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Abstract. Given that wind turbine blades are large structures, the use of low-cost composite manufacturing

processes and materials has been necessary for the industry to be cost competitive. Since these manufacturing

methods can lead to the inclusion of unwanted defects, potentially reducing blade life, the Blade Reliability

Collaborative tasked the Montana State University Composites Group with assessing the effects of these defects.

Utilizing the results of characterization and mechanical testing studies, probabilistic models were developed to

assess the reliability of a wind blade with known defects. As such, defects were found to be best assessed as

design parameters in a parametric probabilistic analysis allowing for establishment of a consistent framework to

validate categorization and analysis. Monte Carlo simulations were found to adequately describe the probability

of failure of composite blades with included defects. By treating defects as random variables, the approaches

utilized indicate the level of conservation used in blade design may be reduced when considering fatigue. In turn,

safety factors may be reduced as some of the uncertainty surrounding blade failure is reduced when analyzed

with application specific data. Overall, the results indicate that characterization of defects and reduction of design

uncertainty is possible for wind turbine blades.

1 Introduction

As part of the Department of Energy sponsored, Sandia

National Laboratory led, Blade Reliability Collaborative

(BRC), a metric has been developed to precisely address the

geometric nature of flaws based on statistical commonality in

blades (Nelson et al., 2017). The function of the flaw charac-

terization portion of this program has been to provide quanti-

tative analysis for two major directives: acquisition and gen-

eration of quantitative flaw data describing common defects

in composite wind turbine blades and development of a flaw

severity designation system and probabilistic risk manage-

ment protocol for as-built flawed structures. To meet these di-

rectives, the effects of porosity, in-plane (IP) waves, and out-

of-plane (OP) waves were investigated, based on priorities

provided by the wind turbine industry (Riddle et al., 2011).

In all cases, mechanical testing of flawed laminates was per-

formed and failure strengths or strains were correlated to the

characteristic flaw parameter. An example of the correlation

between a defect parameter and the composite mechanical

response for IP waves is shown in Fig. 1 (Riddle et al., 2012).

The typical procedure for certification of wind turbine

blades is to use deterministic safety factors (SFs) and apply

them to uncertainty variables such as loads, material prop-

erties, manufacturing scale-up, and manufacturing defects.

This is sometimes blended with statistical treatment for vari-

ables, such as materials allowable, but it does not provide

any quantifiable reliability. The SF will generally have some

basis in testing, analysis, and/or experience. The goal of this

is to capture “unknown-unknowns” in a conservative manner

to minimize failures. However, the amount of conservatism is

unknown. Furthermore, if a variable is not correctly consid-
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Figure 1. Individual and trending failure stress for each average

off-axis fiber angle tested.

ered, the approach may not even be conservative. With a sta-

tistical treatment, probabilistic data outside of the database

can be accommodated. While the probability of failure for

such data may be low, it still exists, as seen by premature

failures associated with manufacturing defects. Some simi-

lar prior work on wind turbine blade probabilistic analysis

has been performed by Bacharoudis and Philippidis (2013).

However, defects were not included. With a probabilistic ap-

proach, overly conservative SF may be decreased, resulting

in more reliable blades, at a lower cost (more optimal de-

signs). This would be a new paradigm in the development of

certification of wind turbine blades.

This approach has the additional advantage that the re-

liability can be quantified, as opposed to simply assuming

the safety factor will accommodate all unknowns. While it

is difficult to make a one-to-one comparison between this

standard analysis technique and the proposed probabilistic

approach, important comparisons illustrate the advantage of

this method of analysis. As intended by the BRC, probabilis-

tic models were developed and analyzed to help ensure ade-

quate wind blade design life.

