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Chloroplasts are the organelles that perform energy transformation in plants. The normal

physiological functions of chloroplasts are essential for plant growth and development.

Chilling is a common environmental stress in nature that can directly affect the

physiological functions of chloroplasts. First, chilling can change the lipid membrane

state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis

declines, and excess reactive oxygen species (ROS) are produced. On one hand,

excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS

also represent a stress signal that can alter gene expression in both the chloroplast

and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and

promote plant adaptation to low temperatures. Furthermore, plants assume abnormal

morphology, including chlorosis and growth retardation, with some even exhibiting

severe necrosis under chilling stress. Here, we review the response of chloroplasts to

low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis,

and chloroplast development to elucidate the processes involved in plant responses

and adaptation to chilling stress.
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INTRODUCTION

Chloroplasts develop from proplastids under different leaf development contexts in monocots and
dicots. Chloroplasts have a double membrane envelope that encloses the stroma and thylakoids.
As plant organelles, chloroplasts are sensitive to changes in environmental conditions, and they
can react quickly – within a few minutes – by movement. Chloroplasts are the exclusive sites
of photosynthesis and capture light energy from the sun to produce chemical energy. Moreover,
chloroplasts are involved in many other metabolic pathways, including the synthesis of lipids,
pigments, plant hormones, and numerous other metabolites. Plants need to maintain a steady-
state balance between energy generation and consumption (Suzuki et al., 2012). Once this balance
is destroyed, oxidative stress can be induced in cells by promoting the generation and accumulation
of reactive oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion radicals (O2

−),
hydrogen peroxide (H2O2), and hydroxyl radicals (Takahashi and Asada, 1988; Mittler, 2002;
Takahashi and Murata, 2008; Miller et al., 2010). For example, limiting CO2 fixation by drought,
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salt or temperature stress can enhance the production of ROS
(Mittler et al., 2004). Chloroplasts are a major sites for the
production of ROS (Mignolet-Spruyt et al., 2016). ROS cause
the oxidation of cellular components, interfere with metabolic
activities and affect chloroplast integrity. Plants have developed
many strategies to address these phenomena and maintain
suitable photosynthetic efficiency. These processes involve a
complex chain of redox reactions and the reactive oxygen
scavenging system.

Low temperatures, also called chilling, refer to low, but not
freezing, temperatures (0–15◦C) (Theocharis et al., 2012; Wang
S. et al., 2016). Low temperatures can affect plant growth during
each stage of life from germination to maturity and limit the
distribution of plants throughout the world. Different plants have
different capacities to tolerate chilling stress. Many tropical and
subtropical plants, including tobacco, rice and maize, cannot
survive at chilling temperatures, whereas Arabidopsis and some
overwintering cereals can continue to grow (Stitt and Hurry,
2002; Wang S. et al., 2016). Early studies reported that a series of
physiological and cellular changes occur in plants under chilling
conditions, including alterations in the membrane structure,
photosynthesis, calcium signals, and metabolism (Lyons, 1973;
Theocharis et al., 2012). These changes facilitate plant adaptation
to chilling.

Chloroplasts, which are the sites of photosynthesis, can sense
low temperatures and are the first and most severely affected
organelles in plants (Lee et al., 2007). Chilling affects chloroplast
function by inhibiting photosynthesis, inducing changes
in the organelle’s ultrastructure, and regulating chloroplast
development (Tokuhisa et al., 1998; Kutik et al., 2004; Liu et al.,
2008; Duan et al., 2012). Accumulating evidence suggests that the
processes responsible for stabilizing and repairing photosynthetic
proteins in response to chilling stress are present in plants to
maintain the normal physiological function of chloroplasts.
Some mutant plants with defects in the synthesis of some
photosynthetic proteins exhibit a variety of symptoms, including
variegated or pale leaves and growth suppression under chilling
stress (Liu et al., 2010; Kong et al., 2014; Morita et al., 2017; Sun
et al., 2017). Here, we summarize the impacts of low temperatures
on chloroplasts in four sections, including photosynthesis, redox
systems, chloroplast structure and development, and we discuss
the response and adaptation of plants to chilling stress.

