, i.e., εij = εji (i, j = 1, . . . , N).

Equations (2)–(4) show the variations of the gating
variables mi, hi and ni, which represent the fractions
of sodium channel activation, sodium channel inactiva-
tion and potassium channel activation, respectively. And
αyi(Vi) and βyi(Vi) (yi = mi, hi, ni) are the voltage-
dependent transition rates, which are given explicitly by
the expressions [23]:

αmi(Vi) =
0.1(Vi + 40)

1 − exp

[
− (Vi + 40)

10

] , (6a)

βmi(Vi) = 4.0exp
[
− (Vi + 65)

18

]
, (6b)

αhi(Vi) = 0.07exp
[
− (Vi + 65)

20

]
, (6c)

βhi(Vi) =
{

1 + exp

[
− (Vi + 35)

10

]}−1

, (6d)

αni(Vi) =
0.01(Vi + 55)

1 − exp

[
− (Vi + 55)

10

] , (6e)

βni(Vi) = 0.125exp
[
− (Vi + 65)

80

]
. (6f)

Moreover, ξmi(t), ξhi(t), ξni (t) are the channel noises.
Here, we assume that they are independent and have sta-
tistical properties of Gaussian white noise. The first-order
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(a) (b)

Fig. 1. Examples of considered network topologies. For clarity
regarding k and p only 25 vertices are displayed in each panel.
(a) Regular ring characterized by p = 0 with periodic bound-
ary conditions. Each vertex is connected to its k = 6 nearest
neighbors. (b) Realization of small-world topology via random
rewiring of a certain fraction p of links (in this case 6 out of
all 150 were rewired, hence p = 0.04).

moment 〈ξmi(t)〉, 〈ξhi (t)〉, 〈ξni (t)〉 is set as 0. The noise
correlations have the following form:

〈ξmi(t)ξmi(t
′
)〉 =

2
NNaxNa

αmi(Vi)βmi(Vi)
αmi(Vi) + βmi(Vi)

δ(t − t
′
),

(7a)

〈ξhi(t)ξhi(t
′
)〉 =

2
NNaxNa

αhi(Vi)βhi(Vi)
αhi(Vi) + βhi(Vi)

δ(t − t
′
),

(7b)

〈ξni(t)ξni (t
′
)〉 =

2
NKxK

αni(Vi)βni(Vi)
αni(Vi) + βni(Vi)

δ(t − t
′
), (7c)

where NNa, NK indicate the number of sodium and potas-
sium ion channels on an excitable membrane patch, re-
spectively. While the overall numbers of working potas-
sium and sodium ion channels are re-scaled by xNa and
xK, respectively, in order to disregard the blocked channels
which do not contribute to the channels noise. With an
assumption of homogeneous ion channel densities, ρNa =
60 μm−2 and ρK = 18 μm−2, the ion channel numbers
are given by NNa = ρNaS, and NK = ρKS, where S is
the size of the membrane patch. When S is large the
stochastic effects related to the channel noise are negli-
gible due to large numbers of ion channels, and the intrin-
sic channel noise appearing in equations (2)–(4) for gat-
ing variables vanishes. Accordingly, the stochastic model
then approaches the deterministic HH version which takes
channel-blocks into account in the sodium and potassium
conductances [7]. However, when the number of ion chan-
nels (or the membrane patch size S) is small, stochas-
tic effects of channel noise could have some significant
influences on the neuronal dynamics [3,7–9,11,17–20,26].
Furthermore, numerical integration of equations (1)–(7) is
carried out by an explicit Euler method with a time step
of 0.001.

Underlying interaction topology for HH neurons is
taken as Watt-Strogatz network [12]. The generation of
the Watt-Strogatz network starts from a regular ring with
periodic boundary conditions comprising N vertices, each
vertex bidirectionally connecting to its k nearest neigh-
bors (see Fig. 1a), and subsequently all the existing con-
nections are randomly rewired with probability p (see
Fig. 1b). In this paper, N and k are taken as 100 and 8,

Fig. 2. (Color online) Characteristic path length L and the
clustering coefficient C as a function of the rewiring probabil-
ity p in Watts-Strogatz networks with N = 100 and k = 8.
Displayed values are normalized with the characteristic path
length and the clustering coefficient at p = 0.

respectively. Considering that the resulting network may
not have small-world properties for 0 < p < 1, we calcu-
late the characteristic path length L(p) and the clustering
coefficient C(p) in dependence on the rewiring probability
p, as shown in Figure 2. According to Figure 2, we can see
that there is an interval p ∈ [0.05, 0.1], in which the gen-
erated networks have prominent small-world properties.