2 Methods and model setup

2.1 Background theory

Currently, the standard wind blade design and certification

process generically define only one reliability target: a 20-

year lifetime based on deterministic estimations of fatigue-

life. However, variations in the structural behavior of com-

posites cannot adequately be characterized by traditional de-

terministic methods that utilize safety factors to account for

uncertain structural responses. Moreover, lightweight com-

posite materials are known to be sensitive to fatigue, defects,

and damage. Therefore, a methodology focused on reliabil-

ity targets, which incorporates probabilistic modeling, is es-

sential to accurately determine the structural reliability of a

composite structure. Typically, these methods are used with

limit state equations in the design process to describe the reli-

ability or probability of failure in a wide variety of a systems

(Rackwitz and Flessler, 1978; Ditlevsen and Madsen, 1996;

Mahadevan and Haldar, 2000; Kim et al., 2012) such as off-

shore structures (Kolios and Brennan, 2009). Since a wind

turbine blade is a complicated composite structure where

uncertainty exists at many levels, each uncertainty variable

(e.g., E, G, ν, flaw magnitude, and location) can be pre-

scribed a distribution that describes the frequency of occur-

rence for values of that parameter. These distributions may

then be used in the limit state equation to address the total

uncertainty or probably of failure in the system. Reliability

targets can then be developed to better address the design

of a wind blade in the context of acceptable numerical out-

puts. While these procedures generally derive from civil or

aerospace engineering, wind turbine blades are generally not

considered to be a risk to human lives. Therefore, reliability

targets such as probability of failure and mean time between

repairs and failures may have acceptably higher values and

consider economic attributes such as primary manufacturing

costs, uptime, cost of downtime and cost of repair. In doing

so, a manufacturer may set acceptable levels which reduces

the overall cost of the bade construction in light of the cost to

repair or replace and design for failure allowable failure rates

which have an overall impact of reducing the cost of energy.

2.2 Model overview

Previous research has shown the utility of quantifying the

influence of defects in composite laminates (Riddle et al.,

2013; Dowling, 2012; Samborsky et al., 2012; Nijssen, 2011;

Lin and Styart, 2007). Furthermore, a probabilistic design ap-

proach may be implemented, but has not been adopted as the

common approach for wind turbine certification (FAA AC

25.571-1D, 2011). The present work builds upon the work

by Nelson et al. (2017), where defect types are classified by

known types. The influence of those defects in terms of dura-

bility and damage tolerance are determined on a probabilis-

tic basis. This is the basis of the high reliability of manned

aircraft structures. Clearly, the wind turbine industry cannot

afford to implement the rigor of FAA FAR 25.571, but ele-

ments can be captured to develop quality guidelines, to re-

duce scrap rate, and to better enable a successful life cycle

for composite wind turbine blades. Bacharoudis and Philip-

pidis (2013) presented a similar framework concerning the

probabilistic reliability assessment wind turbine rotor blades

in ultimate loading. However, the presence of defects was not

considered, nor was the failure criterion developed based on

the fatigue-life of composite material subjected to variable

loads. Alternatively, other work has focused on treating the

wind loading as variable in the assessment of fatigue-life (Hu

et al., 2016) and the effect uncertainties in constituent proper-

ties have on the stiffness properties of a wind blade (Mustafa

et al., 2015).
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Figure 2. Conceptual flow diagram of probability reliability proto-

col (PReP) framework.

As noted above, the overall effort can be divided into two

major directives: (1) acquisition of relevant defect statistics

and defect-laden lamina response, (2) development of a prob-

abilistic model to assess the global structural response, prob-

ability of failure, and estimation of time to failure for wind

blades with flaws. Both directives are addressed within the

context of the framework proposed called the probabilis-

tic reliability protocol (PReP). A conceptual flow diagram

showing the interconnectedness of each element of PReP is

shown in Fig. 2. The PReP algorithm combines defect char-

acterization and probabilistic structural reliability analysis

with field and manufacturing data in an iterative feedback

loop. A comprehensive reliability program aimed at assess-

ing as-built structures can be divided into four interrelated

components:

a. effects of defects: this involves the identification, char-

acterization and analysis of defects. Develops character-

istic parameters, material properties, and damage mod-

els.

b. probabilistic analysis: this involves a stochastic ap-

proach that considers multi-scale mechanical property

variability, damage/defect detection, residual strength

analysis, global, and macro-structural response.

c. criticality assessment (CA): this has been developed as

a surrogate model for the stochastic analysis. It is a

time-efficient metric for use by operators, manufactures

and repair technicians to evaluate the risk of operating a

structure with known flaws and/or damage.

d. reliability estimation and evaluation: this is the use of

the CA to assess structures on the manufactures floor

and in the field. Results from inspections as to the ac-

curacy of the models and the implications to blade reli-

ability are then fed back into the design and evaluation

procedures.