EFFECTS OF CHILLING ON THE
PHOTOSYNTHESIS SYSTEM IN
CHLOROPLASTS

The response of chloroplasts to low temperatures greatly depends
on the ability of photosynthesis to sense chilling (Pfannschmidt,
2003). It’s reported that both membrane and photoreceptors
can perceive the change of temperature. The photosynthetic
system complexes are located in the thylakoid membrane.
Low temperatures can rigidify the thylakoid membrane and
slow enzymatic reactions, thereby affecting the activity of the
photosynthetic system. The membrane phase under chilling
stress largely depends on the lipid composition. Thus, the lipid

composition in the membrane of chloroplasts is very important
for maintaining plant photosynthesis under low temperatures
(which will be described in detail in the third section).
Recent studies have reported that the photoreceptor phyB
and phototropins act as thermosensory molecules that perceive
fluctuating ambient temperatures (Jung et al., 2016; Legris et al.,
2016; Fujii et al., 2017). Phototropin 2, a blue light receptor,
was found to direct the position of chloroplasts to optimize
photosynthesis in cold-avoidance response (Kodama et al., 2008).
The effects of low temperatures on photosynthesis mainly include
the occurrence of photoinhibition and a reduction in the activity
of some enzymes in the Calvin cycle. Low temperatures have been
reported to cause thylakoids to uncouple in chilling-sensitive
plants, and the H-ATPase is the site of damage (Peeler and
Naylor, 1988; Terashima et al., 1989, 1991a,b). These studies
imply that chilling can induce a series of physiological and
biochemical events in chloroplasts, and both photoreceptors and
membrane can perceive the temperature. It would be interesting
to investigate how sensors deliver low-temperature signals to
downstream factors.

Photoinhibition is a light-induced reduction in the
photosynthetic capacity of chloroplasts in plants. Hodgson
et al. (1987) described photoinhibition in plants at low
temperatures as chill-induced photoinhibition or chill-
temperature photoinhibition. Photoinhibition is an important
event that occurs under chilling stress; thus, photoinhibition
has been extensively examined by many researchers. First,
researchers observed PSII damage following a low temperature
treatment (Kaniuga and Michalski, 1978; Kaniuga et al., 1979;
Shen et al., 1990). Shen et al. (1990) reported that under cold
and dark conditions, electron transport on the oxidizing side
of PSII was inactivated, which was ascribed to the degradation
of extrinsic proteins and a decrease in the manganese content
of PSII. The photodamage and repair occurred simultaneously.
Chill-induced photoinhibition is partially determined by the
effect of temperature on the recovery process, which involves the
synthesis of some chloroplast-encoded proteins, notably, the D1
component at the core of the PSII functional center (Greer et al.,
1986). Chilling interferes with the normal replacement rate of
D1 in the turnover-repair cycle, which results in more serious
photodamage (Allen and Ort, 2001). In tomato, the expression
of the coding gene of D1 is regulated by SlWHY1, which is
significantly induced by chilling (Zhuang et al., 2018). For a
long time, scientists believed that PSII was the main component
of photoinhibition. However, the photoinhibition of PSI was
first reported in 1994 (Terashima et al., 1994). The chilling
treatment of cucumber leaves under weak light destroyed FX,
FA, FB and possibly the phylloquinone A1 in the iron-sulphur
centers of PSI (Sonoike et al., 1995). Several studies have shown
that PSI photoinhibition occurs under low temperature and
weak light conditions and that the chilling-induced damage to
PSI is irreversible, which may explain the irreversible damage
to photosynthesis caused by low temperatures (Tjus et al., 1998;
Teicher et al., 2000; Kudoh and Sonoike, 2002; Zhang and
Scheller, 2004; Zhang et al., 2014). However, the chilling-induced
photoinhibition of PSI could be alleviated by moderating the
activity of PSII (Huang et al., 2016). Photoinhibition is an
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important self-protective mechanism in the chloroplast to
reduce ROS production under low temperature conditions.
The photoinhibition of PSII may minimize damage to PSI by
decreasing the electron flow to PSI and maintaining PSI in an
oxidized state. The photoinhibition of PSI may also be favorable
for preventing overreduction on the electron acceptor side.

The rate of CO2 assimilation is also reduced under chilling
stress. The reductive activation of two key carbon reduction
cycle enzymes, fructose-1,6-bisphosphatase (FBPase) and
sedoheptulose-1,7-bisphosphatase (SBPase), has been reported to
substantially decrease under light-chilling conditions (Sassenrath
et al., 1990; Kingston-Smith et al., 1997; Hutchison et al., 2000).
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) also declines under low temperature conditions.
Chilling may damage the Rubisco protein or affect the redox
regulation of the larger Rubisco activase isoform (Byrd et al.,
1995; Kingston-Smith et al., 1997; Zhang and Portis, 1999). To
acclimate to low temperatures, higher amounts of photosynthetic
enzymes, such as the enzymes involved in the photosynthetic
carbon reduction cycle and sucrose synthesis, are synthesized
to compensate for the reduced activities of other enzymes,
including Rubisco, SBPase, stromal FBPase, sucrose phosphate
synthase and cytosolic FBPase, under chilling stress (Guy et al.,
1992; Holaday et al., 1992; Hurry et al., 1994; Strand et al., 1997,
1999; Savitch et al., 2001). Thus, after plants are exposed to low
temperatures for a given period of time, photosynthesis shows
strong recovery.

