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Litter decomposition is a key process for carbon and nutrient cycling in terrestrial

ecosystems and is mainly controlled by environmental conditions, substrate quantity

and quality as well as microbial community abundance and composition. In particular,

the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition

and its temporal dynamics are of significant importance, since their effects might

change over the course of the decomposition process. Within the TeaComposition

initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We

assessed how macroclimate and atmospheric inorganic N deposition under current and

predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3

and 12 months. Our study shows that the early to mid-term mass loss at the global

scale was affected predominantly by litter quality (explaining 73% and 62% of the total

variance after 3 and 12 months, respectively) followed by climate and N deposition.

The effects of climate were not litter-specific and became increasingly significant as

decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after

12 months of incubation. The effect of N deposition was litter-specific, and significant

only for 12-month decomposition of Rooibos tea at the global scale. However, in the

temperate biome where atmospheric N deposition rates are relatively high, the 12-

month mass loss of Green and Rooibos teas decreased significantly with increasing

N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected

changes in macroclimate and N deposition at the global scale by the end of this century

are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1–

3.5% and of the more stable substrates by 3.8–10.6%, relative to current mass loss.
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In contrast, expected changes in atmospheric N deposition will decrease the mid-term

mass loss of high-quality litter by 1.4–2.2% and that of low-quality litter by 0.9–1.5%

in the temperate biome. Our results suggest that projected increases in N deposition

may have the capacity to dampen the climate-driven increases in litter decomposition

depending on the biome and decomposition stage of substrate.

Keywords: tea bag, Green tea, Rooibos tea, litter decomposition, carbon turnover, nitrogen deposition,

TeaComposition initiative

INTRODUCTION

Litter decomposition is a fundamental process in the carbon and
nutrient cycling across all ecosystems (Chapin et al., 2011; Berg
and McClaugherty, 2020). Decomposition rate is most closely
related to litter quality (Cornwell et al., 2008; Djukic et al., 2018;
Kotroczó et al., 2020), climate (Davidson and Janssens, 2006;
Tóth et al., 2007; See et al., 2019), nutrient availability (Fog,
1988; Luo et al., 2018; Lilleskov et al., 2019; Juhos et al., 2021),
and the abundance and diversity of soil organisms (Coûteaux
et al., 1995; González and Seastedt, 2001; Pioli et al., 2020). The
climate exerts a direct effect on decomposition by stimulation
of decomposer activity through the increased temperature and
precipitation (Zhang et al., 2008). However, the inhibitory
influence of climate might occur when substrate moisture lies
below 30% or above 80% and themean annual temperature below
10◦C (Prescott, 2010). The long-term climate conditions shape
indirectly the prevailing vegetation and the quality of plant litter,
which can have significant impacts on its turnover dynamics.
Climate variables can explain up to 68% of the variability in
litter decomposition rates on a global scale (Parton et al., 2007);
thus changes in environmental conditions may have a significant
impact on litter decomposition processes via both direct and
indirect pathways. Carbon to nitrogen ratio and lignin content
of the initial litter are considered to be good indicators of litter
quality as they are related to nutrient availability and chemical
properties of the studied substrate. For instance, litter with a
high C:N ratio and lignin content decomposes more slowly
(Makkonen et al., 2012) than litter with the inverse properties.
Yet, the relative importance of diverse drivers may change over
the course of the decomposition process. The early stage of litter
decomposition (i.e., 0–30% mass loss) where most of the water-
soluble compounds are released is especially sensitive to the
environmental changes and the decomposition of holocellulose
is promoted by higher nitrogen (N) contents in initial litter
and soil. In contrast, during the later stage of decomposition
(>30% mass loss), N exerts the opposite effect due to the
suppressed oxidative enzymatic activities (Berg, 2014; Berg and
McClaugherty, 2020). Although the central role of climate and
litter quality in controlling litter decomposition rates is widely
recognized, results on the effects of increased N input and climate
on the decomposition in the field are inconsistent.

Depending on litter quality, responses to atmospheric N
deposition may vary from positive for the decomposition of
high-quality litter (high N, low C:N ratio) to negative for
the decomposition of low-quality litter (high lignin, high C:N
ratio; Fog, 1988; Zhou et al., 2017) through affecting the

composition of the decomposer community. Similarly, several
studies have shown that in N-poor ecosystems, addition of N is
likely to stimulate early-stage litter decomposition (Knorr et al.,
2005), whereas in N-sufficient ecosystems inhibitory effects of
N deposition have been reported through a reduced oxidative
enzymatic activity (Hobbie, 2008; Hagedorn et al., 2012; Norris
et al., 2013). A meta-analysis revealed an inhibitory effect of
ambient N deposition between 5 and 10 kg N ha−1 year−1 on
litter decomposition for a period of 1–72 months (Knorr et al.,
2005). Although much is known about the regulatory factors of
litter decomposition, the results on the effects of increased N
deposition on litter decomposition remain inconsistent (Pei et al.,
2020; Hood-Nowotny et al., 2021). Hence, the importance of
regulatory factors might be strongly context-dependent and may
differ among ecosystems and litter types (Bradford et al., 2016).

