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Rotated blades are key mechanical components in turbine and high cycle fatigues o
en induce blade cracks. Meanwhile, mistuning
is inevitable in rotated blades, which o
en makes it much di�cult to detect cracks. In order to solve this problem, it is important
and necessary to study e�ects of crack on vibration characteristics of mistuned rotated blades (MRBs). Firstly, a lumped-parameter
model is established based on coupled multiple blades, where mistuned sti�ness with normal distribution is introduced. Next, a
breathing crack model is adopted and eigenvalue analysis is used in coupled lumped-parameter model. 	en, numerical analysis is
done and e�ects of depths and positions of a crack on natural frequency, vibration amplitude, and vibration localization parameters
are studied. 	e results show that a crack causes natural frequency decease and vibration amplitude increase of cracked blade.
Bifurcations will occur due to a breathing crack. Furthermore, based on natural frequencies and vibration amplitudes, variational
factors are de
ned to detect a crack in MRBs, which are validated by numerical simulations. 	us, the proposed method provides
theoretical guidance for crack detection in MRBs.

1. Introduction

Rotated blades are one of the main parts of turbine, which
play important roles of energy conversion and o
en are called
the heart of turbines. Low pressure turbine stages have long
slender blades which undergo high bending deformation
caused by natural frequencies in lower operating range. In
order to limit vibratory deformations, these blades of low
pressure stages are o
en sti�ened with lacing wire connec-
tions. During working, rotated blades are o
en exposed to
severe environments including high-speed rotating aerody-
namic force, large centrifugal forces, and vibration trans-
mission from other parts. In addition, some of them are
a�ected by thermal stresses. 	us, rotated blades usually
cause di�erent kinds of faults under these extreme operation
environments. In particular, blade cracks are one class of dan-
gerous faults. If cracks cannot be detected as soon as possible,
they can expand dramatically under the complex incentive
conditions and thus lead to disastrous consequences [1–3].
Ideally, rotated blades generally are considered to be cyclic

symmetry. In this case, a microcrack can cause vibration
localization in tuned rotated blades [4, 5], so detection
of microcracks became very easy in tuned rotated blades
because they are sensitive to microcracks. However, manu-
facturing tolerances, using abrasion and material properties,
can result in little di�erences between rotated blades. 	is
phenomenon is usually called mistuning [6, 7]. Vibration
localization appears in MRBs and leads to high vibration
stress concentrate in minority blades of MRBs, which can
induce fatigue cracks inMRBs.When cracks appear inMRBs,
they inevitably changemistuned characteristics and vibration
characteristics of MRBs. So crack detection in MRBs is
di�cult to be reached, which is a necessary and important
thing for operational safety of MRBs.

Up to now, many methods have been studied to detect
and identify cracks in rotated blades. Vibration monitoring
is a common and e�ective method for damage identi
cation
which requires us to fully understand the e�ects of cracks
on vibration characteristics of rotated blades. So vibration
characteristics of rotated blades and e�ects of crack on
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vibration characteristics of rotated blades are hot research
issues. Many scholars have done lots of researches. Kim
and Stubbs [8] presented a practical methodology to non-
destructively localize cracks and estimate the sizes of the
cracks in beam-type structures using changes in frequencies.
Piovan and Sampaio [9] used continuous parameters model
to analyze rotated beams with functionally graded properties
and quanti
cationally studied vibration characteristics of the
blade based on centrifugal force. 	e common characteristic
of the above researches is that an isolated blade model is
constructed and analyzed. So the model is simple and can
get vibration characteristics of a rotated blade quickly. But
rotated blades are interconnected with each other by lacing
wire, and vibration characteristics ofMRBs are di�erent from
a single inevitable blade. So it is inappropriate to use isolated
blade model to analyze vibration characteristics of MRBs.

Some scholars further propel related researches. 	ey
used coupled multiple-blades dynamic model to analyze
vibration characteristics of rotated blades. Prohl [10] was
the 
rst to analyze blade group dynamics using lumped-
parameter modeling of blades with lacing wire attached
to the blade tip. Here, lacing wires were considered as
spring elements and forced vibration was computed using
Holzer Method. 	is analytical method computes intricately
for blades with varying cross section and twist along the
length. Finite element model is well suited for such complex
problems and it was used by Bajaj [11] to determine the
natural frequencies of packeted blade in coupled bending-
torsion modes. Lim et al. [12] have carried out an extensive
modal analysis based on energy integral for the multipacket
blade system considering disk �exibility, angular speed, and
shroud�exibility.	e above researchedworks in this segment
are done based on ideal blades. In other words, blades have
been considered to be identical, both geometrically and
structurally. Such ideal type of blades is called tuned blades.
	e tuned condition preserves symmetry in themathematical
model. However, in practice, the cyclic symmetry of blades
is inevitably destroyed by manufacturing tolerance, using
abrasion and properties of materials. So the analytical results
have a little di�erence compared with actual rotated blades.