Each one of the components are complicated and require

independent steps which coalesce into the larger framework.

However, they may also be utilized independently. The ef-

fects of defects component was the target topic of the com-

panion paper (Nelson et al., 2017). This paper will focus on

describing the elements of the probabilistic analysis compo-

nent as an independent formulation.

The general approach, which incorporates a finite element

simulation into a probabilistic reliability evaluation, adheres

to the following steps:

1. build a parametrically defined blade model

2. define random variables (RV) and their distributions

3. define outputs variables of interest

4. define the load scheme

5. perform simulations

6. extract relevant probabilistic output response data

7. input data into reliability analysis.

This methodology may be utilized for any application. How-

ever, the specifics may vary according to the structure and

objectives of the analysis. Table 1 lists the steps necessary to

perform the analysis outlined in PReP for a wind blade ap-

plication. In this table, a title for each step and task are given,

as well as a short description of the task. Figure 3 illustrates

the flow of information and interconnections of the various

analysis components. Several of the steps identified in the

previous table are notated by the corresponding step number

on the figure (Riddle et al., 2013).

2.3 Definition of a performance function

The overall structural system is a function of a combined

cumulative distribution function (CDF), F . For this case, a

multivariate probability density function (PDF) is formed as

generalized by Eq. (1):

F (x1, . . .,xn) ≡ Pr (X1 ≤ x1, . . .Xn ≤ xn) . (1)

The PDF describes how the overall system reacts to the com-

bination of relevant variables. The system reaction to any one

variable can be found by taking the partial derivative of the

joint CDF with respect to each of the variables as shown in

Eq. (2):

f (x) =
∂nF

∂x1. . .∂xn

∣

∣

∣

∣

x

. (2)

The focus of reliability estimation is typically to describe

probability of failure. However, the context of failure varies

for each application. In a damage-tolerant design, one might

be interested in the probability of failure between the cur-

rent evaluation and the next inspection interval. This type of
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Table 1. Structural reliability analysis hierarchy.

Step # Step name Description

1 Analysis article setup

1.1 Article designation Establish article of interest

1.2 Environmental conditions Wind speed distribution

1.3 Governing article parameters Operational parameters: tip speed, RPM, operating

hours, design life

2 Structural analysis

2.1 Finite element model 3-D shell elements with as-built material properties and

lay-up

2.2 Flaw location discretization Selection of elements for nodal solution of mechanical

response

2.3 Load introduction Uniform pressure distribution applied to HP side of

blade

3 Development of failure criteria

3.1 Fatigue properties ε − N Curve for specific R ratios

3.2 Constant life approximation Piecewise linear approximation

3.3 Designation of spectrum for load reversals Standardized WISPER reversal spectrum for wind blade

loading

3.4 Derivation of total fatigue cycles Based on operational parameters

4 Flaw data implementation

4.1 Development of flaw distributions from data Collected data on waves angles fit to normal distribution

w/non-zero mean.

4.2 Designation of simulated flaw distributions for compar-

ative analysis

Analyst generated normal distribution for waves and

porosity with zero mean and for porosity w/non-zero

mean

4.3 Development flaw occurrence distribution Spatial distribution describing the probability of a flaw

existing by location

4.4 Treatment of flaw structural performance in fatigue Modification to ε-N curve single cycle intercept with

knockdown factor based on flaw magnitude

5 Model verification/tuning

5.1 Model implementation Structural model and fatigue failure criteria used on test

article

5.2 Development of baseline “design” case Load application (pressure) tuned to elicit a blade fail-

ure at 20 years (without flaws)

6 Probabilistic analysis

6.1 Probability of failure Calculated for all locations for each analysis case. Com-

pared to baseline to how conservatism

6.2 Time to failure Calculated for regions of interest (locations high Pf)

analysis has worked well for the aviation industry where an

aircraft can be pulled into a hanger and inspected relatively

easily. A wind turbine blade on the other hand will remain at

100 m where inspection procedures (and results) are limited.

Therefore, the typical design approach is based on a safe life

criterion. While an extreme event plays a role in the sudden

onset of damage, failure modes are typically considered to be

fatigue driven.

Wind is variable and thus the resulting bending moment

and shear of a blade is variable. Application of an infinitely

variable loading scenario to design and test is unreasonable.