Increases of the global mean annual surface temperature
(1.0–3.7◦C) and mean annual precipitation (28.8–65.0 mm) are
projected for the end of this century (IPCC, 2014; Thorpe and
Andrews, 2014). The atmospheric total inorganic N deposition
rate on land and transitional area is expected to increase by 1.2 kg
N ha−1 year−1 (RCP 2.6) to 1.9 kg N ha−1 year−1 (RCP 8.5)
by the end of this century (Lamarque et al., 2013). Since N and
C cycles are tightly coupled, an increase of N in soil through
increased atmospheric N deposition may alter the humification
of litter and thus soil C sequestration (Janssens et al., 2010;
Prescott, 2010; Berg and McClaugherty, 2020). In addition, not
only climate-driven shifts in vegetation composition (Rizzetto
et al., 2016; Boutin et al., 2017), but also N driven changes in
plant diversity (Bobbink et al., 2010) might not only influence
the microclimate but also litter quality, which significantly
affects decomposition patterns (Gaudio et al., 2015) and thus
might have profound implications for the global C storage and
consequently climate change. Therefore, it is crucial to explore
potential effects of changes in climate and N deposition on
litter decomposition.

To understand the effects of variation in climate, N deposition,
and other environmental factors on litter decomposition at
the global scale, standardization in experimental materials and
methodology is mandatory. The TeaComposition initiative has
collected harmonized data on litter mass loss over time using
standardized litter (i.e., commercially available tea bags; Djukic
et al., 2018). Using this approach, we evaluated the effects
of macroclimate and N deposition on the global litter mass
loss of fast-decomposing Green tea and slow-decomposing
Rooibos tea after 3 and 12 months of in situ incubation.
For future predictions, two different N deposition and climate
scenarios were used. The number and distribution of field
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FIGURE 1 | Map showing the mean annual nitrogen deposition during 2006–2017 period and the location of the study sites within TeaComposition initiative. Data

from the 524 colored sites have been used in the present study. Colors of each site depict biomes classified according to Walter and Breckle (1999). See Table 1

and Supplementary Table 1 for more detailed information of sites.

sampling locations often limit our understanding of ecological
processes. Therefore, in our analyses we shed more light on the
decomposition process in the temperate biome due to the greatest
data availability and the largest range of N deposition.

The aims of this study are to determine (1) the relationship
between macroclimatic factors, N deposition, and litter
quality on mass loss of Green and Rooibos teas across
biomes, (2) whether the observed relationships at the global
scale hold true for regional scale (i.e., temperate biome
where N deposition is highest), and (3) the relationship
between predicted changes in macroclimate, N deposition,
and first year leaf litter mass loss at global and regional
scales. Specifically, we hypothesize (1) that the control of
early to mid-stage decomposition will be driven by litter
quality > climate > N deposition on the global scale; (2)
that the inhibitory effect of N deposition on the progressed
stage of decomposition will be more pronounced at the
regional scale with higher N deposition rates than at the global
scale; (3) that a potential climate change-induced increase of
litter decomposition might be mitigated through a potential
negative feedback of N deposition on the progressed stage
of decomposition.

MATERIALS AND METHODS

Study Sites
We used data gained by the global TeaComposition initiative1

coming from untreated control plots. Data from 394 sites (5,581
teabags) after 3-month incubation and 423 sites (4,583 teabags)
after 12-month incubation are collected across nine biomes
(Figure 1, Table 1, and Supplementary Table 1). Each site was
assigned to one of nine terrestrial biomes, defined by Walter
and Breckle (1999). Sub-sites with different elevations, locations,
and vegetation types were considered as separate sites. For 3-
month incubation, we used the mean monthly precipitation
(MMP), mean monthly air temperature (MMAT), and the mean
monthly N deposition (MMN) based on the real incubation
period, while for 12-month incubation, mean annual average
values of these variables were used. Climate data were extracted
from the CHELSA version 1.2 (Climatologies at High resolution
for the Earth’s Land Surface Areas2; Karger et al., 2017). The
atmospheric N deposition at each site was resampled by bilinear

1https://www.teacomposition.org/
2https://chelsa-climate.org/
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TABLE 1 | Summarized characteristics of the study sites used for the analyses within the TeaComposition initiative.

Ca. 3-month incubation Ca. 12-month incubation

Biomes NumberA of

sites

(teabags)

Climate

(MMP)B
Climate

(MMT)C
N deposition

(MMN)D
Number of

sites

(teabags)

Climate

(MAP)E
Climate

(MAT)F
N deposition

(MAN)G

Arctic 3 (124) 59 (2)bc 8 (1)c 0.07 (0.03)b 80 (419) 487 (6)c −2 (0)e 1.14 (0.04)d

Boreal 21 (475) 63 (3)bc 13 (0)c 0.25 (0.03)b 22 (652) 513 (36)c 1 (1)d 2.84 (0.32)bc

Temperate 284 (3927) 80 (2)b 15 (0)c 1.00 (0.02)a 231 (2572) 862 (21)b 7 (0)c 10.57 (0.31)a