Next, some related researches considered mistuning of
blades and usedmistunedmodel to study vibration behaviors
of rotated blades. Chandrashaker and Adhikari [13] proposed
the Modal Assurance Criterion Localization Factor which
may help designers to easily obtain crucial information, such
as the degree of localization for all the vibration modes in the
system. Wang et al. [14] analyzed resonance characteristics
of blisk under random mistuning. And localization of low
order bending mode was most greatly impacted by random
mistuning. Hai et al. [15] studied the e�ects of di�erent
mistuning factor on the natural frequency and vibration
characteristics of blisk. It was found that quality and sti�ness
of blades were more sensitive to mistuning than damping
of blades. It is mature that rotated blades are analyzed
based on mistuning. In the operation of MRBs, vibration
induces high cycle fatigue and then leads to cracks. It is a
di�cult and important problem of cracks a�ecting vibration
characteristics of MRBs and related researches are studied
rarely. But some scholars study e�ects of crack on vibration
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Figure 1: 	e 3D model of MRBs.

characteristics of tuned rotated blades. Huang [4, 5] studied
the e�ect of a number of blades and distribution of cracks on
vibration localization in a cracked pretwisted blade system.
Hou [16] presented a study of the mechanisms of cracking-
induced mistuning in bladed disks. An analytical model was
formulated and then analyzed to understand the relationship
between the blade dynamic response and the crack length.

In the aforementioned researches, vibration characteris-
tics of MRBs and e�ects of crack on tuned rotated blades
are studied by some scholars. However, practical experience
shows thatmistuning is inherent feature of rotated blades and
crack can change vibration characteristics ofMRBs by change
mistuning of MRBs. To the best of our knowledge, rare
works have been reported in this area. In this paper, coupled
multiple-blades model is built based on inherent mistuning
in rotated blades and then used to analyze the e�ects of crack
on vibration characteristics of MRBs. Moreover, analytical
results are used to study crack detection in MRBs. 	e le

contents are organized as follows: In Section 2, a simpli-

ed model is formulated and then analyzed to understand
vibration characteristics of MRBs with a breathing crack.
In addition, a local parameter and a variational factor are
introduced to quanti
cationally describe vibration charac-
teristics of MRBs. In Section 3, modal characteristics of
MRBs are analyzed by numerical analysis. Next, the e�ects
of depths and positions of a crack on natural frequency,
vibration amplitude, and localization parameters of vibration
response (LPVRs) of MRBs are studied. Based on natural
frequencies and vibration amplitudes, variational factors are
used to detect a crack in MRBs. 	en, nonlinear behaviors
of LPVRs are explained by bifurcation diagram of vibration
displacement. Finally, conclusions are marked in Section 4.

2. Modeling and Analysis of MRBs
with a Breathing Crack

	e 3D model of MRBs is shown in Figure 1. Rotated
blades are 
xed on central disk, which are long slender
blades and undergo high bending deformation caused by
natural frequencies in lower operating range. 	ese blades
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Figure 2: Schematic diagram of the equivalent cantilever beam with a crack.
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Figure 3: An equivalent lumped-parameter model of coupled MRBs.

go through transient resonant condition at nozzle passing
frequency [17]. In order to limit vibratory deformations, these
blades are o
en sti�ened with lacing wire connections. In
addition, micromistuning occurs between each blade due
to manufacturing tolerances, using abrasion and material
properties. Mistuning can be changed as fatigue cracks
appeared in MRBs during operational life. 	ese can change
vibration characteristics of MRBs. 	erefore, crack detection
in MRBs can be realized probably through changes of vibra-
tion characteristics. Somodel ofMRBs is built 
rst and then is
used to study the e�ects of crack on vibration characteristics
of MRBs. For the sake of simplicity, the disk is assumed to be
rigid and a blade in Figure 1 is simpli
ed to cantilever beam
in Figure 2, which is conducive to establish and solve follow-
up model. Length, width, and height of the blade in Figure 2
are denoted as �,�, and ℎ, respectively.When a crack appears
in a blade, the distance between the crack and the blade tip is
denoted as ��, and the depth of the crack is denoted as �.	en,
we make an investigation into modal characteristics of tuned
blades andMRBs using a lumped-parametermodel approach
similar to [16]. 	e simpli
ed lumped-parameter model is
shown in Figure 3. In this model, every blade is represented
by a single-degree-of-freedom (SDOF) lumped-parameter

model with the equivalent sti�ness ��� and the equivalent

damping ��� . 	e equivalent mass 	�� is concentrated at the
blade tip. Lacing wire between two adjacent blades adds

sti�ness to blades; hence, it is modeled as a massless spring
and sti�ness is ��. 
 is the serial number of a blade and the total
number of blades is �, so 
 = 1, 2, . . . , �. Lumped-parameter
model is adopted here mainly to facilitate parametric study,
particularly investigating the e�ect of lessened sti�ness in
a blade due to a crack. 	e objective is primarily to study
changes of vibration characteristics in MRBs for di�erent
possibilities of cracks, and then expect to instruct crack
detection in MRBs.

Vibration equations of coupled MRBs based on air�ow
excitation in Figure 3 can be written as follows:

	�1
̈1 + ��1 
̇1 + ��1
1 + �� (
1 − 
16)
+ �� (
1 − 
2) = �1 ...

	�� 
̈� + ��� 
̇� + ��� 
� + 2��
� − ��
�−1 − ��
�+1 = ��...
	�16
̈16 + ��16
̇16 + ��16
16 + �� (
16 − 
15)

+ �� (
16 − 
1) = �16.