Therefore, rain-flow counting is typically used to convert a

spectrum of wind speeds (realized structurally as moments)

into a set of cycles. The fatigue-life can then be used in con-

junction with the Palmgren-Miner rule for linear damage ac-

cumulation (Dowling, 2012):

D =

k
∑

i=1

n(Si)

N (Si)
, (3)

where D is the cumulative damage, n is the number of load

cycles at the applied stress Si , and N is the number of cy-

cles to failure at Si . Fatigue failure is typically defined as

occurring when D exceeds a value of 1. A commonly used

model for the fatigue-life of composites is the power law as

described in Eq. (4) and modified equation for flaw fatigue-

life is presented in Eq. (5) (Samborsky, 2012; Nijssen, 2011):

S = ANb (4)
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Figure 3. FEA and risk analysis overview with steps 2, 3, 4, and 6 corresponding to Table 1 identified.

S = KANb, (5)

where S is the maximum applied stress (or strain), N is the

number of fatigue cycles, A is the power lower fit coefficient

(often referred to as the single cycle intercept), b is the fit

parameter for the power law slope, and K is the newly ap-

pointed flaw knockdown factor.

Fatigue data of composites containing flaws found in wind

turbine blades are not readily available. However, previous

studies on damaged composites have shown that the fatigue-

life slope remains largely unchanged with damage (Lin and

Styuart, 2007). Therefore, an idealized approach has been

taken to adjust existing material data S−N (or ε−N ) curves

by a shift in the static failure values (knockdown factor) ap-

plied to the single cycle intercept A in Eq. (5). Flaw knock-

down factors, derived from empirical testing (Nelson et al.,

2017), were utilized for this analysis is a scalar quantity used

to reduce a material property as a function of the defect char-

acteristic parameter. Presented in Fig. 4 is an example of the

correlation between knockdown factor and composite me-

chanical response. An illustration of Eq. (5) for a flaw that

resulted in a 25 % reduced static strain to failure is shown in

Fig. 5.

The natural extension to this discussion is then to trans-

late a design life of years into cycles. In doing so, one can

construct the compact limit state function shown in Eq. (6):

g (X) = 1 − D (X) = 1 −

k
∑

i=1

1n (εi)

N (εi)
, (6)

wherein the resulting strain (εi) is a function of the uncer-

tainty parameter vector X. This formulation is capable of

modeling any fatigue loading spectrum and it has the flexi-

bility to predict failure as a function of applied cycles. Tradi-

tional wind turbine design assumes standardized wind load-

ing circannual distribution. Based on this estimation, the per-

formance function can be evaluated two ways: assessing the

probability of failure for a specific design life (e.g., 20 years),

or assessing the time to failure based on an acceptable prob-

ability of failure value. Variations in the analysis to accom-

modate both predictions are minor and both approaches will

be presented.
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112 T. W. Riddle et al.: Effects of defects in composite wind turbine blades

Figure 4. Empirically derived knockdown factor as related to fiber

misalignment angle.

2.4 Construction of simulation

Previous work has shown that composites are sensitive to the

variations in loading rehearsals (cyclic loading) and there-

fore, accurate modeling of fatigue damage accumulation re-

quires usage of fatigue-life estimations for specific R ratios.

Constant life diagrams (CLDs) are used for this purpose,

such as the example shown in Fig. 6 (Mandell et al., 2010).

The amount of data necessary to generate a CLD is often

prohibited by cost and time constraints. Therefore, several

predictive algorithms have been developed in lieu of copi-

ous amounts of testing. Fatigue data for the material sys-

tems used in the analysis presented were only available for

R = 10, R = 0.1: ultimate tension strain (UTS) and ultimate

compression strain (UCS). The piecewise linear methodol-

ogy (Fig. 7) has shown good accuracy in predicting fatigue-

life with limited amount of test data. Therefore, it was used

(Philippidis and Vassilopoulos, 2004). This method requires

a limited amount of test data and performs linear interpola-

tion between the known data points.