Warm-

temperate

6 (120) 182 (41)a 23 (1)ab 0.61 (0.09)ab 5 (105) 2451 (361)a 16 (1)ab 7.41 (1.31)ab

Arid-temperate 3 (53) 32 (14)c 16 (2)bc 0.50 (0.38)b 2 (58) 275 (22) 9 (2) 1.81 (0.70)

Mediterranean 40 (428) 39 (5)c 18 (1)b 0.48 (0.05)b 44 (501) 755 (51)b 13 (1)b 5.31 (0.53)b

Arid-subtropical 9 (141) 23 (11)c 26 (1)a 0.14 (0.04)b 6 (40) 340 (98)c 23 (0)a 1.73 (0.78)cd

Humid-

equatorial

14 (104) 139 (14)a 26 (0)a 0.24 (0.03)b 21 (142) 1685 (148)a 24 (0)a 2.21 (0.34)cd

Semiarid-

tropical

14 (209) 159 (11)a 21 (2)ab 0.48 (0.07)b 12 (94) 1183 (45)a 19 (2)a 4.48 (0.83)bc

Mean 89 (11) 18 (1) 0.42 (0.08)b 951 (88) 12 (1) 4.17 (0.57)

Mean (SE) of climates and N deposition at each biome.

Detailed table on the single site characteristics can be found in the Supplementary Material.
ANumber of sites (teabags) is for sites (teabags) used for both the teas, Green tea and Rooibos tea at each incubated period.
BMMP (mm month−1) = Mean monthly precipitation during real incubation period at each site.
CMMT (◦C) = Mean monthly temperature during real incubation period at each site.
DMMN (kg N ha−1 month−1) = Mean monthly N deposition during real incubation period at each site.
EMAP (mm year−1) = Mean annual precipitation.
FMAT (◦C) = Mean annual temperature.
GMAN (kg N ha−1 year−1) = Mean annual N deposition. Lowercase letters show the result of multiple comparisons among biomes with Kruskal–Wallis test at the level of

P < 0.05.

interpolation on a rectilinear 2D grid of Atmospheric Chemistry
and Climate Model Intercomparison Project (ACCMIP) dataset
with a spatial resolution of 1.9 (latitude) × 2.5 (longitude) degree
(Lamarque et al., 2013). The ACCMIP dataset is composed of
historical deposition covering the period from 1850 to 2000 and
the projected deposition with RCP scenarios until 2100 (Van
Vuuren et al., 2011; Lamarque et al., 2013). The data on N
depositions are based on the RCP 2.6 scenario from 2007 to 2016
for each site. The mean annual air temperature (MAAT) in our
dataset ranges from −2◦C to 24◦C on the global scale and is 7◦C
in the temperate biome. The mean annual precipitation (MAP)
ranges from 275mm to 2451mm at the global scale and is around
862mm in the temperate biome. The estimatedmean annual total
inorganic N deposition (MAN) ranges from 1 to 11 kg N ha−1

year−1 (0.2–22.0 kg N ha−1 year−1 with a whole range) on the
global scale and is around 11 kg N ha−1 year−1 (0.7–22.0 kg N
ha−1 year−1 with a whole range) in the temperate biome (Table 1;
site specific data can be found in the Supplementary Table 1).

Litter Bag Study
Within the TeaComposition initiative (Djukic et al., 2018),
commercially available tea bags of Green tea (C/N ratio of 12.3)
and Rooibos tea (C/N ratio of 42.9; Keuskamp et al., 2013) were
incubated (n = 4 per litter type and sampling period) in the field
over a period of 3 and 12months. The tea was contained in woven
nylon bags with 0.25 mm mesh size allowing access only for
microorganisms and fine roots. Tea bags were buried in the upper
5 cm of the top-soil in the summer of 2016 in both the northern

and southern hemispheres (i.e., start in summer; June–August
in northern hemisphere and December–February in southern
hemisphere). After incubation, bags were excavated and carefully
cleaned of soil and roots, dried at 70◦C for 48 h, and weighed.
The remaining mass after the incubation was linearly normalized
to 3 and 12 months on dry weight and expressed in percentage
(%) of the initial litter weight. When remaining litter was
visibly contaminated, remaining mass of litter was estimated by
subtracting ash weight (representing mineral portion) obtained
after heating the sample in a muffle oven at 500◦C for 16 h from
remaining mass of visibly contaminated litter.

Data Analyses
Effects of Climate and N Deposition on Mass Loss

Between Tea Types and Incubation Time

We linearly normalized all mass loss data to a fixed period
because not all tea bags were incubated for exactly 3 (91± 8 days;
overall mean ± standard deviation; number of sites = 394) and
12 months (369 ± 9 days; number of sites = 423).

To determine the significant differences of the means of mass
loss at site level of each tea type across biomes after 3-month and
12-month incubation, the Kruskal–Wallis test was performed.
This non-parametric test was used because preliminary analysis
indicated at least one of the assumptions of normality and
homogeneity of variance was not met. When the result of
the Kruskal–Wallis test showed a significant difference across
biomes, a non-parametric post hoc test was conducted using
the “kruskal” function in the package “agricolae” in R Statistical
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Software with the Holm-adjusted p-value, set to p < 0.05 for
statistical significance, for multiplicity correction (Holm, 1979;
De Mendiburu, 2017).

