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Effects of cubic nonlinearity on frequency
doubling of high-power laser pulses
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The effects of the phase mismatch due to cubic nonlinearity in the equations for second-harmonic generation
are investigated. We show that the phase mismatch induced by the nonlinear refractive index of a doubling
crystal can dramatically reduce the conversion efficiency of high-peak-power laser pulses. Simple, analytic
expressions are derived for the conversion efficiency of cw radiation and for the estimation of the dispersion
in the nonlinear refractive index of the doubling crystal, which is quite important in the determination of
the magnitude of the nonlinear effects on maximum conversion. The consequences that these nonlinearities
have on the frequency doubling of ultrashort (=100 fs) pulses, including the additional effects of group-velocity
walk-off between the pulses, are then numerically calculated. 0O 1996 Optical Society of America

1. INTRODUCTION

The phenomenon of second-harmonic generation in a non-
linear crystal has been extensively studied since its first
observation in 1961.1 The theory of three-wave interac-
tions in a material with a quadratic nonlinearity has been
well developed, and the exact solutions to this problem
for second-harmonic generation by plane waves were ad-
vanced by Armstrong et al.? in 1962. The influence of
the cubic nonlinearity on harmonic conversion was first
addressed with the advent of high-power pulsed lasers.
The effect was first studied by Akhmanov and Khokhlov?
and has since been examined by a number of groups.*®
Telegin and Chirkin® reported the first experimental evi-
dence of higher-order nonlinearities in second-harmonic
frequency conversion. Recently, the exact solutions of
the plane-wave conversion equations in the presence of
a cubic nonlinearity have been worked out by Choe et al.”
and McKinstrie and Cao.?

With the proliferation of high-peak-power, short-pulse
lasers and the desire to convert their output, the effects of
the higher nonlinearities on short-pulse frequency conver-
sion need to be taken into account. In this paper we ex-
amine the intensity-dependent nonlinear phase mismatch
resulting from the cubic nonlinearity and discuss its ef-
fects on the conversion of short pulses. The nonlinear
phase mismatch can be compensated for a specific inten-
sity, but the resulting shape of the second-harmonic pulse
will be altered.® Furthermore, the inclusion of group-
velocity walk-off, which can be a major effect for pulses of
100 fs or less,'® can act to decrease the deleterious effects
of the cubic nonlinearity and prevent reconversion from
the intensity-induced phase mismatch.

2. ANALYTIC ANALYSIS OF
SECOND-HARMONIC GENERATION

WITH A x(®) NONLINEARITY
To understand the essential effects of a cubic nonlinearity

on frequency doubling of laser pulses we start with the
scalar wave equations governing the propagation of the
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drive wave and its second harmonic through a nonlinear
crystal (in cgs units):
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where the subscript i is equal to 1 or 2 and denotes the
first- or second-harmonic field, respectively, ¢; is the di-
electric constant for each of the two fields E;, and PN is
the nonlinear polarization term. The nonlinear polariza-
tion terms to the third order in the electric fields are

PN(x, t) = 4dey EsE; + 3x® (w1, —w1, ©1)|E1I*E;

+ 6P (w2, —w2, w1)|E3l*Eq + c.c., (2a)
Pyl (x, t) = 2der BT + )02, —w, 09)|Eal’Ey
+6x P (w1, —w1, w)|E1PEs + c.c.. (2b)

The relation of the effective nonlinear susceptibility deg
to the second-order polarizability tensor y;; is determined
by the second-harmonic crystal-point group and the dou-
bling geometry (type I or type II).'* For type I doubling
in KDP, for example, it is given by der = (1/2) Xé%) sin 6,
where 6 is the phase-matching angle.