(1)
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2.1. Modal Analysis of MRBs with a Breathing Crack. Based
on simpli
ed model of MRBs, (1) can be written as follows:

MẌ + CẊ + KX = F, (2)

where

M =
[[[[[[[[[[

	�1 0 ⋅ ⋅ ⋅ 0 0
0 	�2 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ 	�15 0
0 0 ⋅ ⋅ ⋅ 0 	�16

]]]]]]]]]]
,

C =
[[[[[[[[[[

��1 0 ⋅ ⋅ ⋅ 0 0
0 ��2 ⋅ ⋅ ⋅ 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ ��15 0
0 0 ⋅ ⋅ ⋅ 0 ��16

]]]]]]]]]]
,

K =
[[[[[[[[[[

��1 + 2�� −�� ⋅ ⋅ ⋅ 0 −��−�� ��2 + 2�� −�� 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 −�� ��15 + 2�� −��−�� 0 ⋅ ⋅ ⋅ −�� ��16 + 2��

]]]]]]]]]]
,

X =
[[[[[[[[


1
2⋅ ⋅ ⋅
15
16

]]]]]]]]
,

F =
[[[[[[[[[

�1�2⋅ ⋅ ⋅�15�16

]]]]]]]]]
.

(3)

M, C and K are equivalent mass matrix, equivalent external
damping matrix, and equivalent sti�ness matrix, which are
symmetric matrixes. X and F are vibration displacements of
all blades and external air�ow forces. When F act on MRBs,
the governing equations of motion are coupled ordinary
di�erential equations of second order. Firstly, in natural
modal analysis ofMRBs, dampingmatrixC is not considered
and the external forces F = 0 [18]. So (2) is converted into

MẌ + KX = 0. (4)

We set solution of (4) as X(�) = � sin(�� + �), where �
and � are scalars and � is vector. By substitutingX(�) into (4),
one can get the following formula:

(K − �2M)� = 0. (5)

In mathematical problem, (5) is a generalized eigenvalue
problem of matrixesM and K. Here, � and � are eigenvalues
and eigenvectors, respectively. In mechanical system, � and
� are natural frequencies and natural shapes in simpli
ed
model of rotated blades. If � have nonzero solutions, nec-
essary and su�cient conditions must be satis
ed as in the
following equation:

det (K − �2M) = 0 (6)

which can be written in a normalized form as

�������������������������������

��1 + 2�� − �2	�1 −�� ⋅ ⋅ ⋅ 0 −��
−�� ��2 + 2�� − �2	�2 −�� 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 −�� ��15 + 2�� − �2	�15 −��

−�� 0 ⋅ ⋅ ⋅ −�� ��16 + 2�� − �2	�16

�������������������������������
= 0. (7)

In tuned condition, equivalent sti�ness of each blade is

de
ned as ��� = �� and equivalent mass 	�� = 	�. According
to [19], equivalent sti�ness and equivalent mass of a static

cantilever beam in lumped-parametermodel are calculated as�staticeq = � !4/32�3 and 	� = 0.228	��, where � is Young’s

modulus of blades,  is rotary inertia of a blade, which can

be calculated as  = �ℎ3/12, 	� is the unit length mass of a

blade, which can be calculated as 	� = "�ℎ; " is density of

blades.

Centrifugal rigidity will appear in rotated blades due to
centrifugal force.When lumped-parametermodel ismodeled
and analyzed, equivalent sti�ness of rotated blades is consid-
ered at di�erent rotated speed. According to [20], equivalent
sti�ness of a rotated blade at di�erent speed can be calculated
as follows:

�� = �staticeq + 4!2	�#$2, (8)
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where$ is rotated speed of blades. # is the calibration factor,
which can be calculated as follows:

# = ( !30)2 ∫
�
0 (* + -) [∫�0 (67/6-)2 6-] 6-∫�0 726- , (9)

where * is the radius of the disc. 7 = (sin :�- − sh :�-) +;�(cos :�-− ch :�-)with ;� = (cos<� + ch<�)/(sin<� − sh<�)
and :� = <�/�. > is the order of mode. 7 depends on vibration
mode of the blade. 	e 
rst-order mode is considered in
SDOF lumped-parameter model. So we will have <� = <1 =1.875.

Coupled sti�ness between two adjacent blades is calcu-
lated as follows:

�� = A��, (10)

where A is coupled factor. Using ��� = ��, 	�� = 	�, and (10),
(7) can be simpli
ed as in the following form:

������������������������������������������

1 + 2A − �2�2� −A ⋅ ⋅ ⋅ 0 −A
−A 1 + 2A − �2�2� −A 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 −A 1 + 2A − �2�2� −A
−A 0 ⋅ ⋅ ⋅ −�� 1 + 2A − �2�2�

������������������������������������������
= 0,

(11)

where �� = √��/	�. Equation (11) is expanded and solved
to obtain natural frequencies of tuned blades. Solutions are
shown as follows:

�2�tuning = �2� [1 + 2A(1 − cos
2! (� − 1)� )] ,

� = 1, 2, 2, . . . , 8, 8, 9; 
 = 1, 2, . . . , 15, 16. (12)

Evidently, except for � = 1 or � = 9, double eigenvalues
occur. By substituting (12) into (5), this equation is solved and

solutions of �tuning� exist in the following form:

�	� = [1, cosK	, . . . , cos (� − 1) K	]
�	� = [0, sinK	, . . . , sin (� − 1) K	] ,� = 1, 2, 2, 3, 3, . . . , 8, 8, 9; � = 16,

(13)

where K	 = 2!(� − 1)/�. Based on (12) and (13), we can
get natural frequencies and natural shapes of tuned rotated
blades.