EFFECTS OF LOW TEMPERATURES ON
THE REDOX STATE IN CHLOROPLASTS

Low temperatures that reduce the activities of the photosynthesis
system strike a balance between the light and dark reactions of
photosynthesis and cause the production of excess electrons in
transport chains. These excess electrons are released via transfer
to oxygen to produce ROS, which induce oxidative stress and
damage. Therefore, ROS-scavenging mechanisms, such as the
release of superoxide dismutase (SOD) and the glutathione-
ascorbate cycle, are very important for maintaining normal
function in chloroplasts under chilling stress. The levels of ROS
and the activities of ROS-scavenging enzymes have been shown
to increase in chloroplasts from plants grown under chilling stress
conditions (Kaniuga et al., 1979; Choi et al., 2002; Hu et al., 2008).
Zhou et al. (2006) reported that a chilling-tolerant cucumber
cultivar had higher H2O2-scavenging activity in chloroplasts than
a chilling-sensitive cultivar under low temperature conditions.
Manipulation of the antioxidative mechanism in chloroplasts
can change the tolerance to chilling stress in transgenic plants.
Overexpressing both CuZnSOD and ascorbate peroxidase (APX)
in the chloroplasts of transgenic plants enhanced plant tolerance
to high light and chilling stress (Kim et al., 2003; Lim
et al., 2007). Jing et al. (2006) identified a gene encoding a
chloroplast-localized peroxiredoxin Q, SsPrxQ, in Suaeda salsa
L. The overexpression of SsPrxQ in Arabidopsis enhanced plant
tolerance to low temperatures. Decreased chloroplast glutathione
reductase (GR) gene expression in antisense transgenic plants

resulted in chilling sensitivity (Shu et al., 2011; Ding et al.,
2012). These studies illustrate that maintaining homeostasis in
the redox state in chloroplasts is very important for plants
under low temperature conditions. More highly active oxygen-
scavenging activities in plants may be due to greater tolerance
to chilling stress. An altered redox state in chloroplasts due
to various treatments, including methyl jasmonate, melatonin,
brassinosteroid and acetylsalicylic acid, can affect plant tolerance
to low temperatures (Li et al., 2012; Wu et al., 2015; Zhao
et al., 2016; Soliman et al., 2018). In wheat, mechano-stimulation
applied during the growth period activated the antioxidant
system, maintained the homeostasis of ROS, and improved
electron transport and photosynthesis rates in plants exposed to
chilling stress during the jointing stage (Li et al., 2015).

Although ROS are typically regarded as toxic to cells and can
induce damage to chloroplasts via peroxidation of themembrane,
inactivation of enzymes and degradation of proteins, ROS are also
considered secondary messengers that regulate diverse functions,
such as growth, development, and stress responses, in plants
(Foreman et al., 2003; Laloi et al., 2004; Foyer and Noctor, 2005;
Pitzschke et al., 2006; Miller et al., 2008; Foyer and Noctor, 2009;
van Buer et al., 2016). As signals, ROS can regulate the expression
of chloroplast and nuclear genes that repair damage due to
chilling (which is described in the fourth section). Currently,
ROS signaling pathways have not yet been completely unraveled.
Some redox-sensitive transcription factors, such as NPR1 and
HSFs, may participate in perceiving these signals (Mou et al.,
2003; Fedoroff, 2006). Laloi et al. reported that ROS signals may
regulate the expression of antioxidant genes by activating the
MAPK cascade (Laloi et al., 2004).