If we assume that the fields are infinite plane waves
in the transverse (x, y) directions and ignore the effects
of pulse broadening due to group-velocity dispersion, the
use of the slowly varying envelope approximation yields
equations describing second-harmonic production:

Ja . . .
6—; = iaasa] exp(—iAkz) + i(Bulail’ar + Balasl?ar),
(3a)
aag aaz . .
= + 7 il iaa? exp(iAkz)
+ i(Balasl’as + Bralailas). (3b)

Here, a; and as; are the slowly varying envelopes of
the fundamental and the second-harmonic fields, respec-
tively, and Ak = 2k; — ks is the phase mismatch be-
tween the two fields. The expression n = 1/v, — 1/vge
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is the rate of the group-velocity walk-off between the
fundamental pulse and its second harmonic. This term
can be quite significant for 100-fs pulses that are dou-
bled in crystals of only a few millimeters. It is, for ex-
ample, equal to 77 fs/mm for a pulse with a wavelength
of 800 nm in KDP.!2 In addition, « is the coupling co-
efficient between the fundamental and the second har-
monic and is given by a = 87wwid.y/c?k,, where these
symbols have their usual definitions. The final terms on
the right-hand side of each expression in Egs. (3) repre-
sent an intensity-dependent phase shift. These terms, in
principle, add an additional phase mismatch even when
Ak = 0. The coefficients are

2
67ij)((3)(wi, —wi, wj)'
Czkj

Bij = 9li=Jl

To examine the physical effect of the nonlinear phase
terms in Eq. (1) in the absence of group-velocity walk-
off and to estimate the effect on the pulse frequency
conversion efficiency, it is convenient to rewrite the
equations in Hamiltonian form.® First we introduce the
normalized propagation distance, z = s/a, and phase
mismatch, A = Ak/v/2a. Because we are concerned
only with the intensities of the two fields, we can in-
troduce an arbitrary phase to the field envelopes and
renormalize them. We now define the new fields®:
by = (1/V2)a; exp(iAs — i [; lagl?ds) and by =
(1/2)ag exp(—i26 [; lagl?ds). And we further de-
fine 8 such that § = [B21 — (1/2)B12]/a. The equations
for b; and by then become

aa—l?sl = zlbzbi< + lAbl + i(Tlllbllzbl + T21|b2|2b1)’ (43)
ab . .
T = ibY + i(Tualbal?by + Tislbi*by), (4b)

where the nonlinear phase coefficients are T1; = 2811/ a,
T12 = T21 = 2,812/01, and T22 = 4322/0[ — 86. Equa-
tions (4) represent a Hamiltonian system that can be
represented by the relations

by . 6H dby . S6H
=1 —_ 22— =
Jas 8b; ds by

(5)
The spatially invariant Hamiltonian is

H = bobi® + b20F + Albyl? + 3 Tulbil* + Tualor 1o

1
+ 5 Toalbal*. (6)

Next, we turn to the Manley—Rowe relations and the
initial conditions to calculate the value of H. For the
renormalized fields this relation can be written as

|61 + 2]b2]* = const. )

The initial condition is taken to be such that there is no
second harmonic initially incident on the crystal face:

bl(x = O) = b() 5 (83)
bo(x =0)=0. (8b)

T. Ditmire et al.

Consequently
1
H = 5 T11lbol* + Albol?, 9)

61] = V/1bol* — 21622 (10)

At this point it is convenient to introduce the magnitude
of the field amplitudes and the field phases:

by = |bilexp[ig], by = |bzlexpligs],
where ¢ = ¢5 — 2¢;. The equation for the evolution of
|bz| is

|bs|
Jas

Using Eqgs. (10) and (11) and the fact that H is conserved,
we can write

= |b4/? sin ¢. (11)

1 1
215 1611% cos ¢ + Alb1|? + ) Tulbyl* + 5 Toslbol*
+ TalbiPlbal? = ABS + 2 Tub, (12)

which yields a complete system for the evaluation of the
maximum conversion. From Eq. (11) we expect that by
is maximized when 0bs/ds = 0, or, namely, when ¢ = 0
or ¢ = 7. From this it follows that cos ¢ = =1, with the
sign chosen such that the conversion efficiency does not
exceed unity. For the case of high conversion, we can
treat the nonlinearities as a small perturbation and use
perturbation theory to estimate the maximum of by. If
we assume that the zeroth-order solution is |b|? = b2/2
we have

2 1

1 1
|bg?,, = 5 bz — NG ‘(Zng - Tu)bg — 2Abyg (13)