As mistuning is inevitable in rotated blades, mistuned
sti�ness is used to represent micromistuning of MRBs [21].
We de
ne the mistuned factor of each blade as M�, so the
equivalent sti�ness of 
th blade is shown as follows:

��� = (1 + M�) ��. (14)

On the other hand, equivalent mass does not have

mistuning and 	�� = 	�. By substituting (14) and 	�� = 	�
into (7), one can get the following formula:

����������������������������

(1 + M1) �� + 2�� − �2	� −�� ⋅ ⋅ ⋅ 0 −��−�� (1 + M2) �� + 2�� − �2	� −�� 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 −�� (1 + M15) �� + 2�� − �2	� −��−�� 0 ⋅ ⋅ ⋅ −�� (1 + M16) �� + 2�� − �2	�

����������������������������
= 0. (15)

Next, (15) can be simpli
ed as follows:

������������������������������������������

(1 + M1) + 2A − �2�2� −A ⋅ ⋅ ⋅ 0 −A
−A (1 + M2) + 2A − �2�2� −A 0 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ 0 −A (1 + M15) + 2A − �2�2� −A
−A 0 ⋅ ⋅ ⋅ −A (1 + M16) + 2A − �2�2�

������������������������������������������

= 0. (16)
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	en, (16) can be expanded and solved to obtain natural
frequencies. Solutions are shown as follows:

�2�mistuning = �2� [1 + M� + 2A(1 − cos
2! (� − 1)� )] ,

� = 1, 2, 2, . . . , 8, 8, 9; 
 = 1, 2, 3, . . . , 16, (17)

when �2�mistuning is chosen of di�erent value, substituting

it into (5). 	e equation is solved and �mistuning
� is got.

So we can get natural frequencies and natural shapes of
MRBs.

When a crack appears in MRBs, contact area of the
crack periodically opened and closed due to vibration of
the cracked blade, which is called a breathing crack. Con-
sequently, equivalent sti�ness of the cracked blade is time-
varying and changed period is related to air�ow excitation��. Next, the key problem is how to obtain equivalent time-
varying sti�ness of a blade with a breathing crack. According

to [19], a cosine function is adopted to represent time-varying
sti�ness of the blade with a breathing crack; that is,

�eq� (�) = ���open + 12 (���close − ���open) (1 + cos (��)) , (18)

where ���close and ���open are equivalent sti�ness of the blade

with a crack fully open and close state, respectively.
When a crack keeps fully close state in a blade, equivalent

sti�ness of the blade ���close = ��� ; if the crack keeps fully open
state in the blade, equivalent sti�ness of the cracked blade can
be obtained as follows [19]:

���open = 1(1/��� + (72��2! (1 − ]
2) /��ℎ4) N (K)) , (19)

where N(K) = �2(19.60K8 − 40.69K7 + 47.04K6 − 32.99K5 +20.30K4 − 9.98K3 + 4.60K2 − 1.05K + 0.63), K = �/ℎ, and ]

is Poisson’s ratio of MRBs. Obviously, ���open is closely related
to depth and position of a crack. By substituting (14) and (18)
into (7), one can get the following formula:

���������������������������������������

(1 + M1) �� + 2�� − �2	� −�� ⋅ ⋅ ⋅ 0 −��−�� (1 + M2) �� + 2�� − �2	� −�� 0 0...0...
...−��...

...�eq� (�) + 2�� − �2	�...

...−��...
...⋅ ⋅ ⋅...0 0 −�� (1 + M15) �� + 2�� − �2	� −��−�� 0 ⋅ ⋅ ⋅ −�� (1 + M16) �� + 2�� − �2	�

���������������������������������������= 0.

(20)

Due to equivalent time-varying sti�ness of 
th blade with
a breathing crack, �eq� (�) + 2�� − �2	� appears in (20). So we
cannot solve (20) and get natural frequencies of MRBs with
a breathing crack. Under this case, according to [22], natural
frequency of a blade with a breathing crack can be calculated
as follows:

��� = 2���close���open���close + ���open , (21)

where ���close, ���open are natural angular frequency of the

blade with a crack fully open and close state, respectively.
Based on (7), we can obtain eigenvalue equation of MRBs
with a fully open crack as follows:

��������������������������������������

(1 + M1) �� + 2�� − �2	� −�� ⋅ ⋅ ⋅ 0 −��−�� (1 + M2) �� + 2�� − �2	� −�� 0 0...0...
...−��...

...���open + 2�� − �2	�...
...−��...

...⋅ ⋅ ⋅...0 0 −�� (1 + M15) �� + 2�� − �2	� −��−�� 0 ⋅ ⋅ ⋅ −�� (1 + M16) �� + 2�� − �2	�

��������������������������������������
= 0.

(22)
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Using the above equation, ���open can be calculated. Com-

bining with ���close from (17), we can get natural frequencies
of MRBs with a breathing crack by (21). 	en, substituting it

into (5), the equation is solved and gets natural shapes �crack�
under di�erent natural frequencies.