3 Results

In this paper, we aim to discuss the effects of channel
noise on firing coherence of the studied neuronal network.
Here, we consider sodium and potassium channel noise. As
shown by equation (7), the intensity of sodium(potassium)
channel noise is determined mainly by the total number of
non-blocked channels, which equals NNaxNa = SρNaxNa

(NKxK = SρKxK). Because ρNa, ρK are assumed to be
constants, thus, we take the fractions xNa, xK and the
membrane patch size S as control parameters to inves-
tigate the effects of channel noise on firing coherence of
the studied neuronal network.

The population coherence measure κ is applied to
quantify firing coherence of the neuronal network. It is de-
fined as an average of the normalized cross-correlation of
all neuron pairs [27–29]. The normalized cross-correlation
κij(τ) of neuron i and neuron j is defined as

κij(τ) =

m∑

l=1

Yi(l)Yj(l)

√√√√
m∑

l=1

Yi(l)
m∑

l=1

Yj(l)

, (8)

where τ is a time bin, by which a long time interval
T is divided into small bins. τ is chosen to make sure
that there is no or only one spike in each time bin.
{Yi(l), l = 1, 2, . . . , m} (here m = T/τ) is a spiking event
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train with Yi(l) = 1 if the onset of a spike occurred at the
lth time bin, otherwise Yi(l) = 0. For the currently stud-
ied stochastic HH neuron, τ is set as 1 ms. Accordingly,
the population coherence measure κ can be expressed as

κ =
1

N(N−1)
2

N∑

i,j=1;i�=j

κij(τ). (9)

We can see that κ is between 0 and 1, and large κ indi-
cates high coherence of the neuronal firings. The measure
κ has also been used to quantify synchronization of fir-
ing activities of neuronal networks [21,22,30]. Moreover,
if the neuronal network does not generate spikes, there is
no much meaning in asking questions about firing coher-
ence. Thus, we should calculate the mean firing rate of
the studied neuronal network to ensure neurons inside the
neuronal network do generate spikes. The mean firing rate
of the neuronal network is defined as

r =

〈
1
N

N∑

i=1

θ[Vi(t) − Vth]

〉

T

. (10)

θ(x) is a heaviside function with θ(x) = 1 if x ≥ 0 and θ =
0 if x < 0. The bracket 〈〉 indicates the average over the
whole time span T . Vth = −20.0 mV is the firing threshold
determined by the action potential of HH neuron. And the
results presented below were obtained as averages over 10
independent realizations of the network.

Variations of the population coherence measure κ with
respect to the fractions of working sodium ion channels
xNa are depicted in Figure 3a. Inset shows variations of
the mean firing rate r with respect to xNa accordingly.
From the inset, we can see that r = 0 when xNa ≤ 0.2
and r > 0 when xNa > 0.2 for various xK. This implies
that more than 20% sodium ion channels should be in-
volved to excite the currently discussed neuronal network.
For xNa > 0.2, the population coherence κ increases with
xNa increasing from 0.2 to 1.0, as exhibited in Figure 3a.
Namely, firing coherence of the neuronal network is en-
hanced by the fraction of working sodium ion channels
xNa. Because the intensity of sodium channel noise de-
creases as xNa increasing, thus, increasing the intensity of
sodium channel noise will make the population coherence
decrease. In other words, sodium channel noise reduces
firing coherence of the studied neuronal networks. Mean-
while, variations of the population coherence measure κ
with respect to the fractions of working sodium ion chan-
nels xK are depicted in Figure 3b. Inset shows variations of
the mean firing rate r with respect to xK accordingly. As
shown in Figure 3b, the mean firing rate r and the pop-
ulation coherence κ both decrease with xK. This means
that increasing the intensity of potassium channel noise
could increase the coherence of neuronal firings, which is
contrary to the above obtained results for sodium chan-
nel noise. Thus, with the intensity of channel noise in-
creasing, firing coherence of neuronal networks can be ei-
ther enhanced or reduced, depending on the source of the
channel noise-sodium channel noise reduces the firing co-
herence while potassium channel noise enhances it.

Fig. 3. (Color online) Variations of the population coherence
measure κ as a function of the fraction of working sodium ion
channels xNa for various values of xK (a) and potassium ion
channels xK for various values of xNa (b). Insets show variations
of the mean firing rate r with respect to xNa (a) and xK (b).
Here the membrane patch size S is taken to be 1.0.

