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In modulus measurement by depth-sensing indentation, previous considerations assume
elastic recovery to be the sole process during unloading, but in reality creep and
thermal drift may also occur, causing serious errors in the measured modulus. In this
work, the problem of indentation on a linear viscoelastic half-space is solved using the
correspondence principle between elasticity and linear viscoelasticity. The correction
term due to creep in the apparent contact compliance is found to be equal to the ratio
of the indenter displacement rate at the end of the load hold to the unloading rate. A
condition for nullifying the effect of thermal drift on modulus measurement is also
proposed. With this condition satisfied, the effect of thermal drift on the calculated
modulus is negligible irrespective of the magnitude of the drift rate.

I. INTRODUCTION load hold before unload is lengthened [c.f. (iii)].

Depth-sensing indentation is rapidly becoming a stan¥vhen a nose appears, the elastic modulus cannot be cal-
dard method for measuring the elastic modulus of matecUlated accurately using the Oliver—Pharr scheme, since
fialsX~® In the Oliver—Pharr schenfethe elastic modulus the apparent contact stiffness is now negative. Even
of the specimen is estimated from the unloading segment fh€n & nose does not occur, the presence of creep may
the load—displacement curve in which the material isload to serious errors in the estimation of the modulus,
assumed to undergo purely elastic recovery. Howevet!N€ss one corrects for its effect. _
even for metals at room temperature, creep effects may !N this paper, we present a simple scheme by which we
be significant at the peak load. Examples to illustrate thi¢@n correct for the creep effects during modulus meas-
are shown in Fig. 1, which shows the displacement—tim&/'ément. We also derive a condition by which the ef-
curves of aluminium and NAI samples during load hold fects_ of thermal drift on the measured modulus can be
at the peak load. It can be seen that the indenter displac8Ullified.
ment continues to increase in both cases, even after a
long hold of 10 min, and that the displacement!l. CORRECTION FORMULA FOR CREEP
rate appears to settle to a steady value ofa. Theory
approximately 0.02 nm/s in Al and 0.009 nm/s ingAli . .
Such a significant creep effect at the peak load may :ntlh? (3I|¥er—Ptr;]arr scr:err;e,t'g?fe rggutc?ﬁl modEuthf
influence the subsequent unloading behavior, especiallCa culatled from he contact stilinessat the onset o

when the unloading rate is slow. In the extreme case o nload as
creep dominating elastic recovery at the onset of unload, \/; S
the load—displacement curve may even exhibit a “nose.” E = o Wc ) (1)

An example of this is shown in Fig. 2 for aluminium.

Figure 2(a) shows load schedules (i) to (iii) for threewhereA. is the contact area at full load. The contact area
similar indentation experiments on the same aluminiumA is calculated from the contact degthby assuming a
sample. Load schedule (i) has a very rapid unloadinghape function of the indenter, i.e.,

rate, while (ii) and (iii) have a common but slower un- A, =f(h)
loading rate. Schedules (i) and (ii) have a short load hold “ )
before unload, while (iii) has a longer load hold. The he = oy — € —n