To investigate the effects of climatic variables and N
deposition on mass loss after 3 and 12 months for both teas or
each tea type separately, we applied linear mixed-effects models
(Bates et al., 2015) with tea type for both teas, climate, and
N deposition as fixed factors and site as random factor. For
3-month incubation, the mean monthly values of climate and
N deposition were calculated and used with real incubation
period at each site. For 12-month incubation, the mean annual
data of climate and N deposition were used. The final model
was selected with backward selection by deleting non-significant
terms. While determining the final model, we also examined
the possibility of multicollinearity between fixed factors using a
variance inflation factor (VIF), with an acceptable VIF score < 3
(Kock and Lynn, 2012). The same procedure has been applied
separately for data from temperate biome, due to the greatest
data availability and the largest range of N deposition at the
regional scale.

Projection of Future Litter Decomposition

We used the RCP 2.6 and RCP 8.5 IPCC scenarios to analyze
the relationships between the change of mass loss and the
change of climate and N deposition by the end of this century
(Van Vuuren et al., 2011; Lamarque et al., 2013; IPCC, 2014;
Table 2). Projected data on MAT and MAP by the end of this
century were obtained from IPCC (2014) and the CoupledModel
Intercomparison Project 5 (CMIP5; Thorpe and Andrews, 2014),
respectively. For the change of atmospheric N deposition, we
used the simulated dataset with RCP scenarios from ACCMIP
aforementioned, supplied by National Center for Atmospheric
Research in United States (Lamarque et al., 2013). According to
these simulations, the surface temperature is expected to increase
between 1 and 3.7◦C between 2081 and 2100 relative to the period
of 1986–2005, while precipitation is predicted to increase by 28.8
to 65.0 mm year−1 between 2079 and 2098 in comparison to
1986–2005. In addition, N deposition is expected to increase by
1.2 to 1.9 kg N ha−1 year−1 by 2090–2099 relative to the period of
2000–2009 (Table 2). We calculated the percent changes in mass
loss of Green and Rooibos teas, relative to mass loss measured
after current 1-year decomposition, by the end of the 21st century
by using data on predicted changes in MAT, MAP, and MAN as
well as the results of linear mixed-effects models between those
factors and mass loss of tea types.

Software Used for Data Processing and Statistical

Analysis

All the geographical analyses on climate, N deposition data,
and site locations were processed using QGIS (Quantum GIS
Development Team, 2017, version 2.18.14). All statistical analyses
were carried out with R (R Core Team, 2019, version 3.4.4).
To quantify the explained percentage of variance by fixed
factors in a linear mixed-effects model using the “lmer” function
in the “lme4” package in R, we used the “variancePartition”
package in R (Hoffman and Schadt, 2016). Overall, model
quality was further quantified by calculating marginal R2 (fixed

TABLE 2 | Change in mean annual temperature (1MAT, ◦C), mean annual

precipitation (1MAP, mm year−1), and mean annual N deposition (1N deposition,

kg N ha−1 year−1) by the late 21st century for two RCP scenarios as compared

to the period 1986–2005 for 1MAT and 1MAP and to the period 2000–2009 for

1N deposition.

Scenario 2081–2100 2079–2098 2090–2099

1MAT (likely range) 1MAP (SE) 1N deposition

RCP 2.6 1.0 (0.3–1.7) 28.8 (2.9) 1.2

RCP 8.5 3.7 (2.6–4.8) 65.0 (4.4) 1.9

SE means standard error.

effects only) and conditional R2 (fixed plus random effects)
with “r.squaredGLMM” function in the “MuMIn” package in R
(Nakagawa and Schielzeth, 2013).

RESULTS

Effect of Climate and N Deposition on
Mass Loss
Across All Biomes

Across all biomes Green tea lost 2.4 times more mass
[58.9 ± 6.5%, Mean of mass loss ± Standard error (SE)] than
Rooibos tea (24.3 ± 2.8%) during the 3-month decomposition
period and 1.9 times more mass (66.4 ± 2.4%) than Rooibos
tea (34.9 ± 3.2%) during the 12-month decomposition period
(Figure 2). The lowest mass loss after 3 and 12 months of
incubation for both tea types was observed under the arid-
temperate climate, while the highest mass loss was under the
warm-temperate and semiarid-tropical biomes (after 3 months of
incubation) and warm-temperate and humid-equatorial biomes
(after 12 months of incubation; Figure 2).

The 3-month mass loss of both tea types correlated positively
with precipitation and temperature (Table 3). Tea type explained
72.5%, precipitation 1.6%, and temperature 0.2% of the variance
of mass loss. When the analysis was run for each tea type
separately, precipitation was positively correlated with mass loss
for both Green tea (4.2% of variance) and Rooibos tea (9.2% of
variance). In addition, temperature was positively correlated with
mass loss of Green tea (0.9% of variance) and Rooibos tea (0.6%
of variance; Table 3 and Figure 3).

