
Effects of Defects in UML Models –
An Experimental Investigation

Christian F.J. Lange
Eindhoven University of Technology

P.O. Box 513
5600 MB Eindhoven, The Netherlands

C.F.J.Lange@tue.nl

Michel R.V. Chaudron
Eindhoven University of Technology

P.O. Box 513
5600 MB Eindhoven, The Netherlands

M.R.V.Chaudron@tue.nl

ABSTRACT
The Unified Modeling Language (UML) is the de facto stan-
dard for designing and architecting software systems. UML
offers a large number of diagram types that can be used with
varying degree of rigour. As a result UML models may con-
tain consistency defects. Previous research has shown that
industrial UML models that are used as basis for implemen-
tation and maintenance contain large numbers of defects.
This study investigates to what extent implementers detect
defects and to what extent defects cause different interpreta-
tions by different readers. We performed two controlled ex-
periments with a large group of students (111) and a group
of industrial practitioners (48). The experiment’s results
show that defects often remain undetected and cause mis-
interpretations. We present a classification of defect types
based on a ranking of detection rate and risk for misinter-
pretation. Additionally we observed effects of using domain
knowledge to compensate defects. The results are generaliz-
able to industrial UML users and can be used for improving
quality assurance techniques for UML-based development.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—object-oriented design methods, computer-aided soft-
ware engineering

General Terms
Experimentation, Design, Documentation, Measurement

Keywords
Completeness, consistency, defect detection, UML

1. INTRODUCTION
The Unified Modeling Language is the de facto standard

for designing and architecting software systems. It lacks a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06,May 20–28, 2006, Shanghai, China
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

formal semantics and allows a large degree of freedom in
modelling. As a result, the UML is applied in many dif-
ferent ways. Additionally the UML offers various diagram
types to describe different views of a system. UML 1.x [25]
offers 9 diagram types and in the new UML 2.0 [24] the
designer can even choose from 13 diagram types. A UML
model consists of a set of diagrams that together describe
a single system. Hence, there may be overlap between dif-
ferent diagrams. The overlapping parts between diagrams
contain the risk of consistency defects. A consistency defect
is a mismatch between overlapping diagrams. There are sev-
eral approaches that classify these defects [10]. Additionally
there are several methods that aim at finding, removing and
preventing defects in UML models. These include reading
techniques [18, 8, 27] and techniques based on formaliza-
tion [17, 23].

Notwithstanding advances in these areas as well as in
modern UML case tools, the number of defects that remain
undetected in practice is alarmingly large. This is reported
by empirical studies such as [20] where a large amount of
defects was found in several industrial UML models.

UML models are used for describing solutions, analyzing
their properties, and as a means for communication between
stakeholders. Defects in UML models are likely to affects
these uses, but no reseach on such effects is known. This
paper describes our investigation into the effects of defects
in UML models. We consider two main research questions:

• RQ1: Are defects in UML models detected by imple-
menters?

• RQ2: How do undetected defects impact the interpre-
tation of the model by different implementers?

The goal is summarized by the GQM template [5] (Table 1).
To answer these questions we have conducted an experi-

ment with 111 students and replicated the experiment with
48 professionals. Section 2 discusses related work. Section 3
explains the defect types that we have investigated. In Sec-
tion 4 the experimental design, its execution and the two
groups of subjects are described. The results and major
findings of the experiment are presented in Section 5. Ad-
ditional observations are discussed in Section 6. Concluding
remarks and future work are given in Section 7.

2. RELATED WORK
There exists only limited research on the effects of defects

that occur in UML models at the stage of implementing the

401

Analyze consistency and completeness defects in UML
models
for the purpose of identifying risks
with respect to detection and misinterpretation
from the perspective of the researcher
in the context of masters students at the TU Eindhoven
and professionals

Table 1: Goal according to GQM template

system. Therefore we have widened our literature review
to defect detection techniques and defect classification ap-
proaches. This enabled us to compare our work to previous
research.

