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Abstract� In this paper, we describe the correlation assumptions
made by different power analysis methods and evaluate the impact
on the accuracy of total power dissipation calculation as well as of
the power dissipated by individual signals. Industrial circuits and
applications are used. The results show that some assumptions cause
inaccuracies of more than 100% for certain circuit types.

1 INTRODUCTION

1.1 Power Consumption
In CMOS circuits, power consumption is dominated by charging

and discharging of capacitances, when a transition occurs at an in-
ternal or at an output signal [1]. Short circuit and leakage current
dissipate additional power but can made small with proper design
technique. The total capacitive power consumption in a circuit is
given by

Pcircuit =
1
2

V2
dd ∑

signali
Ciαi (1)

whereCi is the total capacitance driven by signali. The supply volt-
age is denoted by Vdd. Let αi be the switching activity of signali,
i.e., the average number of 1!0 or 0!1 transitions on signali per
second. SinceVdd andCi are known from the technology library pa-
rameters, the main problem of power analysis at logic level is the
estimation of the switching activitiesαi .

1.2 Switching Activity Analysis
In an early design stage, a designer wants to know thetotal power

consumptionof his design to explore architectural trade-offs and to
decide whether a ceramic or a plastic packaging will be needed.
However, in order to optimize a design for low power using auto-
matic methods,power consumption of each signalmust be known
accurately since the optimization goal is to minimize∑Ciαi . Then,
αi of each signal is part of the cost function.

In early work on power analysis, simulation of application vectors
was used to estimate total power or transient behavior [2] - [6]. Event
driven simulation was applied, which yields very high accuracy. The
main problem of this strategy is the large CPU time requirement.

In order to overcome the large CPU time requirements but to pre-
serve the accuracy, Najm et al. suggested to use the Monte Carlo
technique in [7] - [11]. Primary input vectors are randomly generated
according to statistical data at primary inputs. During the simulation
of these pseudo random vectors, the Monte Carlo technique deter-
mines whether the switching activities have already converged and
thus, whether the simulation can be terminated. With this technique,
the number of simulated pseudo random vectors is minimum for a
certain user-given accuracy value.

Two driving factors made most researchers work in the field of
probabilistic computation. Firstly, the CPU time requirements of
event driven simulation are too large to compute the cost function for
optimization very often. Since at the logic-level, circuits are typically
optimized step by step, a limit on the number of optimization steps
deteriorates the optimization quality. Secondly, computing probabili-
ties on BDDs is very efficient if all variables in the support are uncor-
related. Most probabilistic techniques use BDDs to propagate statis-
tical data like signal probability and switching activity from primary

inputs to each internal signal and primary output. With the number
of correlations taken into account, these BDD based techniques re-
quire increasing computational costs. Several approaches [12] - [20]
provide different trade-offs between accounting for correlations and
computational costs.

1.3 Our Goal
Our goal is to understand the limitations of various analysis meth-

ods better so as to weigh these methods in terms of applicability for
analysis and optimization. For this purpose, we describe the correla-
tion assumptions and evaluate the inaccuracies caused by them.

Surprisingly, the inaccuracies caused by the correlation assump-
tions have hardly been examined yet, although they often dominate
the accuracy of an analysis technique. In [16], the importance of se-
quential correlations is shown, and [19] considers the effect of spatial
correlations at primary inputs.

In this paper, we define the different correlations and map each
correlation assumption to the classes of analysis techniques that as-
sume them. Then, we apply industrial circuits and applications to
demonstrate which correlation assumption causes a major inaccu-
racy on what type of circuit. For the purpose of this evaluation, sev-
eral experiments were performed. We describe in detail the obtained
results. Inaccuracies are examined in terms of both total switching
activity and switching activity of each signal. Some of the exam-
ined correlation assumptions cause inaccuracies of more than 100%.
Such an inaccuracy is unacceptable for low power optimization. A
cost function estimated with this level of inaccuracy will guide the
optimization process to poor results.

The paper is organized as follows. In the next section, correlations
and correlation assumptions are introduced. Section 3 describes the
setup for experiments. In Section 4, the experiments are presented
in detail. They are summarized and examined in Section 5. Conclu-
sions are drawn in Section 6.

2 OVERVIEW OF CORRELATIONS

Ignorance of certain correlations is a common assumption that is
made in power analysis research. In this section, we introduce dif-
ferent types of correlations and present a survey on which analysis
techniques ignore what type of correlation.