The wind loading spectrum utilized for this analysis was

derived from the well-known WISPER load reversal prob-

ability distributions (Tenhave, 1992). Two probability mass

functions (PMFs) were developed from the WISPER data to

assess the high and low-pressure sides of the blades indepen-

dently. The high-pressure side was assumed to always be in

tension; thus, the PMF R-values varied from 0.1 to 0.8. Con-

versely, the low-pressure side was assumed to always be in

compression; thus, R values varied from 1.25 to 10. Based on

the WISPER data and these modifications, probability val-

ues were generated for 100 discrete load reversal bins. The

probability mass distribution and complementary cumulative

distribution for the high-pressure side are displayed in Fig. 8.

Typical computational fluid dynamics and aeroelastic simu-

lations are used to transform these wind speeds into corre-

sponding pressure distributions on the blade surface for use

in the structural analysis.

Wind turbine blades are complex composite structures and

one cannot properly assess the integrity of any portion with-

out considering the global response and load share tenden-

cies. It is well known that 2-D shell elements used in 3-D

finite element models are required to capture information

such as three-dimension distortions, stress concentrations,

and buckling strengths. Other methods such as beam prop-

erty extraction and one-dimensional classical beam section

analysis are widely used for preliminary calculations (Veers

et al., 1993). These techniques have been used by other in-

vestigators for probabilistic analysis of wind turbines (Veers

et al., 2003; Lekou and Philippidis, 2009). A full-scale blade

model (Fig. 9) was used in this analysis. Prior work (Resor

and Paquette, 2012) validated the model (or mesh) generat-

ing engine NuMAD by for use in ANSYS. Moreover, on-

scale testing was performed on a wind blade as part of this

work, wherein strain field data were collected unload which

verified the FEA model output. Most of the uncertainty pa-

rameter (E, G, ν) variations have been implemented as sys-

tem wide global properties. The occurrence of flaws has been

captured by analyzing and modifying the material properties

for a local region of the mesh.

Flaw locations and magnitude parameters were treated as

stochastic variables. First, the probability of a flaw occur-

ring in a specific location was described by a novel spline

fit (Fig. 10), designating a probability mass function as a

function of blade location. One novelty of this approach is

the capacity for updating procedures that do not rely on the

use of traditional, complicated inference techniques. A user

performing inspections on the composite structure, such as a

quality control technician, may record the frequency and lo-

cation of observed flaws. These points can then be treated as

delta functions in the subsequent piecewise polynomial fit-

ting procedure. Frequencies can easily be updated as more

events are recorded, enabling the regeneration of distribu-

tions used in a statistical analysis. These data are hard to

come by; therefore, a fictitious set of frequencies was se-

lected. The chosen frequencies and corresponding PMF are

displayed Fig. 11 and were used in the stochastic analysis

to ascertain the probability of a flaw occurring in a specific

location. When the sampling algorithm identifies the exis-

tence of a flaw, a second distribution describes the probabil-

ity of the flaw’s characteristic parameter magnitude. Figure

12 displays the treatment of an example flaw magnitude as

an uncertainty parameter used in this analysis. As noted be-

low, it was found that off-axis fiber angles of waves collected

in a survey of wind turbine blades follow typical distributions

such as normal and Weibull.

3 Case studies

A 9 m wind blade designed by Sandia National Laboratory

was used as the article of investigation in this analysis. A 3-

D finite element analysis (FEA) model using shell elements
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Figure 5. Representative shifted S − N curve associated with knockdown factor.

Table 2. Stochastic variables used in probabilistic analysis.

Variable Distribution Mean SD Model characteristic property

Wind speed Weibull; a = 1.89, b = 5.29 NA NA Pressure distribution/moment magnitude

Wind load reversal ratio WISPER NA NA Stress/strain, R

Case 1 – flaw location Spline NA NA % of length from blade root

Case 1 – IP flaw magnitude Normal 27.0 18.0 In-plane off axis degree

Case 1 – OP flaw magnitude Normal 6.5 2.8 Out-of-plane off axis degree

Case 2 – IP flaw magnitude Half-Gaussian 0.0 18.0 In-plane off axis degree

Case 2 – OP flaw magnitude Half-Gaussian 0.0 2.8 Out-of-plane off axis degree

Youngs modulus [E11] Lognormal 4.14E+10 2.10E+09 Spar cap material property

Youngs modulus [E22] Lognormal 1.63E+10 2.00E+09 Spar cap material property

Figure 6. Representative GFRP constant life diagram (Mandell et

al., 2010). Figure 7. Approximate constant life diagram represented as a

piecewise linear function.

www.wind-energ-sci.net/3/107/2018/ Wind Energ. Sci., 3, 107–120, 2018
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Figure 8. Wind cycle distributions for high pressure side from WISPER data (Tenhave, 1992).