In the case of no phase mismatch (A = Ak/+/2a = 0)
and no dispersion in the nonlinear index of refraction,
then Ty = 4T1; and we have a 100% conversion efficiency
(|b2|2 = b2/2). This analytically derived result was ob-
served recently in the numerical simulations of Chien
et al.'® without explanation. The fact that 100% conver-
sion can be achieved in the presence of a nonlinearity
with no wavelength dispersion is due to the fact that, al-
though the nonlinear phase mismatch grows as the driv-
ing laser propagates through the doubling crystal, as en-
ergy is transferred to the second harmonic the mismatch
changes signs and cancels the phase slip caused by the
fundamental. As the conversion approaches 100% the
phase accumulated by the second harmonic approaches
that already accumulated by the fundamental field, and
the efficiency asymptotically approaches unity. In gen-
eral, however, the nonlinear refractive index will exhibit
some dispersion and the conversion efficiency will be
limited.

From Eq. (12) we see that it is possible to compensate
for the nonlinear phase mismatch by deliberately intro-
ducing a mismatch such that

1/(1
A=E<ZTZZ—T11>Z)%. (14)
In this case, the conversion efficiency asymptotically ap-
proaches 100% for a single incident intensity. This is
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an exact result derived from Eq. (9), which implies that
100% conversion is possible for an arbitrarily large inci-
dent field. This result was derived previously in more
cumbersome calculations by Choe et al.,” as well as by
McKinstrie and Cao.® For the case of a pulse with a tem-
porally varying envelope it is possible to compensate the
nonlinear effects for only a single intensity in the pulse,
as was pointed out by Chien et al.'®> In the absence of
group-velocity walk-off effects the pulse can be considered
as a set of independent slices in time. If the nonlinear
phase mismatch is removed for one intensity slice, the oth-
ers still experience a drop in their conversion efficiencies,
and reconversion will commence at different points in the
pulse. Although 100% conversion is possible for a flat-
top pulse if the crystal phase mismatch is properly tuned,
the conversion efficiency for a time-varying pulse will go
through a distinct maximum. It is important to point
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require a reasonable estimate for the variation of y®
between 800 and 400 nm. To do this we resort to a
simple model that permits us to estimate the self- and
cross-phase modulation contributions of y® for a crys-
tal of known linear refractive index. To evaluate the
perturbation-series summation for y® we use the simple
technique of Bebb and Gold.'®> A simplified version of
their theory was shown by Adair et al.' to be in reason-
able agreement with the measured dispersion of the ny of
a number of optical materials.

The x® of the doubling crystal is calculated by an ex-
plicit summation of the perturbation series, but with the
assumption that all intermediate states are centered at
an effective energy of Zwy. When the summation is per-
formed the y® term, representing the nonlinear phase
shift of one field with an arbitrary frequency w;, on a
second with a frequency w; can be expressed as where

2
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out that a time-varying pulse will experience an intensity-
dependent phase mismatch, resulting in the growth of
temporal gradients in the profile of the fundamental and
the second harmonic. Group-velocity walk-off effects can
then become important even for long pulses.

3. NUMERICAL CALCULATION OF THE
NONLINEAR PHASE MISMATCH AND
MAXIMUM CONVERSION EFFICIENCY

It is instructive to investigate numerical calculations for
the second-harmonic conversion efficiency for parameters
of interest to the doubling of current high-power laser sys-
tems. For this reason, we have examined the doubling
of 800-nm light in a KDP crystal because this is a situ-
ation that is of most interest for the frequency conver-
sion of ultrashort pulses amplified in Ti:sapphire. These
calculations illustrate the relative magnitudes of the ef-
fects described above. For these calculations we take for
KDP, dofr = 8.7 X 1071% esu. To calculate the magnitude
of the nonlinear phase mismatch we require an estimate
of the dispersion of )((3) between the first- and the second-
harmonic wavelengths in the doubling crystal (between
800 and 400 nm). Recent measurements of the nonlin-
ear refractive index of a variety of wide-band-gap crystals
at wavelengths of 1064, 532, and 355 nm by Adair et al.'*
suggest that the dispersion of y® can be quite substantial
(nearly a factor of 2 between 1- and 0.3-um light in fused
silica, for example.) We expect then that the nonlinear
phase mismatch can be important for pulse conversion.
Because no reliable data exist, however, on the values
of y® for common doubling crystals (such as KDP), we