EFFECTS OF LOW TEMPERATURES ON
THE STRUCTURE OF THE
CHLOROPLAST MEMBRANE

Lipid composition is considered to be closely related to chilling
tolerance. Phosphatidylglycerol (PG) is the main component of
the membrane, and it is crucial for the photosynthetic process in
chloroplasts (Somerville, 1995; Wu et al., 1997; Routaboul et al.,
2000). The phase of the membrane is affected by temperature and
depends on the extent of the unsaturation of fatty acyl chains.
The genetic manipulation of fatty acid (FA) unsaturation has
been shown to alter the sensitivity of transgenic plants to chilling
(Murata et al., 1992). Levels of unsaturated FAs are regulated by
FA-desaturase (FAD) activities (D’Angeli and Altamura, 2016).
Researchers have found that the extent of the unsaturation of FAs
in PG in the thylakoid membrane can protect the photosynthesis
system against chilling-induced photoinhibition (Moon et al.,
1995; Liu et al., 2008). Galactolipase, which is responsible
for the degradation of membrane lipids, is significantly
active in chilling-sensitive plants at low temperatures,
and then results in the increase of free FA in chloroplasts
(Kaniuga, 2008). Additionally, monogalactosyldiacylglycerols
(MGDGs), digalactosyldiacylglycerol (DGDG),
sulphoquinovosyldiacylglycerols (SQDGs) and
phosphatidylcholine (PC) are major lipids in the thylakoid
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membrane (Pribil et al., 2014; Li and Yu, 2018). Chilling alters
the compositions of galactolipid and carotenoid; in particular,
chilling causes a reduction in the levels of MGDGs and SQDGs
and an increase in lutein. Furthermore, chilling induces the
transition of prolamellar body structures from the compacted
“closed” type to the looser “open” type in cucumber and tomato,
resulting in decreased membrane fluidity (Novitskaya and
Trunova, 2000; Degenkolbe et al., 2012; Skupień et al., 2017). In
tobacco, following exposure to 8◦C for several days, the relative
levels of unsaturated FAs, mainly 18:3n−3 FA, in chloroplast
envelopes and thylakoids were significantly elevated, which
altered membrane fluidity to accommodate the high-level
functioning of the photosynthetic apparatus (Peoples et al.,
1978; Sakamoto et al., 2004; Khodakovskaya et al., 2006; Popov
et al., 2017). As mentioned above, the presence of high levels
of unsaturated FAs in chloroplasts increases the tolerance of
plants to chilling (Cronan and Roughan, 1987; Murata et al.,
1992). Furthermore, upon exposure to chilling, total FAs are
increased, phospholipids are preferentially synthesized and
the unsaturation degree of DGDG increases in some plants
(Saczynska et al., 1993; Partelli et al., 2011; Scotti-Campos
et al., 2014; Gu et al., 2017). Lipids have selective distributions
in subcellular organelles, membrane leaflets and membrane
domains. The lipid composition has a profound impact on the
physical properties of membranes. Once lipid homeostasis is lost,
corresponding membrane functions and chloroplast morphology
are affected.

The chloroplast ultrastructure is also an important factor that
is responsible for the functions of chloroplasts under chilling
conditions (Wu and Browse, 1995; Chen and Thelen, 2013).
Under cold stress, the size and number of chloroplasts have
been shown to rapidly increase in wheat, and the length of
the photosynthetic membrane and the number of thylakoids
have been shown to increase in grana (Venzhik et al., 2014,
2016). Different degrees of low temperatures lead to different
degrees of change in the chloroplast ultrastructure in maize,
including changes in the volume densities of granal and
intergranal thylakoids, plastoglobules, and peripheral reticulum
and dimensions (Kutik et al., 2004; Saropulos and Drennan, 2007;
Hola et al., 2008). Generally, in chilling-sensitive plants, the initial
manifestations of chilling injury mainly include the swelling of
chloroplasts and thylakoids and an increase in plastoglobule
numbers (Musser et al., 1984; Zbierzak et al., 2013; Karim
et al., 2014). Over time, a series of symptoms emerge, including
darkening of the stroma, unstacking of the grana, disintegration
of the thylakoid membranes and the chloroplast envelope, vesicle
accumulation, and chloroplast disintegration (Musser et al., 1984;
Kratsch and Wise, 2000; Zbierzak et al., 2013; Karim et al.,
2014). In chilling-resistant plants, starch granules continue to
decrease over time and finally disappear (Kratsch andWise, 2000;
Zhuang et al., 2018), and more condensed grana disks are present
(Garstka et al., 2007). As time increases, a cold acclimation
process is initiated, and a broad range of responses contribute to
the adaptation of plants to chilling stress. The above-mentioned
symptoms are closely related to the accumulation of ROS,
the rigidity of membranes and a profound reprogramming of
nuclear and chloroplast-encoded gene expression. However, the

underlying mechanism that modulates the presence of these
symptoms is largely unclear.