Figure 9. Finite element model of full blade.

Figure 10. Probability of flaw mass, or occurrence, spatially dis-

tributed along span-wise length.

was generated to match the actual blade laminate and plan-

form schedule. A benchmark standard International Elec-

trotechnical Commission (IEC) approach to fatigue evalua-

tion was used to develop the baseline analysis, Case 0, to

which two probabilistic analyses using the stochastic vari-

ables presented in Table 2 were then compared. For all anal-

yses the blade spar was discretized into 100 locations. The

maximum nodal strain response in the spar laminate 1 direc-

tion (span wise – material tension and/or compression) was

output from the FEA model for use in the post-processing

script. A combined fatigue and probabilistic analysis was

then performed on each location using Monte Carlo simula-

Figure 11. Probability mass of flaws at each blade location.

tion. The methodology for each case is described below with

discussion of the results following.

3.1 Case 0: baseline (design)

Information on the design of the blade article was not read-

ily available. Therefore, the blade was reverse engineered to

develop a load scenario which would cause a fatigue failure

in 20 years. The designation of an applied pressure load was

considered arbitrary in that it need only provide a referenc-

ing point to objectively evaluate analysis techniques. For this

baseline case, the IEC safety factor fatigue formulation was

used. IEC recommends the usage of traditional linear damage

accumulation employing the Palmgren–Miner rule. The IEC

fatigue analysis process can be paraphrased as follows: “Fa-

tigue damage shall consider effects of both cyclic range and

mean strain, and all partial safety factors (load, material and

consequences of failure) shall be applied to the cyclic strain

(or stress) range for assessing the increment of damage asso-

ciated with each fatigue cycle” (IEC 61400-1, 2005). Given

the relevance to the entire study, the IEC’s material safety

factor (γm = 1.3) was used with the available material prop-

erties test data; therefore it was the target of the probabilistic

analysis.

Wind Energ. Sci., 3, 107–120, 2018 www.wind-energ-sci.net/3/107/2018/
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Figure 12. Distribution of sampled magnitudes of IP fiber misalign-

ment angles used in Case 1.

3.2 Case 1: probability of occurrence

This analysis case utilized two probability distributions to de-

scribe defect uncertainty. The first distribution used in the

analysis was probability of occurrence. This distribution de-

scribes the probability mass of a flaw existing in a blade us-

ing a spatial distribution. For this analysis, a 1-D cubic spline

distribution was used to allow for flaws down the length of

the spar cap. The spline formulation allows for high fidelity,

continuous interpolation of probabilities between specific lo-

cations of known flaw frequencies. When the simulation pre-

dicted a flaw’s existence, then a second distribution was used

to describe the magnitude of the flaw based on the actual field

data collected from utility-scale wind blades. An example of

the distribution and sample set used in the analysis for IP

waves is displayed in Fig. 12.

3.3 Case 2: half-Gaussian fiber wave magnitude

This analysis case utilizes only one probability distribution to

describe defect uncertainty. The analysis assumes that there

is a 100 % chance of a flaw occurring at every location in

the blade (Fig. 13). The flaw occurrence magnitude is de-

scribed by a one-sided probability distribution (Fig. 14). For

this case, a flaw magnitude of zero would indicate that there

is no flaw at that specific location.

4 Results and implications

The assumption of a low probability of failure during a typ-

ical 20-year blade lifetime was used for this analysis since

the probability of failure used for the IEC safety factors was

not known. To validate the model, this assumption was used

for the baseline Case 0 scenario, whereas Case 1 and 2 as-

Figure 13. Probability mass of 100 % that a flaw is located at each

blade location used in Case 2.