unloading curves for the three schedules are shown in S

Fig. 2(b). A conspicuous nose can be seen in the unloadvheree is a constant depending on the indenter geometry
ing curve for (ii). It can be seen that the nose disappear& = 0.75 for the Berkovich tip). Thus, as can be seen
when the unloading rate is increased [(i)] or when the  from Egs. (1) and (2), an accurate estimateEphinges
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FIG. 1. Displacement—time curve of the load-hold process after cor-
rection of thermal drift in (a) Al, load= 2918.1+1.5uN and (b)  indenter displacemerit is the sum of elastic and creep
NizAl(111), load = 4964.6 + 2.1uN. The inset in (a) shows the load components and to apply standard spring-dashpot models
schedule. to such a system. We however observe that, even in the
linear viscoelastic situatiom,does not superpose linearly
on the accurate determination of the elastic contact stiffin this way. The reason is thatdoes not only mark the
nessS at the onset of unloading. When the specimemmagnitude of the displacement field but also marks
undergoes purely elastic recovery during unloading, thehe size of the contact zone so that, unlike the case of
contact stiffness to be used in Egs. (1) and (2) wouldsimple tension where the contact area with the load is
indeed be the observed (or apparent) contact stiffnedixed, doubling the material’s compliance, for example,
S, at the onset of unload. However, when creep occursvill not doubleh proportionately in indentation. Further-
alongside elastic deformation, we will show below that,more, during a transient stage, the creep component of
for a load schedule consisting of a load hold followed bythe displacement field will not be self-similar, and hence
unloading, theSto be used in Egs. (1) and (2) will no longer individual consideration of it will become difficult.
be the same as the appar&tbut is related to it by Therefore, we believe it is necessary to work from first
. principles, and this is the aim of this section.
1 1 h Suppose that the material to be indented is linear vis-
ST s, +ﬁ : (3 coelastic with stress—strain behavior represented by a
Maxwell spring-dashpot model as shown in Fig. 3. Since,
where the second term above is the correction due tas far as modulus measurement is concerned, we are
creep and thermal drift. Herl,, is the indenter displace- mostly interested in the load hold and unloading seg-
ment recorded at the end of the load hold, @&the ments of the load schedule, the power-law behavior of
unload rate at the onset of unload. plasticity is ignored. In practice, time-independent plas-
To deal with creep during unload, one has to workticity effects can be eliminated in subsequent consider-
within a viscoelastic framework, although the problemations if the indent shape is introduced beforehand by a
of pure creep during indentation has been sol/8#h  quick load-ramp and unload cycle as shown in the load
doing so, it may be tempting to assume that the overalbchedules in Figs. 1 and 2. The assumption of linearity in
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FIG. 3. Maxwell model for linear viscoelasticityy, is a deviatoric
stress anck the resultant deviatoric strain.

FIG. 4. Conical indentation into a half-space.
the viscoelasticity allows an analytical solution to be
found. Power-law creep may well occur in practice, but .
as we will see later, the good agreement with experi— _ (i +§ . 1>§
ments serves as the main justification for adopting the? \2G 20, s/
linear approximation here. The solution can be derived 5)
using the correspondence principle between elasticit
and linear viscoelasticity suggested by Rafokhich
states that the solution to every purely linear elastic pro
lem, the Laplace transform of the solution to a corre

sponding linear viscoelastic problem under identicaltityﬁ)' b dok’ d inciole. the elasi
boundary conditions and zero initial conditions can be 1Nnus, by Radok’s correspondence principle, the elastic

obtained by simply substituting the elastic constants i onstants in the purely elastic problem are to be replaced

the purely elastic solution by the Laplace transform of the?Y the following in the Laplace transform of the vis-
time differential operators in the viscoelastic problem.CoeIaStIC problem:
However, as discussed by Lee and Ratfbihe substi- 1 1 3% 1
tution procedure in Radok’s correspondence principle — . —-+—2.2 . B_.B . (6)
does not always lead to valid operators in the stress re- G G o, s

lations, and for the case of indentation, these authors

have shown that the correspondence principle gives valig]
viscoelastic solution only when the contact area does n sted in conical indentation as shown in Fig. 4, which

0 Tinnll ; i
decreasé® Ting* reformulated the viscoelastic indenta- shows a conical indenter with half-angtebeing pressed

tion problem and provided solutions for general Ioadim0 an elastic half space by a loB¢) which varies with

schedules including unload. Ting's solution agrees with; e t, making a depression with a contact circle of in-
that by Lee and RaddR for the case of monotonically gantaneous radius The Sneddon solution yields
increasing contact area. In what follows, we reproduce

the derivation of the viscoelastic indentation solution fol- 1 T 5
lowing the spirit of Lee and Radok’s and Ting’s work but g PO =5 coea (1) . (1)
cast it in a different form to suit our present purpose. '

The stress—strain relationship expressed in terms of th€o obtain the corresponding relation in the viscoelastic
deviatoric stres§; = o;; — §;0,/3 and deviatoric strain case, the reduced modul&s in Eq. (7) must be trans-
8 = €; — 9;€4/3 for a linear elastic material and the formed. SinceE, = 4G (3B + G)/(3B + 4G), as a result
Maxwell viscoelastic material illustrated in Fig. 3 are, of Eq. (6),E, is to be transformed by
respectively,

, 0; =3Be, forviscoelasticity.