2.2. Forced Vibration Modeling and Analysis of MRBs with a
Breathing Crack. In practice, vibrations of MRBs are mainly
caused by air�ow excitation. Simultaneously, systemdamping
dissipates vibration energy of MRBs. So, in the next analysis,
damping e�ect is considered in forced vibration by air�ow
excitation. In the above modal analysis, mistuned sti�ness is

used to represent micromistuning of MRBs and 	�� = 	�.
In addition, equivalent damping of MRBs does not cause

mistuning and ��� = ��. It can be calculated as �� = 2O	���,
where O is damping ratio. Forced vibration equations ofMRBs
by air�ow excitation F are shown as (1). In regard to air�ow
excitation of rotated blades, many researchers agree that
air�ow force under steady �ow has cyclicity in rotated blades.
So harmonic function can be used to represent equivalent
model of air�ow force [23, 24]. Air�ow excitation of each
blade can be simpli
ed and air�ow force of 
th blade is shown
as follows:

�� = �0 cos(�excite� + 2!�0 (
 − 1)� ) , (23)

where �0 is the equivalent amplitude of air�ow force. �excite

is the angular frequency of air�ow force, which can be
calculated as�excite = 2!$/60.�0 is the order of air�ow force.

As to	�� = 	� and ��� = ��, we can obtain

C = KM, (24)

where K is constant. According to (24), which is known as
proportional damping, by substituting (24) into (2), we obtain

MẌ + KMẊ + KX = F. (25)

By expressing the solution vector X as a linear combina-
tion of the natural shapes of the undamped system, we obtain
the following equation:

X = [�mistuning
� ] q, (26)

where q is modal coordinate. Next, by substituting (26) into
(25), (25) can be rewritten as follows:

M [�mistuning
� ] q̈ + KM [�mistuning

� ] q̇ + K [�mistuning
� ] q

= F. (27)

Premultiplication of (27) by [�mistuning
� ]
 leads to

[�mistuning
� ]
M [�mistuning

� ] q̈
+ K [�mistuning

� ]
M [�mistuning
� ] q̇

+ [�mistuning
� ]
K [�mistuning

� ] q = [�mistuning
� ]
 F.

(28)

Based on modal analysis results of MRBs, (28) can be
reduced to

 q̈ + K q̇
+ diag [�21mistuning, �22mistuning, . . . , �216mistuning] q

= [�mistuning
� ]
 F.

(29)

According to (29), we can obtain that

̈P� (�) + K ̇P� (�) + �2�mistuningP� (�) = Q� (�) ,

 = 1, 2, . . . , 16, (30)

where ��mistuning is natural frequency of 
th blade under

undamped system and Q(�) = [�mistuning
� ]
F. We solve the

above decoupled second-order linear di�erential equations
(30). 	en, X is obtained by substituting [P�(�)] into (26).
In other words, forced vibration response of every blade by
air�ow excitation has been solved.

When a breathing crack appears in MRBs,

K =

[[[[[[[[[[[[[[[[[[

(1 + M1) �� + 2�� −�� ⋅ ⋅ ⋅ 0 −��−�� (1 + M1) �� + 2�� −�� 0 0
...
⋅ ⋅ ⋅
...

...
−��...

...
�eq� (�)

...

...
−��...

...
⋅ ⋅ ⋅
...0 0 −�� (1 + M1) �� + 2�� −��−�� 0 ⋅ ⋅ ⋅ −�� (1 + M1) �� + 2��

]]]]]]]]]]]]]]]]]]

. (31)
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So (29) is converted into the following formula:

 q̈ + K q̇ + diag [�21 , �22 , . . . , S�eq� (�)	� , . . . , �216] q

= [��]
 F,
(32)

where S come from computational process. We solve the
above decoupled second-order nonlinear di�erential equa-
tions (32). 	en, combining with (26), we can get vibration
response of MRBs with a breathing crack.

	e equivalent time-varying sti�ness of cracked blade
changes compared with other rotated blades due to a crack.
	en, the crack can change original mistuning of MRBs. No
matter what original micromistuning or mistuning change
due to a crack, these can change vibration characteristics of
MRBs. So a quantitative parameter is needed to represent
vibration characteristics of MRBs, which is used to analyze
e�ects of crack on vibration characteristics of MRBs. From
[25], a local parameter is introduced to achieve this goal. In
simpli
ed lumped-parameter model, vibration energy of a
blade is proportional to square of amplitude. 	en, we can
use Euclidean norm to de
ne the local parameter as follows:

� = √V2max − (1/ (� − 1))∑��=1,� ̸=
V�2(1/ (� − 1))∑��=1,� ̸=
V�2 , (33)

where V� is the amplitude of 
th blade. X is the serial
number of maximum amplitude among rotated blades and
the value isVmax. Equation (33) represents di�erence between
the maximum vibration energy of a blade and the average
vibration energy of other blades. So the local parameter
describes vibration characteristics of all blades. In order to
describe vibration characteristics of every blade, which are
used for crack detection in MRBs, a variational factor is
de
ned and shown as follows:

M� = �����2 − �1�����1 , (34)

where �1 is a vibration parameter of a blade under reference
condition. �2 is a vibration parameter of the blade by a crack
changing.We can use the variational factor to study vibration
parameter change of every blade by a crack.

Next, we will use these models and parameters to analyze
vibration characteristics of MRBs and the corresponding
e�ects of crack. In the meantime, crack detection in MRBs
is studied based on analytical results.

3. Numerical Analysis of Crack on Vibration
Characteristics of MRBs

Numerical analyses are done in this section based on pre-
vious foundations. Materials and geometric properties of
rotated blades in numerical analysis are listed in Table 1.
In Section 1, manufacturing tolerances, using abrasion and
material properties, are mainly reasons of mistuning in
rotated blades. Characteristics of these factors are random in

Table 1: Materials and geometric properties of rotated blades.