Software inspection [12] is an efficient and effective means
for quality improvement in software engineering. Defect de-
tection is besides planning, defect collection and defect cor-
rection a central activity in software inspection [19]. In in-
spections so called reading techniques are applied for defect
detection. The most applied reading techniques in industry
are ad hoc reading and checklist-based reading (CBR) [12,
19]. Ad hoc reading is not structured and does not provide
the inspector with any advice on how to proceed, whereas
in CBR checklists of yes/no questions are used to guide the
inspector. Fagan [13] and Gilb and Graham [14] claim that
inspection leads to the detection of 50% to 90% of the de-
fects in a software document. These results stem from the
time before the UML existed.

Few results exist where inspection techniques for UML
and related modeling techniques are analyzed. Since UML
is a modelling language based on object-oriented concepts,
the more recent object-oriented reading techniques (OORT)
such as scenario-based reading (SBR) [3] seem more appli-
cable for inspection of UML models. Scenario-based read-
ing techniques provide the inspector with so-called scenarios
that describe what must be checked and how to perform a
check. One of the specializations of scenario-based reading
techniques is perspective-based reading (PBR) [4] where the
scenarios are based on a particular stakeholder’s perspective.

The literature review shows that initial empirical research
has been done on applying reading techniques to UML mod-
els. Laitenberger et al. [18] conducted an experiment with 18
practitioners as subjects to compare checklist-based reading
with perspective-based reading for UML (both reading tech-
niques applied in teams). The results show that perspective-
based reading leads to detecting 41% more defects than
checklist-based reading and perspective-based reading is less
cost-intensive than checklist-based reading. The defect de-
tection effectiveness using perspective-based reading is be-
tween 45% and 75%. Wohlin and Aurum [27] conducted
an experiment with 486 students as subjects to evaluate
checklist-based reading for entity-relationship diagrams, which
are comparable to UML class diagrams. The results show
that the median effectiveness is 46%. Conradi et al. [8]
investigated cost-efficiency of reading techniques in an in-
dustrial experiment. Since their measurements are based
on industrial UML models and the total number of defects
is not known they cannot report about defect detection
effectiveness like the other studies. However they report
cost-effectiveness in terms of defects detected per person
hour (d/ph). For individual readers the cost-effectiveness

is around 1.7 d/ph and for team meetings it is less than 1
d/ph. The range of the reported values for the effective-
ness of defect detection is large. However, even in the best
reported case, 25% of the defects remain undetected and
propagate to later phases. The experiences from our in-
dustrial case studies [20] show that still a large number of
defects exist in industrial UML models and not all organiza-
tions are using defect detection techniques for UML models.
Therefore an investigation like described in this paper of
the effects of defects in UML models that propagate to later
phases is needed. Our study does not investigate inspection
or OORT’s, but the effect of defects that outlive inspection.

Defect classification is a means to assign priorities to de-
fects to enable cost-effective resource-usage to fix defects
(‘most severe defects first’). Defect classifications are sub-
jective [11] and many organizations use simple categories
such as Minor, Major or Severe [15]. Since classifications
are subjective, there are approaches that provide guidelines
to enable repeatable defect classification such as IBM’s Or-
thogonal Defect Classification (ODC) [7] and an improve-
ment variant of it by El Emam et al. [11]. These approaches
are not specifically validated for UML defects. The afore-
mentioned study by Wohlin and Aurum [27] is the only work
found reporting a defect classification for ER-diagram de-
fects. However, the classification reported there is subjec-
tive and no guideline is given on how it can be repeated.
There is no literature known to the authors describing a
defect classification based on empirical validation.

3. DEFECT TYPES
A UML model consists of several diagrams and these di-

agrams may have a certain overlap. If overlapping parts
of diagrams conflict, then the model contains a consistency
defect. The defect types analyzed in this study take into
account a subset of the UML diagrams: class diagrams, se-
quence diagrams and use case diagrams.