42 — («F + «F
2 xz]} ek e ] (15)
J

2 2
1 - 222(1 — a2)2

%;j = w; j/wy. For simplicity we have assumed that the
dipole matrix elements r,; are equal for any direction of
field polarization (which is not necessarily true for a bire-
fringent crystal.) Following Adair et al.,'* we have de-
fined (r*) = 3, . TgalavTocTeg and (r?) = 3, rgqrag, where
g denotes the ground state and a, b, and ¢ denote the up-
per states. The value of the effective energy level Zwq
can be inferred from known values of the linear refractive
index of the crystal if the refractive index is fitted to the
Mossotti formula:

nx)?+2  3hwg e
n(x;)2 -1 8mwe2N(r2) 1 =x7). (16)

To derive specific values of y® we exploit the fact that
the Kurtosis, defined as (r*)/2(r?) — 1, is approximately
equal to 0.5 for most wide-band-gap crystals.'® The use
of Egs. (15) and (16), combined with published values for
the linear refractive index and the nonlinear refractive
index of the crystal at 1 um, allow us to make estimates
for the y® terms in Eqs. (2). It should be emphasized
that this model gives us estimates only for the actual
values of y® and probably underestimates the value,
particularly at shorter wavelengths (A < 500 nm).

We calculate the value of ny measured!® at 1064 nm
(which is 7.2 X 107'* esu for ordinary polarization and
7.8 X 107'* esu for extraordinary polarization) and
Eq. (15) (with wo = 1.7 X 106 57! for KDP) to find values
for the ¥® components for the doubling of 800-nm light.
We use values of y® (w1, —w1, 1) = 1.2 X 107 esu,
X(S)((Uz, —wa, wl) =14 X 10714 esu, ,\/(3)((02, —wa, w2) =
1.8 X 107 esu, and y® (w1, —w1, ws) = 1.5 X 107* esu,
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(e.,T;; =12X 1078, Ty = 2.9 X 1078, Ty = 3.4 X 1078,
and T2 = 5.9 X 1078, respectively). It is also conve-
nient to relate these coefficients to the material nonlin-
ear index of refraction defined by the relation An = yI,
where An is the intensity-induced change in the in-
dex of refraction. Therefore, the nonlinear coefficients
are y;; = 2.2 X 10720 m2/W, yy = 5.5 X 10720 m?/W,
y12 = 6.1 X 1072 m?/W, and ys; = 3.0 X 1072° m?/W.

It is important to note that Eq. (15) predicts that the
dispersion in ny between 1054- and 527-nm light is sig-
nificantly less than that between 800- and 400-nm
light. It is therefore reasonable to expect that the
nonlinear effects on doubling will be more severe
for Ti:sapphire lasers operating at 800 nm than for
Nd:YAG or Nd:glass lasers operating with a fun-
damental wavelength of approximately 1 um. For
example, our model predicts that the dispersion be-
tween the nonlinear refractive index for the fundamen-
tal at 800 nm and the second harmonic at 400 nm is
,\/(3)((02, — w9, w2)/)(<3)(w1, —wi, wl) = 15, whereas the
dispersion between 1054- and 527-nm light is predicted
to be a factor of y®(ws, — w9, ws)/x® (w1, —w1, w1) = 1.3.
As Eq. (13) illustrates, the drop in the conversion effi-
ciency scales roughly linearly with the magnitude of this
nonlinear index dispersion. The size of the dispersion
predicted by our model for conversion of 1054-nm light
is slightly lower than the value used by Chien et al.'? to
match their data. They empirically determined that us-
ing a dispersion of y®(ws, —ws, W)/ x® (w1, —w1, w1) =
1.5 seemed to fit their experimental data. This is consis-
tent with our estimate that our model will underestimate
the value of y®(w;, —w;, w;) at shorter wavelengths.
However, our prediction of the dispersion is roughly com-
parable with the value found by Chien et al.,'® suggest-
ing that our simple model is useful for making estimates
when no data exist for the dispersion of ny in a dou-
bling crystal of interest (at 800 and 400 nm in KDP, for
example).