Symbols Properties Value� Length of the blade (mm) 95ℎ 	ickness of the blade (mm) 2.5� Width of the blade (mm) 45* Radius of the disc (mm) 200� Young’s modulus (Pa) 0.689 × 1011
] Poisson’s ratio 0.33" Density of the blade (kg/m3) 2800O Damping ratio 0.01� Number of blades 16$ Rotated speed of MRBs (RPM) 5000�0 Order of air�ow force 1

Table 2: Values of mistuned factors.

Mistuned factors Mistuning1 Mistuning2 Mistuning3M1 −0.017632 −0.030061 −0.110847M2 −0.003227 0.002358 0.033806M3 −0.008396 0.017452 −0.011001M4 −0.016606 0.018437 0.036723M5 0.030125 0.003265 −0.020770M6 0.015009 −0.016293 −0.051720M7 −0.003899 0.008074 −0.000349M8 0.001149 0.015123 0.009334M9 0.003589 0.043689 −0.016968M10 −0.000121 −0.001876 −0.058778M11 −0.005704 −0.005884 0.048257M12 0.009340 −0.010096 0.007893M13 −0.011383 −0.038540 −0.028275M14 0.019572 0.010428 0.048655M15 −0.001027 −0.041088 0.014687M16 −0.003233 −0.005398 −0.050701
Average value 0 0 0

Standard deviation 1% 2% 4%

practice. According to [25], mistuned factors M� comply with
normal distribution. In this paper, the mistuned factors M�
under di�erent mistuned levels are listed in Table 2.

3.1. E	ects ofMistuning andCoupling onModal Characteristics
of MRBs. In order to testify vibrational di�erences of tuned
rotated blades andMRBs, 
rstly, numerical analyses are done

here based on (13) and �mistuning
� . Materials and geometric

properties of blades in simulations are listed in Table 1.
Coupled factor A is chosen as 0.01. Natural shapes of tuned
blades (mistuned factors M� = 0) under di�erent orders are
shown as Figure 4. First-order natural shapes are equivalent
and other orders’ natural shapes change harmoniously in
Figure 4. In MRBs, mistuned factors M� are chosen as mistun-
ing1 in Table 2. Other parameters remain constant. Natural
shapes of MRBs are shown in Figure 5. From the 
gure,
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Figure 4: Natural shapes of tuned rotated blades under di�erent orders.

modal amplitude mainly appears on a few blades for every
order. 	is phenomenon is called mode localization and it
is caused by mistuning [4, 5, 16, 26, 27]. In order to show
mode localization of MRBs quanti
cationally, (33) is used in
the next analysis.	en, we will study e�ects of mistuning and
coupling on modal characteristics of MRBs further.

Based on Figure 5, mode localization parameters (MLPs)

can be got combined with �mistuning
� and (33). In addition,

natural frequencies of MRBs are from (17). Firstly, e�ects
of mistuning on mode localization of MRBs are studied.
Materials and geometric properties of blades remain constant
and A = 0.01. Natural frequencies and MLPs change with
orders under di�erent mistuned levels are calculated and
shown in Figures 6 and 7. According to (12), tuned blades
have superposition of natural frequency except for those
of 
rst order and sixteenth order (e.g., natural frequency
of second order is equal to that of third order and all
of these are 289.8Hz) in Figure 6. Natural frequencies of
all orders distribute in small range (289.6Hz–295.3Hz) of
tuned rotated blades. But when mistuning is brought in

rotated blades, superposition of natural frequencies is split.
	e range of natural frequencies increases with mistun-
ing strengthening. In addition, natural frequency of 
rst
order decreases signi
cantly with mistuning strengthening.
In Figure 7, MLPs of 
rst order and sixteenth order are
0 and MLPs of other orders are 1. 	is phenomenon is
consistent with the results of Figure 4. But with mistuning
of MRBs strengthening (standard deviation of M� increasing),
MLPs increase accordingly and MLP of 
rst order increases
obviously. 	e greater the dispersion of natural frequencies
is, the less the occurrence of resonance appears in MRBs.
So mistuned level of MRBs should be greater. On the other
hand, biggish mistuning can cause MLPs of MRBs increasing
in Figure 7, which induce fatigue cracks in MRBs easily. So
mistuning ofMRBs should be kept in appropriate range based
on the above factors [25, 28].

Next, e�ects of coupling between MRBs (A) on mode
localization are studied further. Keep above parameters
constant. Natural frequencies and MLPs change with orders
under di�erent coupled factors are calculated and shown in
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Figure 5: Natural shapes of MRBs under di�erent orders.
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Figures 8 and 9. In Figure 8, the range of natural frequencies
increases with A enhancing. When A increases to 0.1, super-
position of natural frequencies reappears. In addition, natural
frequency of last order increases markedly with coupled
factor enhancing. In Figure 9, MLPs decrease contrary to A
enhancing and MLP of last order decreases obviously. WhenA is greater than or equal to 0.05,MLPs of all orders are almost
equal to 1. So mode localization of MRBs mainly appears in
weak coupling pattern. 	e greater the dispersion of natural
frequencies to avoid resonance in MRBs is, the smaller the
MLPs are required. So it is particularly important to increase
coupled level ofMRBs. But, in practice, too large coupled level
can potentially lead to resonance of blades and disk. So A
also has an upper limit [25, 28]. In subsequent analysis of this
paper, A is no more than 0.1.