Similarly, the 12-month mass loss of both tea types was also
strongly affected by tea type (explaining 61.8% of the variance)
but less affected by tea types than 3-month incubation. As well,
precipitation (2.3%), temperature (4.4%), and N deposition (0.3%
of variance) were positively correlated with mass loss (Table 3).
For Green tea, precipitation (8.2% of variance) and temperature
(11.7% of variance) were in positive relationships with mass
loss. And for Rooibos tea, precipitation (5.9% of variance),
temperature (14.9% of variance), and N deposition (2.0% of
variance) were positively correlated with mass loss.

Decomposition in the Temperate Biome

When only data for the temperate biome were analyzed, 3-
month mass loss of both tea types was also positively related
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FIGURE 2 | Mass loss of tea litters (%); Green tea (blue) and Rooibos tea (orange) after the field incubation of 3 (A) and 12 months (B) across biomes. Blue and

orange circles show the means, and the bars are the standard errors based on the total number of observations. Uppercase and lowercase letters denote significant

differences among biomes for Green and Rooibos tea, respectively, based on a Kruskal–Wallis test (p < 0.05). The order of biomes follows the order of mean

monthly precipitation (mm month-1) for (A) and mean annual precipitation (mm year-1) for (B). In case that the number of sites is <3 sites at each biome, then the

data were not included in statistical analysis (i.e., Arid-temperate).

TABLE 3 | The effects of climatic factors and N deposition on the mass loss of Green tea and Rooibos tea after 3 and 12 months of incubation in all biomes.

3-month incubation in all biomes 12-month incubation in all biomes

Tea type Fixed effects Est. (SE) t P Expl. (%) R2m/R2c Est. (SE) t P Expl. (%) R2m/R2c

Both Tea type 38.69 (0.21) 186.60 <0.001 72.5 0.74/0.89 32.65 (0.25) 129.84 <0.001 61.8 0.69/0.84

Precipitation 64.33 (9.67) 6.65 <0.001 1.6 7.33 (1.02) 7.23 <0.001 2.3

Temperature 0.21 (0.10) 2.15 <0.05 0.2 0.61 (0.06) 10.02 <0.001 4.4

N deposition – – – – – 0.23 (0.08) 2.88 <0.01 0.3

Green Precipitation 59.40 (12.60) 4.72 <0.001 4.2 0.05/0.76 7.05 (1.08) 6.50 <0.001 8.2 0.20/0.74

Temperature 0.29 (0.13) 2.30 <0.05 0.9 0.51 (0.06) 7.96 <0.001 11.7

Rooibos Precipitation 70.18 (8.75) 8.02 <0.001 9.2 0.10/0.63 7.20 (1.23) 5.85 <0.001 5.9 0.23/0.67

Temperature 0.18 (0.09) 2.08 <0.05 0.6 0.70 (0.07) 9.28 <0.001 14.9

N deposition – – – – – 0.34 (0.10) 3.57 <0.001 2.0

Mean monthly air temperature (◦C), precipitation (mm month−1), and N deposition (kg N ha−1 month−1) were used for the analyses of samples incubated for 3 months,

while mean annual air temperature (◦C), precipitation (mm year−1), and N deposition (kg N ha−1 year−1) were used for the analyses of samples incubated for 12 months.

Est. (SE) = estimates (standard error), Expl. (%) = variance percentage explained by each fixed factor. R2m and R2c are mean marginal R2 and conditional R2, respectively.

Only significant fixed effects are shown. For precipitation, models were fitted with precipitation/1000 to avoid too small estimates.

to type of tea (explaining 79.2% of the variance), precipitation
(0.4%) and temperature (0.3%), and negatively to N deposition
(0.7%) (Table 4). When the analysis was run for each tea type
separately, the 3-month mass loss of Green tea was affected by
precipitation (2.4%, positively), temperature (3.8%, positively),
and N deposition (6.3%, negatively), while the mass loss of
Rooibos tea was affected by precipitation (2.1%, positively)
and N deposition (1.3%, negatively) without the relationship
to temperature.

With the progress of decomposition (12 months), we
observed further a positive correlation with tea type (explaining
68.2% of the variance) and temperature (5.0%) as well as a
negative correlation with the N deposition (1.7%). However, the
precipitation effect was missing (Table 4). When tea types were
analyzed separately, also a positive correlation of mass loss with
temperature (15.4% for Green tea and 11.0% for Rooibos tea)
and a negative correlation between mass loss and N deposition
(9.5% for Green tea and 1.1% for Rooibos tea) were recorded.
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FIGURE 3 | Relationships between mass loss of Green tea and Rooibos tea and precipitation (A,D), air temperature (B,E) and N deposition values (C,F) after

3-month (A–C) and 12-month (D–F) incubation periods in all biomes. Blue and orange circles show the means and the bars are the standard errors based on the

total number of observations. Climatic variables and N deposition were obtained from CHELSA ver. 1.2 and ACCMIP dataset, respectively. Band shows 95%

confidence interval. Relationships without regression lines show non-significant relationships.