2.1 Analysis Model
Let us first recall the definition of the termssignal probability and

switching activity. Signal probability of a signali denoted byp(i)
reflects the fraction of the time that signali takes on value 1 as op-
posed to value 0. Switching activity of a signali denoted byE(i) is
the average number of transitions on signali (0 to 1 and 1 to 0) per
second.

Most probabilistic approaches assumezero gate delay. Thus the
power dissipation due to glitches is not reflected. For all presented
evaluations, we also consider zero delay and thus neglect inaccura-
cies caused by this approximation because of the following reasons.
Firstly, the contribution of glitch power has already been examined in
several papers [13, 21, 22]. Secondly, the computation of the num-
ber of glitches needsaccurate information on the delay caused by
gates and by their interconnects. Logic-level power analysis was de-
veloped to estimate the power consumption at an early design stage.
Typically at this stage, placement and routing has not yet been car-
ried out and even gate delays are not known exactly until technology
mapping has been finished. Thus, it is not possible to account for
glitches correctly.



2.2 Correlations
Correlations were originally described for statistical pro-

cesses [23]. Each signal in a logic circuit can be related to a statistical
process [12]. Assuming zero-delay, correlations characterize signals
as described in this section.
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Figure 1: First order temporal correlation
Temporally uncorrelated: A signal i is said to betemporally un-

correlatedif its next value is independent of its current and of all its
previous values. Because of this independence, the probability of a
1 to 0 transition of signali from one clock cycle to the next (p(i i))
is equal top(i)p(i). Similarly, p(i i) equalsp(i)p(i), and we ob-
tain αi = p(i i+ i i) fclk = (p(i)p(i)+ p(i)p(i)) fclk. Thus, the signal
probability of signali describes its statistical behavior completely.
An example for such a signal is signal data1 in Figure 1.

First order temporal correlation: A signali is said to have first or-
der temporal correlation if its next value depends on its current value
but is independent of all previous values. Signali can be described
by a Markov chain. Its statistical behavior is completely determined
by the signal probability and the switching activity. An example for
such a signal is data2 in Figure 1.
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Figure 2: Higher order temporal and spatial correlation

Higher order temporal correlation: A signal is said to have higher
order temporal correlation if its next value depends on its current
value and on previous values. In Figure 2, bit 1, 2, and 3 of a binary
counter are shown forillustration. Bit 2 (i.e., signal cnt2) has a sec-
ond order temporal correlation. The next value of signal cnt2 will be
1 if its previous value was 0. Bit 3 has also an fourth order temporal
correlation.

Spatial correlation: Two (or more) signals are said to be spatially
correlated if each value that is taken on by one of these signals is cor-
related to the values the other signal(s) take on. In Figure 2, signals
cnt1, cnt2, and cnt3 are spatially correlated. The signal cnt3, e.g.,
makes a transition only when cnt1 and cnt2 make a transition.

Spatial correlation of internal signals: Even if primary inputs are
spatially uncorrelated, internal signals can be spatially correlated due
to reconvergent fanouts. A reconvergent node has at least two fanins
that depend on the reconvergent fanout stem. Thus, these fanins are
spatially correlated. This correlation is referred to as spatial correla-
tion of internal signals.

Sequential correlations: Spatial or temporal correlations at state
lines that are induced by the cyclic structure of a sequential circuit
are called sequential correlations. Even if primary inputs are uncor-
related or only first order temporally correlated, the states and state
lines of an FSM can be higher order temporally correlated. An exam-
ple is again the binary counter in Figure 2. A reset signal may be the
only input to the counter. In the example, this reset signal is uncor-
related and has a very low signal probability. Nevertheless, the state
lines (which are the signals in Figure 2) are higher order temporally
and spatially correlated.

2.3 Survey of Current Analysis Methods
Table 1 presents a survey of the assumptions that are made by var-

ious analysis strategies. Symbol “x” (or “app”) is used if a technique
exactly (or approximately) accounts for a certain type of correlation.
Symbol “ign” is used if a technique completely ignores a certain type
of correlations. Obviously, simulating application vectors (column
“sap”) accounts for all correlations exactly.