3.2. E	ects of a Crack on Modal Characteristics of MRBs.
Based on the above analysis, we know modal characteristics
of MRBs and get e�ects of mistuning and coupling on modal
characteristics of MRBs. But when a crack appears in MRBs,
mistuning of MRBs will be changed by the crack expanding.
	is can change vibration characteristics of MRBs. Next,
we study quanti
cationally that depths and positions of a
crack change natural frequencies, vibration amplitudes, and
localization parameters of vibration response (LPVRs) of
MRBs. 	ese have important guidance for cracks detection
in MRBs.

Firstly, we study e�ects of a crack on natural frequency
of each blade in MRBs. In next analysis, natural frequencies
of MRBs with a breathing crack are computed based on (21).
In numerical analysis, the crack is assumed to locate at the
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1st blade. Materials and geometric properties of blades are
listed in Table 1. Mistuned factors M� are chosen as mistuning1
in Table 2. Here, A is chosen as 0.1. Distance between the
crack and 1st blade tip �� is set as 85mm. Natural frequency
of each blade under di�erent depths of the crack � is shown
in Figure 10. From the 
gure, natural frequency of 1st blade
decreases with � increasing. Moreover, natural frequencies of
other blades change because blades are interconnected with
each other by lacing wire. In practice, we cannot determine
which blade manifests a crack by natural frequency changes
of MRBs. But we use M� = |�2 − �1|/�1 to analyze frequency
change of each blade under di�erent �, where �1, �2 are

natural frequencies of a blade with di�erent �, respectively.
	e analytical results are shown in Figure 11. In the 
gure,�1, �2, �3, �4 are frequency changes of all blades with � =0mm and � = 0.1mm, � = 0.2mm and � = 0.25mm,� = 0.9mm and � = 0.91mm, and � = 1.5mm and � =1.51mm, respectively. We conclude that frequency change
of the cracked blade is obviously greater than other blades.
Comparing with �3 and �4, when � increases, frequency
change increases as identical depth change of the crack. In
practice, when a crack appears in MRBs, � increases with
MRBs continuous working.We can choose natural frequency
of each blade at di�erent period to analyze variational factor.
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If natural frequencies of blades change, and variational factor
of a blade is always larger than other blades obviously, the
blade of MRBs can be initially determined as a cracked blade.

Next, we further study the e�ects of positions of a crack
on natural frequencies of MRBs. Here, � = 1.5mm and other
parameters are 
xed as in the above. 	e relations between
positions of a crack and natural frequency of each blade
are shown in Figure 12. When the crack is close to root of

1st blade, natural frequencies of 1st blade and other blades
decrease. 	e M� = |�2 − �1|/�1 is used to analyze e�ects
of the crack at di�erent positions on frequency change of
each blade, where �1, �2 are natural frequencies of a blade
with di�erent positions of a crack, respectively.	e analytical
results are shown in Figure 13. �5, �6, �7, �8 are frequency
changes of all blades with �� = 5mm and �� = 15mm,�� = 5mm and �� = 40mm, �� = 5mm and �� = 65mm,
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and �� = 5mm and �� = 90mm, respectively. We analyze
frequency change of each blade between di�erent positions of
the crack and �� = 5mm.	ese can be seen that (i) when the
crack is close to root of the cracked blade, frequency change
of the cracked blade is obviously larger than other blades.
(ii) Natural frequency of a blade changes by a crack in root,
which is far greater than the crack in tip of the blade. In other
words, when a crack appears in root of a blade, it is easy to be
detected.

3.3. E	ects of a Crack on Forced Vibration Response of
MRBs. Based on the above analysis of a crack on modal
characteristics of MRBs, the crack also changes vibration
response of MRBs. Materials and geometric properties of
blades are listed in Table 1. Mistuned factors M� are chosen as
mistuning1 in Table 2. Here, �0 = 30N, A = 0.01, and �� =85mm. A crack is located at 1st blade; vibration amplitudes
of MRBs under di�erent � are shown in Figure 14. From
the 
gure, vibration amplitude of 1st blade increases along



Shock and Vibration 15

2 4 6 8 10 12 14 160

Blade number

×10
−3

0

0.5

1

1.5

2

2.5

A
m

p
li

tu
d

e 
ch

an
ge

 r
at

io
,�

A

L9

L10

L11

L12

Figure 15: Vibration amplitude changes of MRBs under di�erent �.

with � increasing. But when � ≤ 0.5mm, the incremental
amplitude is very small and vibration amplitude of the
cracked blade is equal to maximum vibration amplitude.
Furthermore, vibration amplitudes of other blades change
with � increasing. So we cannot determine which blade
manifests a crack by vibration amplitude changes of MRBs in
operation.	en, based on the above analytical results, we useMZ = |Z2 − Z1|/Z1 to analyze vibration amplitude change
of each blade under di�erent �, where Z1, Z2 are vibration
amplitudes of a blade with di�erent �, respectively. When� ≤ 0.5mm, the analytical results are shown in Figure 15. In
the 
gure, �9, �10, �11, �12 are vibration amplitude changes
of all blades with � = 0mm and � = 0.1mm, � = 0.1mm
and � = 0.15mm, � = 0.2mm and � = 0.21mm, and� = 0.25mm and � = 0.3mm, respectively. Vibration
amplitude change of the cracked blade is obviously greater
than other blades. Comparing with �10 and �12, when �
increases, vibration amplitude change increases as identical
depth change of the crack. In practice, when a crack appears
in MRBs, � expands with MRBs continuous working. We
choose vibration amplitudes of rotated blades at di�erent
period to analyze variational factors. If vibration amplitudes
of blades change and variational factor of a blade is always
obviously larger than other blades, the blade of MRBs can
be initially determined as a cracked blade. Moreover, when
vibration amplitude of a blade is obviously larger than other
blades, we also determine a cracked blade in MRBs.