EFFECTS OF CHILLING ON
CHLOROPLAST DEVELOPMENT

During chloroplast development, the number, size and
composition of plastids change (Mullet, 1988). Chilling is
an adverse environmental signal that alters processes, such as
pigment synthesis, light-energy absorption, and photosynthetic
electron transport, inducing changes in the redox state of
photosynthesis components and the accumulation of ROS (Gong
et al., 2014; Wu et al., 2016; Morita et al., 2017). Some regulatory
factors, including ROS, influence various activities, including
multiple chloroplast RNA processing steps, ribosome loading and
protein translation, further affecting larger sets of chloroplast
transcripts and regulating the expression of chloroplast and
nuclear genes (Pfannschmidt, 2003; Kupsch et al., 2012;
Exposito-Rodriguez et al., 2017). C-repeat/DREB binding factors
(CBFs), which act as act as master transcription factors, are
rapidly induced within 15 min during chilling stress and in turn
activate the expression of a large number of downstream cold
responsive (COR) genes (Chinnusamy et al., 2007; Zhu, 2016; Shi
et al., 2018). CBF3 and COR genes are sensitive to the redox state
of chloroplasts (Kurepin et al., 2013). Moreover, the expression of
some COR genes is regulated by CBF-independent transcription
factors (Shi et al., 2018), such as RNA-binding domain 1
(RBD1) (Wang S. et al., 2016). These changes in chloroplasts
are communicated to the nucleus through retrograde signals,
including singlet oxygen (Lee et al., 2007; Kim et al., 2012;
Mullineaux et al., 2018) and methylerythritol cyclodiphosphate
(MEcPP) (Xiao et al., 2012), in Arabidopsis thaliana and H2O2

in Nicotiana benthamiana (Exposito-Rodriguez et al., 2017).
Retrograde-signaling molecules further activate a broad range of
responses and elicit the expression of stress-responsive nuclear-
encoded proteins. There may be multiple retrograde signals from
chloroplast to nucleus involving in chilling stress and they may
work together in plant.

These regulatory mechanisms facilitate the repair and
regeneration of proteins damaged by chilling to maintain the
normal physiological functions of chloroplasts. Higher chilling-
tolerant plants have stronger repair abilities. In chilling-resistant
plants, chloroplast development is retarded (Humbeck et al.,
1994). In chilling-sensitive plants, cool temperatures promote
cool-temperature-induce-chlorosis (CTIC) symptoms in newly
emerging leaves or result in different degrees of an albino
phenotype (Song et al., 2014; Wu et al., 2016). Various RNA-
binding proteins (RBPs), including pentatricopeptide repeat
protein (PPR) and ribonucleoproteins (RNPs), are needed for the
response to chilling stress to maintain chloroplast development.
The loss of RBP genes results in yellow or bleached leaves,
and some mutants even exhibit delayed seed germination
accompanied by pale primary leaves (Kusumi et al., 2011; Kupsch
et al., 2012; Gong et al., 2014; Song et al., 2014; Xu et al., 2014;
Wang S. et al., 2016; Wu et al., 2016; Zhang et al., 2016; Cui
et al., 2018). Moreover, the transcription levels of genes associated
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with chlorophyll biosynthesis, photosynthesis and chloroplast
development are altered by chilling (Gong et al., 2014; Wu
et al., 2016). Some proteins have been reported to influence
the development of chloroplasts by disturbing photosynthetic
electron transfer, regulating the transcript levels of genes involved
in chloroplast transcription/translation and photosynthesis and
interfering with RNA processing (Liu et al., 2010; Gu et al.,
2014; Wang Y. et al., 2016; Morita et al., 2017). Mutations
in these genes result in a deficiency in chlorophyll synthesis

that causes chlorotic, white or dead leaves to varying degrees
at low temperatures, and some mutations even cause severe
growth inhibition, such as the temperature-sensitive chlorophyll-
deficient rice mutant tcd5 (Liu et al., 2010; Gu et al., 2014; Wang
Y. et al., 2016; Morita et al., 2017). The decrease in chlorophyll
content will further affect the ability of chloroplasts to capture
light signals. Furthermore, some metabolites, such as sucrose,
trehalose, vitamin E etc., are demonstrated to have a protective
function for chloroplasts under chilling conditions. Arabidopsis