In the following, we discuss effects of membrane patch
size S on firing coherence of the studied neuronal net-
work for various xNa with non-blocked potassium chan-
nels (i.e., xK = 1.0, shown in Fig. 4a) and various xK with
non-blocked sodium channels (i.e., xNa = 1.0, shown in
Fig. 4b). From the insets of Figures 4a and 4b, it can be
seen that the mean firing rate r decreases to zero when
S becomes large enough. Here we discuss the variations
of κ with respect to S in the interval (0, 1], within which
r is larger than 0, see the insets of Figures 4a and 4b.
As shown in equation (7), increasing the membrane patch
size S reduces intensities of both sodium and potassium
channel noises. According to the results obtained above,
reducing sodium channel noise intensity leads to increas-
ing of firing coherence, however, reducing potassium noise
intensity results in decreasing of it. Given this competi-
tion between these two different effects, it is found that
sodium channel noise plays a dominated role and causes
an increase in the population coherence with respect to S,
see Figure 4.

Finally, in order to investigate whether the obtained
results is dependent on the rewiring probability p, we cal-
culate the population coherence κ with respect to xNa,
xK and S for various rewiring probability p, respectively.
From Figures 5a–5c, we can see that κ increases with xNa
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Fig. 4. (Color online) Variations of the population coherence
measure κ as a function of the membrane patch size S for vari-
ous fractions of working sodium ion channels xNa with xK = 1.0
(a) and potassium ion channels xKxNa = 1.0 (b). Insets show
variations of the meaning firing rate r with respect to S. Here
the rewiring probability p is taken to be 0.05.

and S, while decreases with xK for various rewiring prob-
ability p. This is consistent with the above obtained re-
sults: (i) increasing the intensity of sodium channel noise
reduces firing coherence of the studied neuronal networks,
contrarily, increasing the intensity of potassium channel
noise enhances it, see Figures 5a and 5b; (ii) compared
with potassium channel noise, sodium channel noise plays
a dominant role in affecting firing coherence of the stud-
ied neuronal network, see Figure 5c. Thus, the obtained
results in this paper are independent of the rewiring prob-
ability p.

4 Summary

We have studied the effects of intrinsic channel noise on
firing coherence of Watts-Strogatz small-world networks
that were populated by stochastic HH neurons. The in-
tensity of channel noise is determined by the fraction of
working ion channels, the membrane patch size and the
ion channel density. In this paper, we assume that the
ion channel density is homogeneous on the membrane
patches and discuss the effects of channel noise by con-
trolling the fractions of working ion channels xNa and xK

separately, as well as the membrane patch size S. Our

Fig. 5. (Color online) Variations of the population coherence
measure κ as a function of the fraction of working sodium and
potassium ion channels xNa, xK are shown in (a) and (b), for
various rewiring probability p. Here the membrane patch size S
is taken to be 1.0. And xK = 1.0 in (a) while xNa = 1.0 in (b).
Variations of the population coherence measure κ as a function
of the membrane patch size S for various p is shown in (c) with
xNa = xK = 1.0. Insets are the corresponding variations of the
mean firing rate r.

results indicate that firing coherence is reduced with in-
creasing intensity of the sodium channel noise, while on
the other hand, it is enhanced with increasing intensity
of the potassium channel noise. Thus, firing coherence of
the neuronal network can be either enhanced or reduced,
depending on the source of channel noises. In other words,
sodium and potassium channel noise have destructive and
constructive effects on firing coherence, respectively. By
controlling the membrane patch size S with the fractions
xNa, xK fixed, we show that sodium channel noise plays
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a dominant role in affecting firing coherence of the neu-
ronal networks. Furthermore, we show that the obtained
results are independent of the rewiring probability p of the
Watts-Strogatz small-world networks.

The study of firing coherence is vital for several neu-
ronal systems. It has been revealed that neurons can, in
a statistical sense, be highly sensitive to the correlations
of their input spikes [31]. Correlated firing activities have
been found to be important for cortical processes, such as
expectation [32] and attention [33]. In this paper, we show
that ion channel noises have prominent impacts on firing
coherence of the neuronal network, which is averaged over
cross-correlation between pairs of neurons. Thus, our re-
sults obtained in this paper extend the studies of noise
effects on firing correlations, and may have some impor-
tant implications when investigating the interactions be-
tween correlated firing activities and cognitive behaviors
in a noisy environment.
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