Using these numbers, we have calculated the maximum
conversion efficiency by numerically solving Eq. (12).
This solution is plotted in Fig. 1 as the solid curve. The
approximate solution of Eq. (13) is also shown (dashed
curve) to illustrate the validity of the perturbation
formula. From Fig. 1 it is evident that, for incident
intensities above 100 GW/cm?, the maximum possible
conversion efficiency begins to fall below 90%. The fre-
quency conversion of current short-pulse laser systems
is typically achieved with incident drive intensities of
100-500 GW/cm?2.!® In this regime, the nonlinear phase
mismatch can be an important factor in the determi-
nation of the conversion efficiency. With incident in-
tensities approaching 500 GW/cm?, the nonlinear phase
can have very deleterious effects on the pulse frequency
conversion,'® lowering the maximum conversion by as
much as 30%.

4. SIMULATIONS OF SHORT-PULSE
FREQUENCY DOUBLING

To further investigate the effects of high incident
intensities, we have numerically solved the coupled
equations (3a) and (3b) for the frequency conversion of an
800-nm pulse. Figure 2 illustrates the energy conversion
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efficiency of a pulse that is flat in time, with an intensity
of 500 GW/cm? in the absence of group-velocity walk-
off. The calculated conversion efficiencies, both with and
without the inclusion of the y® nonlinearity, as functions
of the distance propagated in the KDP crystal are com-
pared. In the absence of the nonlinearity nearly 100%
conversion is achieved in <2 mm of KDP, whereas the
conversion efficiency rolls over at 82% after the light has
propagated 1.1 mm in the crystal when the nonlinear
phase mismatch is included. Furthermore, the conver-
sion efficiency drops down and the second harmonic un-
dergoes complete reconversion to the fundamental at
2.2 mm into the crystal. This reconversion is similar
to that observed when a geometric phase mismatch is
introduced.

Maximum Conversion Efficiency

06 '
10 100 1000

Incident Intensity (GW/cm2)

Fig. 1. Numerical solution of Eq. (12) for the maximum con-
version efficiency for 800-nm light in KDP (solid curve). The
approximate perturbation-theory formula, Eq. (13), is also shown
for comparison (dashed curve).
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Fig. 2. Energy conversion efficiency calculated for a square
pulse as a function of the distance propagated in a KDP crystal in
the absence of group-velocity walk-off ( = 0). The incident in-
tensity was 500 GW/cm2, and the pulse wavelength was 800 nm.
Curve 1 shows the case for harmonic conversion with no cubic
nonlinearities (B;; = 0), and curve 2 represents the efficiency
when nonlinearities are included.
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Fig. 3. Results for a Gaussian pulse shape: (a) The calculated
conversion efficiency as a function of distance in a KDP crystal for
a Gaussian pulse envelope with no group-velocity walk-off. The
peak intensity of the incident pulse is 500 GW/em?. Curve 1
(solid) represents the case of no cubic nonlinearity, curve 2
(dashed) represents the case with the nonlinear phase mismatch
included, and curve 3 (dotted) represents the case with the
nonlinear phase mismatch and the inclusion of additional
phase mismatch to compensate for the cubic phase slip at
the peak intensity of the pulse. (b) Pulse envelopes of the
second-harmonic pulse for the three cases calculated in (a), shown
at the peak of the pulse-conversion curves. These positions are,
for curve 1, z = o; for curve 2, z = 1.3 mm; and for curve 3,
z = 1.7 mm.

The results for a Gaussian pulse shape are shown in
Fig. 3. The conversion efficiency for a pulse with an
initial peak intensity of 500 GW/cm? in the absence of
group-velocity walk-off (appropriate for a pulse of =1 ps)
is shown in Fig. 3(a). The solid curve represents the cal-
culated conversion for the pulse without the cubic nonlin-
earity. The dashed curve represents the conversion with
the inclusion of the nonlinear phase for an initial value
of Ak = 0, and the dotted curve represents the conver-
sion curve when a phase mismatch is deliberately induced
such that Eq. (14) is satisfied for the peak intensity. The
total conversion efficiency can be increased from 78% to