The Monte Carlo simulation (column “mcs”) requires pseudo ran-
dom vectors, which are only first order temporally correlated, in-

pcb psq mcs sap
First order temp. corr. of PI x x x x
Sequential correlations ign app x x
Spatial corr. of internal signals app app x x
Spatial corr. of PI app ign ign x
Higher order temp. corr. of PI ign ign ign x

Table 1: Correlation assumptions vs. analysis techniques
stead of application vectors as input to the simulation. Thus, spatial
and higher order temporal correlations of primary inputs are ignored.
First order temporally correlated pseudo random vectors will be de-
fined in the next section.

In column “pcb”, probabilistic techniques are considered that are
developed for analysis of combinational circuits, while column “psq”
considers probabilistic techniques developed for analysis of sequen-
tial circuits. We assume that the most advanced method is applied,
i.e., the method that has the least number of entries “ign” in Table 1.

For combinational circuits, the most advanced technique is the
technique of [19]. All other techniques do not account for spatial cor-
relations at primary inputs. For sequential circuits, no probabilistic
estimation technique considers spatial correlations at primary inputs.
The only probabilistic technique that considers sequential correla-
tions and temporal correlations at primary inputs is [20].

Even these most advanced probabilistic techniques can handle
spatial and sequential correlations only approximately. Higher order
temporal correlations are never taken into account by probabilistic
techniques presented so far.

3 EXPERIMENTAL SETUP
3.1 Metrics

In this section, we define the accuracy measurements that are used
later in the paper. These measurements are the relative average error
in terms of total or signal switching activity.

Thetotal switching activitydenoted byA is the sum of the switch-
ing activities of all signals:

A= ∑
signali

αi

Theaverage relative errorin terms oftotal switching activityis:

etotal=

�
�
�
�

Aacc�Aign

Aacc

�
�
�
�

where subscriptign denotes values, which are measured while ignor-
ing the correlation under evaluation, and subscriptacc denotes values,
which are measured while accounting for the correlation accurately.

Theaverage relative errorin terms ofsignal switching activityis:

esignals=
1

#signals
∑

signali

�
�
�
�

(αi)acc� (αi)ign

(αi)acc

�
�
�
�

The measurementesignals provides a much more refined assess-
ment of the estimation quality thanetotal. During the computation
of etotal, over and under estimated switching activities compensate
and thus, even if each signal is estimated very inaccurately,etotal
can show reasonable accuracy. For optimization, however,esignals
must be small. Otherwise the optimization process will not be guided
properly and will thus yield poor results. This will be shown in Sec-
tion 4.2.

As suggested in [9], internal signals are divided into signals hav-
ing high activity and signals having low activity. For the quantity
esignals, only signals with switching activityαi >

frequency
1000 are con-

sidered. The reason for disregarding low activity signals is that their
contribution to the power dissipation is very small but they cause
large relative errors: For example, a signal makes 2 transitions dur-
ing an 105 vector simulation although it should only make 1 transi-
tion; the relative error is 100% but because of the signal’s lowαi , its
power dissipation can be neglected.

3.2 Circuits
The following circuits were used for the described experiments:
� Controller

- Alarm clock: Alarms can be set and triggered.
- 8-bit Microcontroller
- Sort: Bubble sort of integer numbers



� Datapath modules
- Two 8-bit multiplier: wallace tree, carry save
- Two implementations of 8-bit carry look ahead adder

� Mixed circuit (i.e., circuit with control and datapath)
- IIR: Infinite Impulse Response Digital Filter

3.3 Stimuli
For each circuit, a VHDL testbench was available representing

either the application for which the circuit was designed or the func-
tional test of the application. The vectors generated by these test-
benches are referred to asapplication vectors. These vectors contain
all correlations of the application.

For several experiments, we need vectors that are only first or-
der temporally correlated but have the same signal probability and
switching activity as the application vectors. For this purpose, a ran-
dom generator was biased such that vectors are generated according
to signal probabilities and switching activities of the application. The
only correlation these vectors have is a first order temporal correla-
tion. We denote these vectors aspseudo random vectors.

For each experiment that needs pseudo random vectors, 105 vec-
tors were generated and simulated. Simulating 105 pseudo random
vectors causes very low inaccuracies as shown in [11, 24].

4 DESCRIPTION OFEXPERIMENTAL PROCEDURES
In this section, we evaluate the inaccuracies caused by each corre-

lation assumption. In the next section, we will summarize and com-
ment the results of this section. Due to the lack of space, the experi-
mental setups are not shown in detail. Upon request, the authors will
be glad to provide an extended version of this paper.