¥-|ereG and B are the shear and bulk modulus respec-
plively, €, ando, are normalizing material constants, and
( )* is the Laplace transform of a time-dependent quan-

The problem of indenting on a purely elastic solid has
een solved by SnedddA.In particular, we are inter-

1 1 3 1 FE%, 1
1 . = o =+ ot _ , (8)
g = %Si , o = 3Beg; for elasticity, and E. E 4o, s 36B%, (s+Ee/a,)
1. 3¢, whereE is the Young’s modulus. Therefore the Laplace

& =56+ 2708" 03 = 3Be; forviscoelasticity, o nsform of the viscoelastic version of Eq. (7) is

1 E%, m ,
—t+————— P* =5colx (a)*

(]

2

eIA

or, in terms of Laplace transforms, { 1 3%
, )

J— + . +
1 E 4o, s 2 :
=565 . o) =3B forelasticity, and T o 36805 + Bey)

9)
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It can be shown that Eq. (9) agrees with the formulatiorsubsequent unload schedule do not matter. During the
given at Ting" for the case of nondecreasing contactload hold,P = 0, so that the creep rate towards the end

area. Inverse transforming Eq. (9) leads to of the load hold, i.e., at = t;, from Eq. (10) is
P) 3e (i, 2a(t)ht = 3 P(t)
E +Eofop(t)dt ' 40, _h :
E%, ft; Be, _ |-, at
Ezéo ¢ EG_O + 36820- 0 ex _0__0 (th - t ) P(t ) t
b f exd ——2 (t - t') |P(t')dlt’ o
36B%0,, YO o, (11)
- At the onset of the unloading segmeint; t;; with P < 0,
= Eaz cot and Eg. (10) yields
. .. . 1L : 36O +
or, upon differentiating with respect to 2a(tyh, = g + 5 P(ty)
T o
. _ E% . Ee :
P(t) .\ 3e, Bt + 2° fth exp[ -—2 () - t’)]P(t’)dt’
E 40_0 ( ) 36B 0'0 0 00

E%, (1 By .. (12)
36825 fo ex T o, (=) P)dt"  (10)  sincea and P are continuous at the cross-over point
© between the load hold and the unload, Egs. (11) and (12)

may be combined to give the jump in displacement rate
acrosst = t, as

;
+
= 2ah ,

if P(0) = 0. In deriving Eqg. (10), the purely elastic _ .
result? of 2a = wh tana is used, and this is legitimate h, = he = =——
as this relation does not contain any elastic constant and 2ak

so it applies equally well to the viscoelastic situation. By noting thath /P is the contact compliancehdtiPl,, at

Next, we consider a general load schedule as shown ifhe onset of unload, Eq. (13) may be rearranged to give
Fig. 5 consisting of a brief hold at a maximum loRg

immediately before unload at timg. We impose the dh 1 hﬁ

condition that the load schedule up to the onset of unload Pl =EaT S (14)
does not decrease the contact size. The formal treatment ! r P

by Ting** shows that the solution at maximum contact,,nich is essentially Eq. (3).

size is continuous. Thus the above results can be applied |, reality, thermal drift may also occur alongside creep
up to the onset of unload, and the length of the hold,4 g|astic recovery. Assuming a constant drift titat

and the loading schedules, as well as the details of thg.,,;nq the cross-over point between the load hold and
unload, the overall indenter displacement rate at the onset
of unload from Eq. (13) should now be

(13)

P A

- — .
L L =L

’ whereh,, = h¢ + h'is the total displacement rate re-
- corded at the end of the load hold. Hence, the apparent
/ 1 contact compliance at the onset of unload is

j S dh 1 h,
JE— = + J—
I S dPl, " 2Ea " p

(15)

. - In other words, to correct for both creep and thermal drift
- effects in modulus measurement, one needs only to note
th t the total displacement ratg, at the end of the load hold.
FIG. 5. General load schedule consisting of a load hold followed byA S€parate measurement of the thermal drift rate, how-
unloading. ever, is still required to calculate the contact area
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accurately from Eq. (2). From Eg. (15), a creep fac@or whereA, h, andm are empirical parameters, amais
to measure the importance of creep over elasticity can besually about 2. However, when creep is significant, a

defined as nose in theP-h curve is about to occur and in this case
» Eq. (17a) cannot give a good fit to the onset portion of
_ hh_S (16) the unload curve. Figure 6(a) shows an example of this in

||'3| Cu. In this case, the creep factor defined in Eq. (16) is

60%, and so creep is significant. In situations like this,

Evidently, a largeC is caused by a slow unloading rate the following equation was found to give more accurate
and/or a short load hold so that the creep displacemen to the onset portion of the unload curve:
rate at the end of the load hold is large.