Figure 14. Half-Gaussian distribution of sample set for IP fiber

misalignment magnitudes used in Case 2.

sumes failure within the blade lifetime due to manufacturing

flaws not inherent in the certification process. For each case,

the likelihood of reaching failure for a given safety factor is

presented as failure probabilities which allows for easy com-

parison. In short, the absolute probability of failure could be

tracked through the 20-year life cycle, if the design failure

probability is known. As such, both the prescribed IEC and

reduced material safety factors were used in the evaluation

of both Case 1 and 2 allowing for direct comparison of the

level of conservatism. Using Monte Carlo simulations and

experimental strain responses, analysis samples and failure

probabilities were generated.

5 Case 1: spatially varying distribution of defects

For each location of the blade, the FEA simulation calcu-

lated strain. Considering the defects as random variables, the

probability of failure (Pf) was then determined for each blade

location along the length (Fig. 15a). It can be seen that the

blade has a 100 % probability of failure at the point of 22 %

along the length of the span. These results were then used to
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Figure 15. Probability of failure by location (a) and as a function of time for location 22 (b).

Figure 16. Probability of failure by location with reduced IEC

safety factor.

determine the critical point along the blade length by relating

Pf to time in service, using a linear fatigue damage accumu-

lation model at each location. Based on the number of cycles

at the 22 % mark, it is indicated that failure will occur ap-

proximately 7 years into the life cycle, as seen in Fig. 15b,.

It is important to note that is a combination of the worst sce-

narios with the inclusion of a typical material SF. Therefore,

the probability of failure is artificially high as the load case

in this analysis was chosen intentionally to yield a fatigue

failure of the blade (using a safety factor of 1.3) in 20 years.

Using this as the starting point, a stochastic analysis incorpo-

rating the effects of defects is performed in addition to using

the safety factor and the results compared.

While this case indicates a significant chance of failure,

the blade will likely be overdesigned if a SF is used in con-

junction with a probabilistic simulation of defects to ensure a

reasonable Pf. To quantify this implication, the same model

was run with the safety factor reduced to 1.15 from 1.3. As

seen in Fig. 16, while the locations of the critical points re-

main the same, none of these points have a 100 % Pf. As

such, these results imply that additional structural reinforce-

ments are not necessary, meaning weight and cost can be re-

duced. This approach has the added benefit of introducing

some level of quantifiable reliability, as opposed to the “as-

sumed to be small probability of failure” of the SF approach.

5.1 Case 2: half-Gaussian fiber wave magnitude results

As noted, the inputs were then modified using a half-

Gaussian distribution (Fig. 14) with a 100 % probability of

a flaw at every location. The case was run for both safety

factors and the results are shown in Fig. 17. While it is evi-

dent in both cases that the Pf approaches 100 % failure prob-

ability, the reduction of the safety factor results in a reduced

estimation that failure will occur which is consistent with the

results of Case 1.

5.2 Implications of probabilistic approach to reliability

As with any analytical method, detailed and accurate inputs

are necessary to use this probabilistic analysis to address un-

certainty of blades with manufacturing defects. When the

two cases are compared, it is evident that distributions of

flaw magnitude affect the results significantly, as seen when

Figs. 15, 16, and 17 are compared. The differences are ampli-

fied further when the strength reduction is considered where

a dramatic shift in laminate strength is noted, as seen in all

four portions of Fig. 18. The variation between the two cases

is significant and the impacts on the laminate are clear, when

flaws are assumed to be occur at all locations as in Case 2

(Fig. 18c, d). While the likelihood of instances with strength

reduction decreases in this case, the reduction of strength

is likely to be greater, which aligns with previous testing

of wavy laminates that indicated an exponential decrease in

laminate strength (Riddle et al., 2012). While this trend is

meaningful, it is imperative to recall that these distributions

were generated during this investigation and may not be in-

dicative of the industry at large or of any one particular man-

ufacturer’s process or products. Therefore, it is also impera-

tive that test data representative of the materials used in the

design system be established.

5.3 Model validation via experiments

To validate these methods, the BRC supported testing of a

two subscale version of a multi-megawatt wind turbine blade

that was manufactured with intentional defects (Desmond et

al., 2015). Both 8.325 m wind turbine blades, one with fiber-
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Figure 17. Probability of failure by location for standard IEC safety factor (a) and reduced IEC safety factor (b).