4.1 Inaccuracies Due to Ignoring Sequential Correlations
To evaluate the inaccuracies due to ignoring sequential correla-

tions, a simulation that accounts for sequential correlations is com-
pared to a simulation that does not account for sequential correla-
tions. Sequential correlations are ignored if pseudo random vectors
are assumed at state lines instead of the correlated patters.

etotal esignals

Datapath modules No sequential elements
Mixed circuit 3% 8%
Controller 25% 120%

Table 2: Inaccuracies due to ignoring sequential correlations

Table 2 gives the average relative error for this experiment. The
small datapath modules do not contain any sequential element. The
inaccuracies for the mixed circuit are very low, lying below 10% for
both total and signal switching activity. For the controller type cir-
cuits, the error in terms of total switching activity is about 25%. Con-
sidering the signal switching activity, the error was typically higher
than 100%.

4.2 Inaccuracies Due to Ignoring Spatial and Higher Order
Temporal Correlations at Primary Inputs

The activities obtained by a simulation of application vectors are
compared to a simulation of pseudo random vectors. The results are
presented in Table 3. For the small datapath modules, ignoring all
primary input correlations beside of first order temporal correlations
causes an error smaller than 10%. Unfortunately, the error in terms
of signal switching activities is 30% on average. For the wallace tree
multiplier, for example, we obtainedesignals= 39%. This multiplier
does not contain sequential elements.

etotal esignals

Datapath modules 8% 30%
Mixed circuit 26% 56%
Controller 5% ( . . . 50%) 10% ( . . . 150%)

Table 3: Inaccuracies due to ignoring PI correlations

The scattered diagram for this multiplier is shown in Figure 3. The
horizontal axis “accounting for PI correlations” shows the switching
activity of a signal if all primary input correlations are taken into ac-
count, i.e., the switching activity obtained by simulating application
vectors. The vertical axis “ignoring PI correlations” gives the switch-
ing activity if at primary inputs only first order temporal correlations

are accounted for. Each diamond in the diagram corresponds to one
signal of the considered 8-bit multiplier. If ignoring primary input
correlations causes no inaccuracy for a certain signal then the dia-
mond of this signal hits the dotted line.

Low power optimization techniques try to delete or “hide” sig-
nals with high activity or assign low capacitances to these signals,
while signals with low switching activities are allowed to be addi-
tionally created or be assigned high capacitances. If power optimiza-
tion is guided by the inaccurate analysis result in Figure 3, the highly
overestimated signal marked with label “a)” is considered to have a
higher switching activity than most signals actually having a higher
switching activity. For example, the signal with label “b)” would be
assumed to have a lower switching activity than the signal with label
“a)”, and thus, a power optimization technique may assign a higher
capacitance to this signal than to the signal with label “a)”. There-
fore, the optimization process will result in a higher instead of a low
power implementation.
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Figure 3: 8-bit multiplier w/ and w/o ignoring PI correlations
For the mixed circuit, the error in terms of total switching activity

is 26%. The error in terms of signal switching activity is 56%, which
is too high to guide the optimization.

For the controller type circuits, it is difficult to make a statement
on the impact of the primary input correlations, because the impact
heavily depends on whether the random vectors represent real oper-
ations. We will illustrate this with an example. In the application,
the reset signal may initially be 1 for four clock cycles and then be
0 for all other vectors. So, there was one transition. Now, vectors
are randomly generated. The signal probability and switching activ-
ity of the reset signal are preserved if this signal is 0 for all vectors
and switches to 1 for the four last vectors. The controller, however,
may start in a state, which is unreachable from the initial state of
the application. If this happens, the error for pseudo random vectors
can be very high while it is typically very low if the random vectors
represent real operations.

4.3 Inaccuracy Due to Ignoring Spatial Correlations of In-
ternal Signals and Simultaneous Switching

We computed the switching activities of the combinational logic
with the probabilistic technique of [12]. This probabilistic technique
accounts for first order temporal correlations accurately. Spatial cor-
relations at primary inputs and at internal signals are ignored.

etotal esignals

Datapath modules 10% 15%
Mixed circuit 25% 50%
Controller 10% 20%

Table 4: Inaccuraciesdue to ignoring internal spatial correlations and
simultaneous switching

In Table 4, the activities obtained by using this probabilistic tech-
nique are compared to the activities obtaind by a simulation of
pseudo random vectors. For the small datapath modules and for the
controller type circuits, the accuracy in terms of total and the signal
switching activity is sufficient. For the mixed circuit, the accuracy
of the total switching activity may be acceptable, while the signal
switching activity shows an average relative error of 50%.