h=h,+A P"+A, P" |

B. Experimental details (17b)

The experiments shown earlier in Figs. 1 and 2 and

later in this section were carried out as follows. ThreeVe€rého, Ay, A, m,andn are fitting constants, aneh is

materials were used, namely, a single crystal ofANia about 0:5' Figure 6(b) shovv_s that Eg. (17b) gives a muc_:h
single crystal of copper, and polycrystalline Al. and Thebetter fit to the onset portion for the same data as in

composition of the NAI single crystal was 75 at.% Ni, 19- 6(a). Note that in this case, the valueSjffitted by
16.7 at.% Al, 8.0, at.% Cr, and 0.3 at.% B. Prior to Ed- (170)is 3454N/nm, butif Eq. (172) is used, will

nanoindentation, the crystal was homogenized at 1250 °€€ underestimated to be only 7pi/nm.

for 120 h. The copper single crystal was 99.99% pure and Figt!re ’ ShO.WS the modulu_s data measured irom t'hree
was annealed fo5 h at 800 °C. Thepolycrystalling metalhc materials plottqugamst the creep factor defined
Al was in the as-cast state with grain size approximately! Ed- (16). In Eq. (16)hy, is the creep part oh, and

1 to 2 mm. For both NjAl and Cu, (111) surfaces for Is obtained by subtracting the thermal drift rate from

indentation were cut by a spark machine followed by
grinding and electropolishing. The Al surfaces were also
electropolished. Indentation experiments were carried

. . . ~—— P=A(h-h)"
out at room temperature using a Hysitron/Thermomicro- (h-h)

scopes nanoindenter/atomic force microscope (AFM) 6000 experimental data
setup with a Berkovich tip.

The load schedules employed were similar to the inset 30007
diagrams in Figs. 1 and 2(a). Typically, the load was 40004
ramped up quickly to the peak value and followed by z S,5706.14uN/nm
rapid unload. This was to initiate the indent shape sothat & 3000 R’= 0.96582
time-independent plasticity can be made negligible in A =0.047 0.10
subsequent stages. The load was then ramped up again to 20001 h,=511.412.8
the peak value for a load hold, followed by the final 1000 ' ' m = 3.53 0.40
unload from which the contact stiffne&for modulus 530 532 534 536 538 540 542
calculation was to be measured. Low-load holds at 15% (a) h(nm)
of the peak load were placed toward the end of the final ——h=h +A P"+A P"
unload and_ sometimes between the cycles to measure the experimental data
thermal drift rate. This was to ensure that the thermal
drift rate did not change much during the entire experi- 538
ment. Results gathered under circumstances when the (P17 S _=3454.0uN/nm
thermal drift rate changed a lot during the course of __ 5361 R’= 0.97785
the experiment were discarded. E s34 A, = 0.254£0.003

~ A =7.7E-23 +4 8E-22

C. Results . i h.= 520.550.15

To calculate the reduced modulus using Egs. (1-3), the n=  5.90+0.71
contact stiffnes§, at the onset of unload has to be meas- 530 . i m=___ 05
ured from the unloading portion of tie-h curve. When 1000 2000 3000 4000 5000 6000 7000

the creep effect is small, the unloading curve can be fitted  (b) P (uN)

accurately with a power law according to Oliver andFiG. 6. Fitting of unloading curve for Cu with large creep effects

Phar? using (a) Eq. (17a) and (b) Eq. (17b). In (a) the fit is poor near the
maximum load. Unloading rate= 12.47 wN/s creep factorC =

P=Ah-h)" , (17a)  60.3%.
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2700 /x constant value after the effect of creep is corrected for by
25501 —A— Oliver-Pharr method Eq. (3). The corrected modulus is 72.3 + 7.5 GPa for Al
aso] v Creepcorrected 116.9 +11.1 GPa for Cu, and 189.9+11.9 GPa for
T 3001 NizAl. The theoretical values of the reduced modulus
?5 250 ] calculated using the method of Vlassak and Riare
W 200 74.8 GPa for polycrystalline Al, 125.9 GPa for Cu(111)
150 ] and 201.9 GPa for NAI(111), and these all fall within
100 ] the range of the measured values.
50 A A——— A a S A R—
00 02 04 06 08 10 1.2 1.4
(@) c lll. NULL EFFECT OF THERMAL DRIFT
29901 / A. Theory
17501 —A— Oliver- . : : . :
Qliver-Pharr mathod In this section, we will look at a condition by which