Vol. 13, No. 4/April 1996/J. Opt. Soc. Am. B 653

93% if the crystal is simply retuned to compensate for the
nonlinear phase at the peak of the pulse. The resulting
second-harmonic pulse profiles are shown in Fig. 3(b) for
the respective points along the conversion curves corre-
sponding to the maximum in conversion efficiency for each
case. The pulse with the initial value of Ak = 0 exhibits
a distinctly flat-top profile, resulting from the reconver-
sion that occurs at the more intense pulse peak earlier in
the crystal. The pulse with the phase-mismatch compen-
sation does not exhibit this reconversion at the pulse peak
and has a resulting peak intensity that is nearly equal
to that of the pulse converted in the absence of the cubic
nonlinearity. This near equality illustrates the great ad-
vantage gained in generating the maximum peak power
in the second-harmonic pulse by the introduction of an
initial compensating phase mismatch.

It is also important to note that the point along the
propagation path through the crystal corresponding to
the greatest integrated-energy conversion efficiency for
the uncompensated pulse conversion does not correspond
to the point along the propagation of the greatest peak
power of the second-harmonic pulse. The maximum to-
tal energy conversion actually occurs at a distance within
the crystal that is reached after the peak of the second-
harmonic pulse has begun to reconvert, and the pulse
wings, where the nonlinear effects are lower, are still
increasing in intensity. The dramatic increase in con-
version efficiency is due to the fact that the peak of the
pulse does not begin to reconvert until further into the
crystal, permitting a more complete harmonic conversion
in the pulse wings. This effect can be seen in Fig. 3(b),
where the pulse without A%k compensation (dashed curve)
shows a nearly complete conversion in the wings, with a
flat profile in the center resulting from reconversion at
the higher intensity. This effect permits some flexibil-
ity in the choice of the output-pulse shape. A shorter
crystal yields high peak powers and shorter pulse widths,
whereas a slightly longer crystal yields a greater conver-
sion efficiency with a pulse that is somewhat flat at its
peak.

The maximum achievable conversion is actually
slightly increased for some instances in which group-
velocity walk-off is important. Figure 4(a) shows the
conversion curves for a 100-fs, 800-nm pulse with a peak
intensity of 400 GW/cm?. The case with no walk-off and
no nonlinearity (curve 1) is compared with the nonsta-
tionary case without a nonlinearity (curve 2), the sta-
tionary case with the inclusion of a cubic nonlinearity
(curve 3), and the case in which both effects are included
(curve 4). The most important result is that, when the
second-harmonic pulse walks off the fundamental pulse,
the reconversion that we see for the stationary case is
not as dramatic. Inclusion of the group-velocity walk-off
term in Eq. 1(b) makes the solution more robust, less-
ening the large reconversion that results from the phase
slip at the highest intensities that is caused by the cu-
bic terms. The consequences of this large reconversion
can be seen when the second-harmonic pulse shapes are
considered at a point after the roll-over of the pulse con-
version (at a distance of 2 mm into the crystal), as shown
in Fig. 4(b). The walk-off of the second-harmonic pulse
peak prevents the severe reconversion that is seen at
the peak of the pulse for the stationary case. This pre-
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Fig. 4. (a) Calculated conversion efficiency for a 100-fs Gauss-
ian pulse with a peak intensity of 400 GW/cm? plotted as a
function of the distance traversed in KDP. Curve 1 represents
the case with no walk-off and no cubic nonlinearity. Curve 2
represents the case with a group-velocity walk-off ( = 77 fs/mm)
but no nonlinear phase. Curve 3 represents the case with no
walk-off but with the nonlinear phase included. Curve 4 illus-
trates the effects of both group-velocity walk-off and nonlinear
phase. (b) Curve 1 represents the pulse envelope of the inci-
dent fundamental pulse for the calculation from (a). Curve 2
represents the second-harmonic pulse envelope after a distance
travelled of 2 mm into the crystal when cubic nonlinearities are
included but no group-velocity walk-off is present, and curve 3
represents the pulse shape when both effects are included.

vention occurs because the second-harmonic light moves
away from the peak of the drive pulse, where the non-
linear phase mismatch becomes worse as the second har-
monic grows. The two-peak structure evident in the
pulse shape of curve 3 in Fig. 4(b) was observed under
similar circumstances in an experimental study and in
numerical modeling of short-pulse harmonic conversion
with group-velocity walk-off and a geometric phase mis-
match by Noordam et al.'®* The temporal structure ob-
served in our calculation is from the same interference
effect detailed in Ref. 18. However, the phase mismatch
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in our calculation is itself time dependent (through the
intensity), arising from the cubic nonlinearity.