We describe the defects that are analyzed in this paper
in this section. Each description consists of a name, an
abbreviation (which is used in the sequel), a brief description
that informally describes the defect. A formal specification
of the defect types based on a meta-model can be found
in [21].

Message without Name (EnN)
In sequence diagrams objects exchange messages. The ar-
rows representing the messages should be annotated with a
name that describes the message. In case no name describes
the message, this defect is present.

Message without Method (EcM)
A message from one object to another means that the first
object calls a method that is provided by the second object.
The name annotating the message ideally corresponds to the
name of the called method. In case there is no correspon-
dence between the message name and a provided method
name, this defect is present.

Message in the wrong direction(ED)
This inconsistency occurs if there is a message from an ob-
ject of class A to an object of class B but the method cor-
responding to the message is a member of class A instead
of class B. This is a special instance of “Message name does
not correspond to Method”.

Class not instantiated in SD (CnSD)
The objects in sequence diagrams should be instantiations
of classes. If there is no class instantiation in a sequence

402

diagram of a class that is defined in a class diagram of the
model, this defect is present.

Object has no Class in CD (CnCD)
This inconsistency occurs if there is an object in a sequence
diagram and no corresponding class is defined in any class
diagram.

Use Case without SD (UCnSD)
Sequence diagrams illustrate scenarios of use cases. Hence,
the classes instantiated by a particular sequence diagram
contribute to the functionality needed for the corresponding
use case. This incompleteness exists if there is a use case
that is not illustrated by any sequence diagram.

Multiple definitions of classes with equal names (Cm)
This inconsistency occurs if in a single model more than one
class has the same name. The different classes may be de-
fined in the same diagram or in different diagrams.

Method not called in SD (MnSD)
This incompleteness occurs if there is a method of a class
that is not called as a message in any sequence diagram.

The presented defects may be caused by a mistake of the
designer(s) or by improper use of the tooling.

4. EXPERIMENT DESIGN
We conducted two similar experiments. The subjects of

the first experiment were students and the subjects of the
second experiment were professionals. In this section the
experiments are described according to Wohlin et al. [28].
Most parts are the same for both experiments. The differ-
ences are explained where applicable.

4.1 Design
The treatment in this experiment is the defect injection

and the different levels are “no defect” and the eight defects
defined in Section 3.

We assume that the subjects are not influenced in succes-
sor questions by treatments of previous questions, therefore
the experiment is designed as a nested same-subject design,
i.e. all subjects are exposed to all treatment levels. Hence,
the design is by definition balanced.

4.2 Objects and Task
The subjects were given fragments of UML models. A

fragment consists of two or three diagrams. For each frag-
ment the subjects had to answer a multiple-choice question
that asked how they would implement the system given the
UML model fragments. Subject’s were not asked to inspect
the model according to a particular reading technique, but
asked to answer the question from the perspective from a
person who has to implement the system. Therefore they
implicitly followed an ad hoc reading approach.

For each of the eight selected defect types that were pre-
sented in Section 3 we constructed a UML model fragment
that contains an instance of the defect type. With each
fragment we presented a question that focusses on a specific
aspect of the model fragment. For each multiple-choice ques-
tion there were four possible answer options, that represent
four interpretations. The questions about model fragments
containing an injected defect were paired with a similar con-
trol question that focusses on the same aspect but that does
not contain a defect in the model fragment. The control
questions served in the analysis of the results to compare
the answer behavior in case of a defect to the ideal case
without a defect.

The four answer options provided with each question were
designed according to the following schema:

For questions about a defected model : A defect be-
tween two or more diagrams means that there is conflicting
information between the diagrams. The answer options are
therefore designed such that for each of the diagrams there
is at least one answer that corresponds to the system as de-
scribed in the diagram. If possible, one answer option is a
combination of the given diagrams, and at least one answer
option is incorrect with respect to all given diagrams. This
is illustrated in the example in Section 4.2.1. The critical
call is message open() from object atm to object a. Answer
option A corresponds to the sequence diagram, options B
and D correspond to the class diagram and option C is not
according to any of the diagrams.