+=—— Creep corrected . .
P the effects of thermal drift on modulus measurement will

become negligible. Such a condition is obtained by ana-
lyzing the various errors leading to the calculation of
modulus. First, let us assume for simplicity the indenter
shape function in Eq. (2) to be parabolic, i.8, > hZ.
—7 This assumption is valid when the indenter shape is py-

75 4 ———r—r—————————— - on i
0 0Z 04 06 06 10 12 14 ramidal and.when the penetration is deep e_npugh that the
blunted portion of the indenter tip has negligible effects.
(b) Cc "
300- Under such a condition, from Eq. (3), we have
=—{>— Oliver-Pharr method
280
== Creep correcte AEV - A_S _ Ahc (18)
260 EE~ S h
™ 240-
% 220 whereAE,/E,, AS/S,andAh./h. are the fractional errors
o of the corresponding quantities. Furthermore, from
200+
Eaq. (3),
1801 o U _ | .
160 +— . r r . , - c
00 02 04 06 08 10 AS_TAS) | M) _ o (Bn + ) (19
(© C S 1/S P| P| ’
FIG. 7. The modulus-creep factor curve for (a) Al, (b) Cu(111), and
() NigAl(111). when machine errors are negligible. According to

Eqg. (2), if the thermal drift rate is assumed to be a con-
the latter. Theh,, is obtained by fitting the load-hold stanth' during the entire course of the experiment, we
displacement—time curve like those shown in Fig. 1 byhave
the following empirical law:

1/3 ' hﬁ + h'
h(t) = hi + B(t - tl) + Kt y Ahc = htth + GPmaXT
P
whereh;,, B, t, and K are fitting constants. This relation
is found to produce very good fits to most of our results. .
The modulus results shown in Fig. 7, whether corrected _ ht(th ety + EPmaxfh _ 20)

for creep or not, have all been corrected for thermal drift |P|
and machine compliance. It can be seen from Fig. 7 that

for all three materials studied, the modulus calculateqqere, t, is the duration of the test from the start to the
without considering creep increases as the creep f&tor gpset of the unload (see Fig. 5), ands the duration of

matically large (over 2000 GPa) when the creep factor igye gptain

larger than about 1.4. In Fig. 7 are also shown the modu-

lus values calculated from Egs. (1) and (2) using the AE. RS p ht t o+ et
S values corrected by Eqg. (3). It can be seen that r :__“< - ma") (S— h “|p|> ,
the value of the calculated modulus tends towards a Er |P| he he

P
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but in generalt,, is much larger that,, and, for ductile Cycle1 Cycle2 Cycle 3
materials Sis much larger thaeP,,,,/h., so that this can 2000 - /_ /
be simplified into W
AE, K R £ ___ 15004
'zf“s+.—<s——“|P|> = !
E Pl |F| he =2
- : o 1000
h's t, |P| S
=C+—|1-——| , (21 o
|P| heS = 5001 i
whereC is the creep factor defined in Eq. (16). There- "l

fore, to minimize the error of modulus due to creep and 0 T y y
500 1000 1500

thermal drift, we can use the following two conditions: .
_ _ (@) Time (s)
C < 10%, or|P| > 10niS , and (22) Cycle1 Cycle 2 Cycle 3
S 8000- / m / yd
th:ﬁ J (23
6000 -
The first condition serves to keep the creep effect small, 2
while the second condition minimizes the thermal drift <2 4500
effect. T
©
(o}
B. Comparison with experiments —1 20001
To illustrate the validity of Eqg. (23), experiments on
Al and Ni;Al(111) were performed using the load sched- 0 200 400 600 800 1000
ules shown in Fig. 8. The aim of the experiments was to )
investigate the influence of thermal drift on the measured ~ (®) Time (s)

modulus in the light of Eq. (21). Therefore, it is neces-FIG. 8. Load schedule for the investigation of thermal drift effects in
sary to vary the factot,, |P|/h.S while, if possible, all ~ NizAl(111).