TABLE 4 | The effects of climatic factors and N deposition on the mass loss of Green tea and Rooibos tea after 3 and 12 months of incubation in the temperate biome.

3-month incubation in temperate climate 12-month incubation in temperate climate

Tea type Fixed effects Est. (SE) t P Expl. (%) R2m/R2c Est. (SE) t P Expl. (%) R2m/R2c

Both Tea type 38.91 (0.21) 182.91 <0.001 79.2 0.81/0.91 33.30 (0.31) 107.41 <0.001 68.2 0.75/0.85

Precipitation 42.44 (12.30) 3.45 <0.001 0.4 – – – –

Temperature 0.37 (0.13) 2.75 <0.01 0.3 1.13 (0.12) 9.19 <0.001 5.0

N deposition −4.49 (1.11) −4.06 <0.001 0.7 −0.54 (0.10) −5.30 <0.001 1.7

Green Precipitation 50.63 (15.76) 3.21 <0.01 2.4 0.13/0.75 – – – – 0.25/0.68

Temperature 0.67 (0.17) 3.92 <0.001 3.8 1.20 (0.14) 8.86 <0.001 15.4

N deposition −6.79 (1.42) −4.78 <0.001 6.3 −0.77 (0.11) −6.92 <0.001 9.5

Rooibos Precipitation 33.12 (12.03) 2.75 <0.01 2.1 0.03/0.61 – – – – 0.12/0.49

Temperature – – – – 1.02 (0.14) 7.12 <0.001 11.0

N deposition −2.16 (1.08) −2.01 <0.05 1.3 −0.27 (0.12) −2.32 <0.05 1.1

Mean monthly air temperature (◦C), precipitation (mm month−1), and N deposition (kg N ha−1 month−1) were used for the analyses of samples incubated for 3 months,

while mean annual air temperature (◦C), precipitation (mm year−1), and N deposition (kg N ha−1 year−1) were used for the analyses of samples incubated for 12 months.

Est. (SE) = estimates (standard error), Expl. (%) = variance percentage explained by each fixed factor. R2m and R2c are mean marginal R2 and conditional R2, respectively.

Only significant fixed effects are shown. For precipitation, models were fitted with precipitation/1000 to avoid too small estimates.
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FIGURE 4 | Temperate-biome relationships between mass loss of Green tea and Rooibos tea and precipitation (A,D), air temperature (B,E), and N deposition (C,F)

after 3-month (A–C) and 12-month (D–F) incubation periods. Blue and orange circles show the means and the bars are the standard errors based on the total

number of observations. Band shows 95% confidence interval. Relationships without regression lines show non-significant relationships.

No significant effect of precipitation was observed for Green and
Rooibos teas (Table 4 and Figure 4).

Effects of Projected Future Climate and
N Deposition on Litter Decomposition
Across All Biomes

We investigated the effects of future climate scenarios (RCP
2.6 and RCP 8.5; Table 2) on the overall tea mass loss for the
12-month incubation. Across all biomes, we found a 2.2–6.2%
increase in predicted mass loss (relative to mass loss in current
period) for both types (Table 5). In general, the predicted increase
in mass loss appeared to be higher under the RCP 8.5 (3.5–
10.6%) than under RCP 2.6 scenario (<3.8%). Positive effects
of increased air temperature on mass loss of both litter types
were 3.0–4.9 times and 2.0–5.5 times higher than those of the
predicted change in precipitation and N deposition, respectively.
We noticed a much higher increase in mass loss for the litter
material of Rooibos tea (3.8–10.6%) as compared to the more
labile litter of Green tea (1.1–3.5%). The effects of air temperature
as compared to precipitation seem to be greater on the mass

loss of the more stable material of Rooibos tea (3.3- to 5.7-fold
greater) than those of the mass loss of more labile Green tea
material (2.7- to 4.0-fold). In addition, mass loss of Rooibos tea
increased by the increase of N deposition from 1.2% to 1.9%.

Decomposition in the Temperate Biome

In the temperate biome, models predicted a 0.9–6.2% increase
in mass loss (relative to the current conditions) for both types
of tea (Table 5). In contrast to the global scale, we noticed
only the effect of air temperature change (2.2–8.1%) by RCP
2.6 and RCP 8.5, but not of precipitation, on the overall mass
loss of both tea types. Similar to the global scale, the mass loss
of the more stable Rooibos tea material showed much higher
increase (2.0–9.3%) than that of the more labile Green tea
material (0.4–4.4%). Further, the effect of air temperature on
mass loss of Green tea (1.8–6.6%) was slightly lower than on
Rooibos tea (2.9–10.7%). The predicted change of N deposition
in the temperate biome reduced the mass loss of both teas
(1.3–2.0%), whereby the mass loss of the Green tea (1.4–2.2%)
appeared to be slightly more inhibited than that of Rooibos tea
(0.9–1.5%).
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TABLE 5 | The percent change of mass loss of Green tea and Rooibos tea by the end of the 21st century relative to the current period, induced by the changes of mean

annual temperature (MAT), mean annual precipitation (MAP), and N deposition across all biomes and in the temperate biome after 1 year of decomposition.