Figure 18. Strength reduction sample sets as a function of flaw magnitude distributions for the following: Case 1 in compression (a), Case

1 in tension (b), Case 2 in compression (c), and Case 2 in tension (d).

glass spar and one with a carbon fiber spar, were manufac-

tured according on the Sandia Blade System Design Study

(BSDS). The blade was originally designed as mechanism to

study large-scale commercial blade construction at a smaller

and more manageable subscale size (Berry, 2008). Strain data

during static loading were collected from all defects through

the use of a digital image correlation system. The National

Wind Technology Center facilities were used to actuate the

blade in fatigue loading at three locations, allowing for mul-

tiple flaws to be assessed individually and with geometric

considerations (Figs. 19, 20a). In parallel, known uncertainty

values were used to run three Monte Carlo simulations allow-

ing for direct comparison of the results. As seen in Fig. 20b,

the failure occurred at an out-of-plane flaw, as was also pre-

dicted by the numerical simulation. Not only did this validate

the methods described herein, but this blade scale testing pro-

vided insight into the scaling factors and indicated that a local

failure constituted a global structural failure.
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Figure 19. Representation of subscale blade test layout and testing locations.

Figure 20. Actual subscale blade test (a) with final failure at flaw location (b).

6 Conclusions and impact on wind turbine blade

designs and certification

A hierarchical treatment for the probabilistic reliability of

composite wind turbine blades has been developed and pre-

sented. The emphasis here is on composite materials variabil-

ity and the effect of defects. However, the framework is ap-

plicable to any variability and is meant to reduce or eliminate

safety factors if one knows probability distributions. This

work postulates that one should quantify and assess manufac-

turing defects by their magnitude and criticality for durability

and damage tolerance. The same can be said of other impor-

tant probabilistic distributions affecting reliability, where SF

is used in lieu of probabilistic calculations.

Two cases were developed to show the utility of the tech-

nique. The first case included a probability of occurrence plus

a probability for amplitude. The probability of occurrence is

a hypothetical distribution based on one manufacturer’s anec-

dotal manufacturing data. (It is noted that each blade design

will have a unique probability of flaw distribution based on

the design details and manufacturing technique.) The defect

size probability was from the work developed herein. This

case indicates that the probability of failure is 1.0 if both a

safety factor and probabilistic flaw data are used to predict re-

liability. However, it provides the basis for reducing a scalar

safety factor for determining blade reliability and possibly,

certification.

The second case was one where flaws are assumed to be

everywhere in a structure, but with a probability distribution

associated with the size of the defect. This probability distri-

bution for size was based on studies of dissected blades from

a variety of manufacturers. With this analysis, it was shown

that the scalar material safety factor can also be reduced in

this case with acceptable reliability. Case 2 may also be ap-

plicable to a damage tolerant design philosophy where peri-

odic inspections are conducted and flaws above a certain size

can be detected.

The two approaches detailed in this analysis, known defect

distributions and blades assumed to have defects, but without

any spatial statistical information (e.g., existing fleet) the im-

pact of probabilistic analysis with respect to reducing conser-

vative safety factors. Understanding these is critical in terms

of reliability and is important if one wants to justify reduc-

ing SF. Both magnitude and distribution are important for a

comprehensive probabilistic reliability analysis.

For demonstration of the framework for treating defects

as uncertainty variables for blade analysis, 9 m blades were

manufactured and tested with known defects at known loca-

tions. The ultimate failure occurred as predicted at a known

defect location and the reliability predictions were conser-

vative. That is, the structure went to higher cycles than pre-

dicted in the reliability framework.

The probability analysis needs to be incorporated into a

comprehensive program, not just the assessment of a specific

defect or probabilistic parameter. A holistic approach to re-

liability results in a stochastic reliability infrastructure. This

aids in the design process as well, with the ability for con-

tinuous improvement throughout the product life cycle. As

improvements are made, SF can be reduced with the asso-

ciated impacts on cost. While a full damage tolerant design

process is not practical from a cost basis, the approach pre-

sented herein has important elements. This includes an in-

spection program, damage growth laws, and residual strength

with defects.
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Finally, this work has implications for the certification of

wind turbine blades. It provides a rational basis for reducing

assumed scalar safety factors with quantifiable and accept-

ability reliability. This has the net result of mitigating con-

servative designs and ultimately the cost of energy from a

given wind turbine.
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