This behavior is, in general, only true when the group-
velocity walk-off and cubic-nonlinearity terms are of
roughly equal importance. If we define a dimension-
less parameter,

(p))2
é, _ ,3|a0 | Tp s (17)
n

where 7, is the laser pulse width, B is the maximum of
the B;; values, and aﬁf’ ) is the value of the incident pulse
peak field strength, then { is a measure of the relative im-
portance of these two perturbations. If ¢ >> 1, then the
nonlinear phase mismatch dominates the conversion dy-
namics, and, if { << 1, then the nonlinear phase is unim-
portant. For the calculation illustrated in Fig. 4(a),
curve 4, [ = 3.5. Therefore both effects are roughly
equally important in this case. Because ¢ is proportional
to |aol|?7, it is therefore dependent on only the input-laser
fluence. The consequences of this single dependence are
that, for a given energy fluence, the relative importance of
these two effects remains unchanged for any pulse width.
For frequency doubling of 800-nm pulse in KDP, the flu-
ence at which ¢ = 1 is approximately 10 mJ/cm?. When
{ is large, the conversion dynamics are similar to those
shown in Fig. 4(a), curve 3, and when ¢ is small the con-
version curve is similar to that of Fig. 4(a), curve 2. It
follows, then, that it is desirable to keep the input fluence
at or just below the level at which ¢ is equal to 1 so as
to avoid the reconversion that can accompany frequency
doubling when the nonlinear mismatch dominates.

The conversion efficiency as a function of the peak inci-
dent intensity for an 800-nm, 100-fs pulse is shown for
three crystal lengths, 1, 2, and 3 mm, in Fig. 5. The
maximum conversion efficiencies are 70%, 75%, and 78%,
respectively. The roll-over point in conversion efficiency
occurs at a lower intensity for a longer crystal. This ef-
fect can be understood when one considers Eq. (12), which
predicts that the maximum conversion efficiency achiev-
able, under the assumption that a crystal of appropriate
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Fig. 5. Calculated conversion efficiency for an 800-nm, 100-fs
pulse in KDP plotted as a function of the initial peak intensity
for crystal lengths of 1 mm (curve 1), 2 mm (curve 2), and 3 mm
(curve 3).



T. Ditmire et al.

length has been chosen to reach that maximum, is a func-
tion of the incident intensity only. Consequently, longer
crystals, which permit high conversion with lower drive
intensity, have a higher maximum conversion. In other
words, using a lower drive intensity implies that a higher
total conversion efficiency is possible [from Eq. (12)], as
long as a suitable crystal length is chosen to achieve this
theoretical maximum conversion efficiency. This theory
suggests that, in the regime of { ~ 1, to achieve high-
est conversion efficiency it is advantageous to operate
at lower drive intensities with longer crystals. It also
emphasizes the importance of the correct choice of crys-
tal length when the nonlinear phase mismatch becomes
important.

5. CONCLUSION

In conclusion, we have investigated the effects of the non-
linear phase in the second-harmonic generation of ultra-
short pulses and have shown that the phase mismatch
that is due to ny of the doubling crystal can significantly
lower the maximum possible conversion efficiency. By
examining the second-harmonic equations we have de-
rived an estimate for the net drop-off in conversion effi-
ciency for a given input intensity and have derived the
expression for compensating the nonlinear phase mis-
match with an initial phase mismatch in a straightfor-
ward way.

We have also shown that, in the absence of any dis-
persion in the nonlinear refractive index of the doubling
crystal, the nonlinear phase from the first and second har-
monics cancel, and the third-order nonlinearity is unim-
portant. In general, however, these effects can be quite
important for parameters that are common to the dou-
bling of high-peak-power laser pulses. Numerical sim-
ulations have shown that the effects of the nonlinear
phase coupled with group-velocity walk-off for ultrashort
pulses can also alter the second-harmonic pulse shape
quite significantly. We have also found that some disper-
sive walk-off can actually ameliorate the nonlinear phase
mismatch effects.
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