All biomes Temperate biome

Both teas Green tea Rooibos tea Both teas Green tea Rooibos tea

1MAT 1.2–4.4 0.8–2.8 2.0–7.4 2.2–8.1 1.8–6.6 2.9–10.7

1MAP 0.4–0.9 0.3–0.7 0.6–1.3 – – –

1N deposition 0.6–0.8 – 1.2–1.9 −1.3–−2.0 −1.4–−2.2 −0.9–−1.5

Sum 2.2–6.2 1.1–3.5 3.8–10.6 0.9–6.2 0.4–4.4 2.0–9.3

DISCUSSION

Climate and N deposition effects on litter decomposition are
complex and highly uncertain considering our present knowledge
but of significant importance for the global carbon dynamics
and assessment of future trajectories. The direct and indirect
effects of these environmental changes on litter decomposition
are not necessarily consistent between litter quality types
(Coûteaux et al., 1995), decomposition stages (Berg, 2014),
and environmental conditions (Delgado-Baquerizo et al., 2015;
Frøseth and Bleken, 2015). Here we studied the mass loss as the
decomposition degree of Green and Rooibos teas across 524 sites
with contrasting climate andN deposition conditions. Our results
show that litter quality > climate > N deposition are key factors
for litter decomposition, with litter quality being most important
throughout the observation period, while the effects of climate
and N deposition change over decomposition time and space.

Impacts of Climate and N Deposition on
Litter Mass Loss
The abiotic and biotic factors regulating decomposition can
change over time (Berg and McClaugherty, 2020; Canessa et al.,
2021). In our study, litter quality explained a major part of
the variance in mass loss both after 3 months (73%) and
12 months (62%) of incubation on the global scale. This is in
accordance with several studies showing a positive relationship
between litter quality and mass loss or decomposition rate
(Zhang et al., 2008; Kang et al., 2009; Djukic et al., 2018;
Fanin et al., 2020; Canessa et al., 2021). However, the extent
of the effects of climatic variables changed with the stage
of decomposition, with precipitation being most important
during the 3-month incubation and the air temperature during
12 months of incubation for Green and Rooibos teas. A possible
reason for this observation may be due to the fact that initial
incubation occurred in the summer months, when precipitation
was likely the main limiting factor for the majority of biomes
(Prescott, 2010). Moreover, temperature variations during the
summer months are smaller compared to the entire year
(Karger et al., 2017), and the limiting factor for decomposition
during dry seasons is water availability. In addition, during
the initial decomposition phase, litter mass loss is dominated
by the leaching of soluble compounds (e.g., Hagedorn and
Machwitz, 2007; Djukic et al., 2018; Mori et al., 2020; Trevathan-
Tackett et al., 2020), which is controlled by precipitation
(Ristok et al., 2017). In later stages of decomposition, the
microbial degradation of more stable components becomes

increasingly important, which depends on both air temperature
and precipitation (e.g., Davidson and Janssens, 2006). Rather
optimal ranges between air temperature and precipitation were
likely responsible for the high mass loss of both tea types
as observed for the warm-temperate, humid-equatorial, and
semiarid-tropical climates. In contrast, the extreme ranges of
temperature and/or precipitation are likely to explain the low
mass loss of both tea types at arid-temperate, arid-subtropical,
and arctic climates.

In our study, the effect of N deposition was litter-specific,
and only of significant importance for Rooibos tea during the
12-month period at the global scale. Previous studies have
shown that N effects on litter decomposition can be positive,
negative, or near zero, depending on litter quality, degree of
decomposition, as well as N saturation status of the ecosystems
(Knorr et al., 2005; Hobbie, 2008; Prescott, 2010; Berg, 2014).
The observed positive effect of N deposition on the mass
loss of Rooibos tea (∼35%) after 12 months, can be related
to the stimulated decomposition of the more labile cellulose
substrate through the N deposition (Wang et al., 2019; Berg and
McClaugherty, 2020) during the early stage of decomposition
(0–30% mass loss). In contrast, the progressed decomposition
of Green tea (∼66% of mass loss) is likely limited by the
carbon and nutrient accessibility in the remaining litter, which
are essential for the microbial function at the later stage of
decomposition (Fanin et al., 2020). In addition, large variability
in microclimatic conditions at the global scale as well as very
coarse resolution of the available N deposition data (∼100 km)
is likely masking the effect of N deposition. Hence, it is therefore
necessary to consider the variability in the N deposition at the
narrower spatial scale for the better understanding of the global
decomposition processes.

In the temperate biome, we observed a negative relationship
between N deposition and mass loss of both tea types after
3 and 12 months of incubation. Knorr et al. (2005) showed
that ecosystems with N deposition rates between 5 and
10 kg N ha−1 year−1 experience an inhibitory effect on litter
decomposition. The high N inputs might decrease the demand of
decomposers to acquire litter-derived N, when they are supplied
with external N. Especially in the progressed decomposition
stage, high N inputs may suppress the activity of lignolytic
fungi and their oxidative enzymes and consequently suppress
decomposition processes (Carreiro et al., 2000; Hobbie, 2008;
Hobbie et al., 2012; Berg and McClaugherty, 2020).