other parameters are kept constant. It is therefore desir-

able to vary|P| on the same indent, and so the load

schedules of Fig. 8 were used, which consisted of firstly grom the results obtained, ti@factors calculated for

a cycle of rapid load ramp and unload to initiate theihe six labeled cycles in Fig. 8 were reasonably small,
indent plasticity, and then a series of ramp-hold-unloagy,plying that creep is insignificant. The key experimen-
cycles with different unloading rates. As before, l1ow- (5| gata for these cycles are listed in Table I. The moduli
load holds at 15% of the peak load were placed in beggicylated from the standard load—displacement curves
tween cycles and at the end to monitor the actual thermzﬂsing the Oliver—Pharr scheme are showriEga® = 0)

drift in the course of the experiment. Before the experi-in Fig. 9. These are reasonably consistent with one an-
ment, the machine was allowed to stabilize in a closegiher and with the theoretical values calculated using the
room without ventilation for several hours and in this ynethod by Vlassak and N Also shown in Fig. 9 are
way, the actual thermal drift rate was found to be quiteihe apparent moduli calculated using the Oliver—Pharr
steady during the subsequent experiment. The thermafneme after thermal drifts corresponding to an artifictal
drift (= drift rate x time) was subtracted from the re- yere superimposed onto the standard load—displacement
corded displacement data to obtain a load—displacemegy,rves for different cycles. As discussed above, these
curve free from thermal drift effects. This is termed theepresent “virtual” experimental results at various values

“standard” load—displacement curve for the purpose ot The apparent modulus that would have been meas-
later reference. Then artificial drift rates were superim-yreq under a general thermal drift rate of 4nd with

posed onto the displacement data in the standard curve fgjigible creep may also be calculated from Eq. (21) as
stimulate the effects of repeating the experiment at dif-

ferent thermal drift rates. The reason for doing this in- - .
stead of actually repeating the experiment at different E() =E (=0
drift rates is that, with our setup, it is very difficult to ht
control the drift rate at an arbitrary constant value during x1+—
the entire duration of the experiment. [ P (

th |-
N
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Table I. Experimental data for the load cycles in Fig. 8.

C th =] S h. 1- tP|
(%) (s) (uN/s) (kN/nm) (nm) sh
Alcycle 1 22.14 293 50 267.1 463.4 0.881639
Alcycle 2 5.55 577 170 261.2 4915 0.235939
Al cycle 3 1.92 1,507 400 286.1 540.1 -2.90105
NiAl cycle 1 8.72 2335 100 283.2 239.8 0.656169
NiAl cycle 2 3.05 421.5 200 278.8 245.3 -0.23264
Ni Al cycle 3 1.98 875.5 400 271.6 241.1 -4.34797
Solid Symblols: "Virtual" experimental results at the valueE, (h' = 0) whenh ® varies within 0.1 nm/s,
(see text) while that for cycles 1 and 3 changes remarkably with
Hollow symbols: Prediction of eqn (24) This implies that the calculated modulus for cycle 2
w 1807 —O— —e—Loadcycle would be least sensitive to thermal drift. The reason is that,
& 160] —&— —A—loadcycle2 / as shown in the table, thig andP selected for cycle 2
= —{— —®—Load cycle 3 . .
@ 40 are such that the factor (1 t5|P|/h.S) is closest_to zero
5 amongst the three cycles for both Al and;Ali. This
B8 120 helps to verify the condition for minimal effect of ther-
= 400 mal drift as given in Eq. (23).
o
5 80 IV. DISCUSSION
£ 60 It is interesting to note from Fig. 7 that indentation
- ; . , : creep effect is significant at room temperature even for a
-0.10 -0.05 0.00 0.05 0.10 moderately high melting metal like Cu or Mil. We
(a) Thermal drift rate (nm/s) attribute this to the high local values of the hydrostatic
Solid Symblols: "Virtual” experimental results stress, which makes dislocation climb very easy. After
(see text) the indenter is rapidly pressed into the specimen, the
__ Hollow symbols: Prediction of eqn (24) instant plasticity occurs in such a way that the shear
S 3004 —O— —&—Load cycle 1 stresses due to the applied load are more or less balanced
S L. —&— —A—Load cycle 2 by the intrinsic Peierls stress plus resistance due to work
8 —0— —#—Loadcycle 3 hardening. The hydrostatic component of the stress state,
S 2404 however, may exceed well beyond the elastic limit, al-
Eo though it attenuates in the far field. The very first layer of
= 2101 material in contact with the indenter may be subject to
£ 1801 hydrostatic stresses on the order of the measured hard-
S ness, and this is typically a few times the yield stress.
& 150 Under such high hydrostatic stresses, dislocation climb
120 may take place very effectively, even though the test
(b) Thermal drift rate (nm/s) : ’