4.4 Inaccuracy Due to Ignoring Different Application Vec-
tor Sets

We also performed an experiment to determine the sensitivity of
circuits to different applications. This was done to determine whether
it is possible to assign an invariant power number to a module (e.g.,
a multiplier) in order to characterize it in a module library.

We applied two different applications to the same circuit, sim-
ulated the vector sets of these two applications, and compared the
determined switching activities of the internal signals. The vector
sets of these two applications had different statistical behavior, i.e.,
a primary input or state line has different switching activities due to
the different vector sets.

etotal esignals

Datapath modules 35% 150%
Mixed circuit 30% 100%
Controller 5% 15%

Table 5: Different switching activities due to different applications

Switching activities of datapath modules and mixed circuits de-
pend on the application. In our experiments, the total power differs
by up to 50% and the average relative error in terms of signals was
for all experiments larger than 100%. However, the examined con-
trol type circuits tend to be very insensitive to the input vectors as
long as these vectors represent useful operations. Even the error for
signal switching activity was only about 15%.

5 OVERVIEW AND IMPLICATIONS

5.1 Summary of All Experimental Results
Table 6 summarizes the main source of inaccuracy for each circuit

type. Let us first consider total power consumption. The accuracy
appears to be sufficient for estimates to be used at an early design
stage to evaluate different architectures for a module.

Main Source of Inaccuracy etotal esignals

Datapath m. Ignore PI corr. 8% 30 %
Mixed circuit Ignore PI corr. 26% 56%

Ignore internal spatial corr.
& simultaneous switching 25% 50%

Controller Ignore sequential corr. 25% 120%

Table 6: Main sources of inaccuracy
Let us now consider the inaccuracies in terms of signal switching

activities. Two observations strike out from Table 6. Firstly, even
the smallest error in Table 6, which has appeared for small datapath
modules, can produce a scattered diagram like the one in Figure 3.
Using such analysis data will cause poor low power optimization re-
sults. This indicates that the correlation assumption is unacceptable.
Secondly, each circuit type has a different main source of inaccu-
racy. Therefore, an estimation technique that is useful for all types
of circuits must account for all these sources of inaccuracy.

Note that in the tables above, we have presented relative errors.
In several papers about switching activity analysis, the absolute error
instead of the relative error is given in terms of transition probabili-
ties (i.e., switching activity per clock cycle). Obviously, probabilities
are smaller than 1 and our observation is that transition probabilities
are on average significantly smaller than 1. This is also the case for
the example in Figure 3. The scattered diagram of this example illus-
trates an example of an average relative erroresignalsequal to 39%.
For this example, the average absolute error equals 0.067. Thus, it is
about 6 times smaller than the relative error.

5.2 Implications for Power Analysis and Optimization
Table 1 shows that all analysis techniques beside of simulating

application vectors cannot account for either sequential correlations
or spatial correlations of primary inputs. Additionally, none of these
techniques can handle higher order temporal correlations.

Probabilistic techniques handle spatial and sequential correlations
only approximately as shown in Table 1. Furthermore, a sequential
circuit is represented as a system of equations. The accuracy of the
solution of a system of equations is unclear, given that the equations
are inaccurate due to the correlation approximations. For large se-
quential ISCAS benchmarks, no results of probabilistic techniques
have been presented so far.

Monte Carlo simulation can handle sequential correlations and
spatial correlations of internal signals exactly. But spatial correla-
tions at primary inputs and higher order temporal correlations are
ignored. For datapath modules and mixed circuits, ignoring primary
input correlations causes inaccuracies that are too large to guide low
power optimization.

For power optimization using automatic methods, the only anal-
ysis technique that is sufficiently accurate for all circuit types is the
simulation of application vectors. Unfortunately, this technique may
require considerable CPU time.

6 CONCLUSION
In the recent years, many techniques have been presented to ana-

lyze switching activities at signals inside a circuit. To achieve high
efficiency, all these techniques are based on correlation assumptions.
We described which correlation assumptions are made by what kind
of estimation techniques, and we examined the inaccuracies caused
by making these assumptions.

For total power consumption, existing analysis techniques are rea-
sonably accurate for most circuit types. However, the accuracy in
terms of signal switching activity suffers significantly due to sev-
eral sources of inaccuracy. The only existing strategy that covers all
sources of inaccuracy for all circuit types is the simulation of appli-
cation vectors.
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