Our study underlines the importance of considering the
effects of different drivers in time and space for a better
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understanding of litter decomposition processes. Especially
analyses of litter chemistry, soil properties, soil biodiversity, and
their interactive effects (Mori et al., 2021) on decomposition
processes are crucial for improved understanding of this
fundamental biogeochemical process.

Impacts of Predicted Climate and
Atmospheric N Deposition on the
Decomposition Process
Our analyses of 1-year mass loss indicate that the expected
changes in macroclimate by 2100 at the global scale will increase
the mass loss of Green and Rooibos tea. The mass loss of
more stable litter seems to be more affected by future warming
than that of easily decomposable substrates (Table 5). The
intrinsic temperature sensitivity is closely related to themolecular
structure of the substrate and increases with its increasing
molecular complexity (Davidson and Janssens, 2006), which is
also in accordance with our findings across heterogeneous soil
environments. However, several other environmental constraints
on litter decomposition (such as N deposition) need to
be discussed within the context of climate change. Future
atmospheric N deposition is expected to have a strong effect
on soil biogeochemical processes (Gaudio et al., 2015). In our
study, the predicted increase in N deposition by 2100 shows
also an enhancing effect on the mass loss of Rooibos tea at
the global scale. Moreover, when taking into consideration the
combined effects of organic N deposition (∼30% of total N
deposition globally; Neff et al., 2002; Cornell, 2011) and inorganic
N deposition on litter decomposition, the effect of the total
N deposition may be higher than our calculated estimates.
Thus, the accelerated mineralization of the more stable substrate
through the increase in temperature andN depositionmight have
profound implication for the global C budget. In turn, climate
warming as well as higher N deposition might lead to a shift
in the structure of plant communities (Cornelissen et al., 2007),
changes in microclimate (Wang et al., 2019), increases in plant
growth (Prescott, 2005; Bobbink et al., 2010; Bringmark et al.,
2011; Fröberg et al., 2011), changes in litter quality [e.g., increase
of litter N (Henry et al., 2005)], changes in soil C:N ratio (Mulder
et al., 2015), and changes in soil microbial communities (Carreiro
et al., 2000; Hobbie et al., 2012; Leff et al., 2015) with a potentially
compensating effect of litter C mineralization.

In the temperate biome with higher average annual N
deposition compared with other biomes, however, the predicted
change in N deposition may lead to a decrease in mass loss of
both high- and low-quality litters. Thus, the negative effect of
N deposition on litter mass loss might mitigate, but not offset,
the climate change-induced increase of litter decomposition at
the regional level (cf. Berg, 2014). The effects of increased N
deposition were quite small (means 1–2%) relative to the effect
of increased temperature (means 2–8%) and probably irrelevant
for plant species occurrence (Dirnböck et al., 2017). Moreover,
Forstner et al. (2019) concluded that an accumulation of soil
organic carbon in the organic layer through N addition in
temperate forests might be evenmore sensitive to the CO2 release
in case of disturbances or changing environmental conditions

due to the lower degree of physicochemical protection of
this soil layer.

Hence assessing the effects of co-occurring global change
factors on biogeochemical processes at different geographical
scales (e.g., Forstner et al., 2019; Rillig et al., 2019; Bowler
et al., 2020) are of significant importance for understanding the
relationships between C and N dynamics during different stages
of litter decomposition.

CONCLUSION

Our results suggest that litter quality and climate were the most
significant drivers of early-to-mid-stage litter decomposition.
In addition, climate change and the excess of N deposition
might accelerate the decomposition of more stable substrate
at the global scale. However, at the regional scale future N
deposition seems to have the capacity to dampen the predicted
climate change effect. Studying the litter decomposition process
over different time and spatial scales requires consideration
of complex interplay of different parameters. For a better
understanding of global and regional litter decomposition
dynamics, we need to increase our basic knowledge on litter-
ecosystem interactions in particular on the role of litter
chemistry, soil properties (Wang et al., 2019), and biodiversity
in decomposition process (Crowther et al., 2019). Moreover,
pulsed nature of precipitation and temperature events rather
than average annual values needs to be taken into the
consideration for the certain biomes (Currie et al., 2010).
Considering that the driving factors of litter decomposition
at the global scale do not necessarily reflect those at the
regional or local scale, a more representative site distribution
across the globe is needed to address knowledge gaps in
the decomposition process in future studies (Virkkala et al.,
2019). There is also a need for better N-deposition products at
high spatial and temporal resolutions to capture its variability
significant for understanding of N-deposition-decomposition
relationships.

Our study indicates that global collaborative research
with standard protocols such as the TeaComposition
initiative is a powerful approach for global synthesis.
Through the collaborative efforts, the valuable add-ons to
the ongoing TeaComposition work will be included such
as analyses of litter chemistry and soil biodiversity (e.g.,
Soil BON, Guerra et al., 2021) relevant for a comprehensive
understanding of litter decomposition under climate change and
atmospheric N pollution.
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