ness of Cu in the nanoindentation range may exceed
FIG. 9. Apparent reduced modulus versus thermal drift rate for (a) All GPa. When multiplied to the atomic volume, such a
and (b) NEAI(111). high value of hydrostatic stress will reduce the activation
energy for dislocation climb by a fraction of an eV,
whereE, (ht = 0) is the modulus calculated from the which is similar in magnitude to the activation energy for
standard load—displacement curve using the Oliver—Phapipe diffusion in Cu. The result is that the local work-
scheme. The variations of the apparent modulus With hardening dislocation structure may relax at a significant
obtained this way for different cycles are also shown inspeed with time, causing the hardness to fall.
Fig. 9. the abscissa scale selected in Fig. 9 is £0.1 nm/s In deriving Eq. (14), the assumption of linear vis-
and this well covers the usual thermal drifts encounteredoelasticity was used. The question therefore is whether
in our machine. It can be seen that the prediction of Eq. (24)he result will be modified a lot if the viscoelasticity is
agrees reasonably well with the “virtual” experimental power-law instead of linear. This is difficult to estimate
results. More importantly, the apparent modulus forwithout a full solution to the power-law problem, which
cycle 2 for both Al and NJjAl stays more or less constant can only be obtained by numerical means. However, the
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main idea behind Eq. (14) is that the influence of creedarge to fulfill Eq. (22). There may, therefore, be a com-
on the contact stiffnesSincreases witln ; and decreases patibility problem between the two conditions. Fortu-
with |P|. This is in agreement with the experimental ob-nately, thet,, in Eq. (23) is also proportional to the
servation in Fig. 2. Equation (3) or (15) in fact indicatescontact depth, which can be increased by using a larger
that the overall contact stiffness during unload is largeipeak load. In any case, this potential problem of incom-
than what elasticity alone would produce. Hence, if thepatibility did not arise in our experiments on Al and
creep contribution is ignored, the modulus calculatedNiAl. Finally, to use Eg. (23) to seledf, one would
from Eq. (1) would be an overestimate, and indeed, if theneed to know the contact depth and the unloading contact
creep factorC in Eg. (16) is not small compared with stiffness beforehand. A trial run is therefore required to
unity, the overestimation could be very severe. The reestimate the values of these two parameters.
sults in Fig. 7 confirm this. Wheg is large enough, the
apparent contact stiffness will become negative, i.e., a
“r_wse" will occur in the unloading segment in the load-\, ~oNCLUSIONS
displacement curve. The power-law fit of theh curve _ _ _
in the Oliver—Pharr scheme obviously cannot conform to We have shown that, in a linear Maxwell solid, the
a negative slope at the onset of the unload, but this has@{fect of creep on the apparent contact compliance at
fortuitous “correction” effect on the measured modulusthe onset of unload can be worked out in a simple way
since the erroneous negative contact stiffness is now rdtom the indenter displacement rate during the end of
placed by a positive value. This correction, however, ighe load hold and the unloading speed. Incorporating
not very effective at large values @f as Fig. 7 shows. t_hls correction term into the elastic modulus calcula—

We established in Eq. (23) a condition such that, iftion greatly improves the accuracy of the estimated
satisfied, the measured modulus would be relatively freénodulus, especially when the creep effects are large. A
from thermal drift effects, and hence correction of ther-condition for null effect of thermal drift has also been
mal drifts on the disp|acement data would become uni.dentiﬁed SO that, if it is SatiSﬁed, thermal drlft, irl’espec-
necessary. This condition works on the premise that théive of its magnitude, has minimal effects on the meas-
modulus is proportional t& and inversely proportional ured modulus.
to h,, and that the effects of thermal drift d®and h,
are of the same sign as shown in Egs. (19) and (20). The
significance, however, is that if Eq. (23) is satisfied, REFERENCES
the influence of thermal drift 0% andh, would cancel
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