Next, e�ects of positions of a crack on vibration ampli-
tudes of MRBs are studied. Here, � = 1.5mm and other
parameters are 
xed as in the above. Relations between
vibration amplitudes and positions of the crack are shown in
Figure 16. From the 
gure, vibration amplitude of 1st blade
increases along with position of the crack close to root of 1st

blade. But when �� ≤ 20mm, incremental amplitude of the
cracked blade is very small and vibration amplitude of the
cracked blade is equal to maximum vibration amplitude. In
addition, vibration amplitudes of other blades change with ��
increasing. So cracks are detected hardly by vibration ampli-
tude changes of MRBs. 	en, vibration amplitude changes
of all blades under di�erent positions of a crack are shown
in Figure 17. From the 
gure, �13, �14, �15, �16 are vibration
amplitude changes of MRBs with �� = 1mm and �� = 2mm,�� = 10mmand �� = 10.5mm, �� = 15mmand �� = 15.2mm,
and �� = 19mm and �� = 19.5mm, respectively. 	ese can
be seen that (i) when a crack appears in MRBs, vibration
amplitude change of the cracked blade is larger than other
blades. (ii) When a crack is close to root of the cracked blade,
vibration amplitude change under identical position change
of the crack is obviously larger than the crack in tip of the
blade. In other words, when a crack appears in root of a blade,
it is easily to be detected.

Based on the above analyses between parameters of the
crack and vibration amplitudes of MRBs, we study e�ects
of a crack to LPVRs further. Keep the above parameters
constant, combining with (33) and vibration amplitudes of
MRBs. 	e relations between LPVRs and parameter changes
of a crack are shown in Figure 18. From the 
gure, we can
summarize some conclusions as follows: (i) LPVRs almost
do not change when depth of the crack is small and the
crack appears in blade tip within a small range. (ii) LPVR
increases obviously when the crack makes the vibration
amplitude of the cracked blade greater than other blades. In
addition, peak value appears in increased process. 	e main
reason is the crack which is external crack and modeled as
a breathing crack. Vibration amplitude of the cracked blade
shows nonlinear phenomenon with parameters of the crack
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Figure 17: Vibration amplitude changes of MRBs under di�erent ��.

changing. 	en, we further explore and validate nonlinear
dynamic characteristics of the cracked blade under di�erent
sizes of a breathing crack.

According to Figure 18, set �� = 85mm and other
parameters are 
xed as in the above. Bifurcation diagram
is calculated by resampling vibration displacement of the
cracked blade and it is shown in Figure 19.We can see that the

depth � has obvious e�ects on nonlinear dynamic responses
of the cracked blade. With increase of �, the following
bifurcation phenomenon can be observed in Figure 19: (i)
when � changes from 0mm to 1.43mm, the response of
vibration displacement is a single-periodmotion. (ii)When �
changes from 1.43mm to 1.65mm, the response of vibration
displacement is a triple-period motion. (iii) When � changes
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from 1.65mm to 2.23mm, the response of vibration displace-
ment is a double-period motion. (iv) When � is 2.23mm, the
response of vibration displacement changes to multiperiod
motion suddenly. (v) When � changes from 2.23mm to
2.5mm, the response of vibration displacement is a double-
period motion again. So when � is 1.65mm or 2.23mm,
motion changes suddenly, which makes peak value appear in
increased process of LPVRs.

4. Conclusions

Diagnosis of crack faults inMRBs is very signi
cant for safety,
reliability, and availability. In practice, mistuning is inherent
feature in rotated blades, which makes cracks be detected
di�cultly. 	us, studying the e�ects of crack on vibration
characteristics of MRBs can provide a promising way for
crack detection in MRBs. In this paper, MRBs are simpli
ed
to a coupled lumped-parameter model. 	en, mistuned
sti�ness is introduced to represent mistuning of rotated
blades, which complies with normal distribution. In addition,

a breathing crack model is adopted to study e�ects of a crack
on vibration characteristics of MRBs. Finally, eigenvalue
analysis and numerical analysis are done, and the following
conclusions can be drawn: (i) Mistuning causes vibration
localization in MRBs. Mode localization of MRBs increases
along with mistuning strengthening. In addition, intensive
coupling can reduce mode localization of MRBs. (ii) E�ects
of depths and positions of a crack on natural frequencies and
vibration amplitudes are studied.	e results show that a crack
causes natural frequency decease and vibration amplitude
increase of cracked blade. We can use variational factors of
natural frequencies and vibration amplitudes under di�erent
status of a crack to detect a crack in MRBs. (iii) Bifurcations
of vibration displacement will occur due to a breathing crack,
which causes nonlinear behaviors of LPVRs.

Finally, it must be noted that online crack detection in
MRBs is an extreme complex problem, which is realized
di�cultly. In this paper, lumped-parameter model of MRBs
with a breathing crack is built and e�ects are revealed by
theoretical and numerical analyses, which provide theoretical
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guidance for crack detection inMRBs. Hence, in future study,
the proposed method is expected to be used in practical
engineering, which achieves online crack detection inMRBs.
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