FIGURE 1 | Graphical representation of the effects of chilling on chloroplasts and corresponding responses. Chloroplasts are among the first organelles to sense low

temperature, and low temperatures cause an array of changes to chloroplasts. Low temperatures change the membrane state and enzyme activities in chloroplasts,

reducing the efficiency of photosynthesis (photoinhibition in PSI and PSII and affecting the Calvin cycle) and leading to the excess production of ROS. On one hand,

ROS cause oxidative damage to molecules, including proteins, nucleic acids and lipids. On the other hand, the accumulation of ROS acts as a signal that activates

acclimation mechanisms and regulates gene expression in the nucleus and chloroplasts. The activities of two rate-limiting enzymes involved in the Calvin cycle,

fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase), decrease under low temperature. As chilling time increases, the numbers

and sizes of the starch grains decrease. In chilling-sensitive plants with lower levels of unsaturated FAs and reduced ROS-scavenging ability, the thylakoid

morphology is abnormal, and the membrane structure is disrupted by excess ROS, which is accompanied by significantly higher galactolipase activity; In addition,

the morphology of chloroplasts is altered, and the chlorophyll content decreases, which leads to the dysfunction and degradation of chloroplasts. In chilling-tolerant

plants, the ROS-scavenging system is activated to protect the membrane against oxidative damage and initiate cold acclimation. Several nuclear genes, such as

PPR, RNPs, and TCD5, involved in RNA processing in chloroplasts are regulated at the transcriptional level or the posttranscriptional level, and accompany with

lower galactolipase activity. Altogether, these changes help plants better adapt to lower temperatures with or without chlorophyll content change in recovery stage.

“Structure” indicates the structure of the chloroplast membrane; “Development” indicates chloroplast development; “Photosynthesis” indicates the photosynthesis

system; and “Redox State” indicates the redox state in chloroplasts.
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mutants with a vitamin-E-deficiency are sensitive to chilling, due
to the defective export of photoassimilate (Stitt and Hurry, 2002;
Maeda et al., 2006). Overall, the underlying mechanisms that
mediate the levels of RBP, TCD5 and other genes with roles in
chloroplast development are not well understood.

CONCLUSION AND PERSPECTIVES

Low temperatures represent an important environmental factor
affecting plant growth and development. Nonetheless, under
these circumstances, plants need to not only survive but
also grow and develop. Chloroplasts are the key organelles
in which energy is transformed, and they can sense cold
signals. Chloroplast redox imbalance, membrane fluidity, as
well as phytochromes are thought to be temperature-sensitive
indicators. Multiple sensors maybe simultaneously take part in
the process of perceiving low temperature. Low temperature
induces chloroplast relocation and the cold-avoidance response
in a short time. The phyB photoreceptor and phototropins
participate in both temperature and light perception, which
may further alter cytosolic Ca2+ levels. It would be interesting
to study the underlying mechanisms that photoreceptors cause
an increase in cytoplasmic calcium and transfer signals in low
temperature.

A constitutive low temperature has deleterious effects on
plant growth and development. Upon chilling, the activities of
enzymes involved in photosynthesis (such as those involved in
photoinhibition and the Calvin cycle) and the fluidity of the
membrane decrease, affecting the ability of protein complexes
to function normally in photosynthesis systems and causing
decreased photosynthesis. Once an energy metabolic imbalance
occurs, ROS are generated and can accumulate in chloroplasts.
ROS, which are oxidative stresses, can destroy the integrity
of the membrane (cold-sensitive plants exhibit serious injury

and death); additionally, ROS can stimulate the enhancement
of ROS-scavenging activities in chloroplasts. Plants must adjust
themselves to adapt to ambient temperature. An important step
is the retrograde communication between the chloroplast and the
nucleus. ROS also act as signals that regulate the transcription
and posttranscriptional processing of photosynthesis-related
genes in the chloroplast and nucleus to repair or regenerate
damaged proteins, maintaining photosynthetic efficiency as
much as possible (Pfannschmidt, 2003). The modification of
gene transcription, protein translation and transportation to
repair chilling-induced damage and induce acclimation to low
temperatures leads to changes in chloroplast development,
including changes in the size and number of chloroplasts and
chlorophyll content. Finally, cold-resistant plants exhibit changes
in growth and development to adapt to environmental stress
(Figure 1). Chloroplasts play an important role in the process of
plant adaptation to low temperature. During this process, plants
need to coordinate the relationship between low-temperature
adaptation and photosynthetic efficiency in order to obtain better
growth and more production. Therefore, there is a trade-off
between chilling tolerance and photosynthesis.
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