For control questions: One correct answer option and
the other three answers being incorrect.

All questions had a fifth answer option where the sub-
jects could indicate that they detected a defect. The sub-
jects were asked to give an explanatory motivation of their
answer.

4.2.1 A Question about a defected Model
As an example we present question Q2 from the experi-

ment. Q2 is a representative question for the whole question-
naire. The model fragment we presented consist of a class
diagram and a sequence diagram (Figure 1). The question
and answer options are as follows:

Question: Suppose you are developer in this banking soft-
ware project. It is your task to implement class ATM. Please
indicate how you would implement the ATM class given these
two UML diagrams?

Answer option A

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.open()}

method acknowledge (){
dosomething;
c.seeFromMenu()}}

Answer option B

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.lock()}

method acknowledge (){
dosomething;
c.seeMenu()}}

Answer option C

Class ATM{
method getCardInserted(){

c.requestPIN();
dosomething;
a.acknowledge()}

method acknowledge (){
dosomething;
c.seeMenu()}}

Answer option D

Class ATM{
method getCardInserted(){

c.requestPIN();

403

Figure 1: Example Class Diagram (left) and Sequence Diagram (right)

dosomething;
a.validate()}

method acknowledge (){
dosomething;
c.seeMenu()}}

Answer option E
No interpretation possible because of an error in the model.

4.3 Subjects

4.3.1 Students
In total 111 students participated in the experiment. The

experiment was conducted within the course “Software Ar-
chitecting” at the Eindhoven University of Technology (TUE).
This course is taught in the first year of the Masters pro-
gram in computer science, hence all subjects hold a bachelor
degree or equivalent. Most students have some experience
in using the UML and object oriented programming through
university courses and industrial internships.

4.3.2 Professionals
In total 48 professionals from 18 companies in 10 coun-

tries participated in the experiment by completing the online
questionnaire [1]. Some of the subjects did not complete all
questions, but all questions were answered by at least 27
subjects. We removed subjects who entered ‘student’ as job
description or who had less than two years of work expe-
rience. The average work experience of all remaining sub-
jects is 10.7 years. The most frequent job descriptions (of all
subjects who entered a job description) were ‘architect’, ‘de-
signer’ and ‘engineer’. In a self assessment on a scale from
1 (no experience) to 5 (several years of experience) the pro-
fessionals indicated the following: designing (average: 4.5),
UML, (4.3), implementing (4.0), code review (3.8), inspec-
tions (3.7) and design review (3.4).

4.4 Preparation
Prior to the experiment we conducted a pilot run to eval-

uate the experimental design and the experiment materials.
The subjects of the pilot experiment did not participate in
the actual experiment.

UML was presented and explained to the students as part
of the “Software Architecting” course. In the five weeks
before the experiment was conducted the students had to

develop and evaluate a UML model as part of a design as-
signment. Those who had only limited UML experience fa-
miliarized themselves with the UML during the assignment.

The professionals’ experiment was conducted as an on-
line questionnaire. Besides setting up the website and the
database to collect the results no preparation was needed.

4.5 Operation

4.5.1 Student Experiment
The student experiment was conducted in two runs. The

first run contained questions Q1 to Q10, the second run (five
weeks later) contained questions R1 to R5. The procedure
of operation was the same for both runs.

The incentive for the subjects was to gain bonus points
for their grade by participating in the experiment. The sub-
jects’ achievement for the experiment questions had no in-
fluence on the grade. The experiment is according to the
ethical issues proposed by Carver et al. [6].

The experiment was conducted in a classroom with the
subjects spread out in an exam-like setting. The subjects
were given the experiment material containing instructions,
the model fragments, questions and answers options. For
the experiment the subjects had 90 minutes available. The
average time for completing the first run was 67 minutes,
hence there was no time pressure for the subjects. For the
second run the time was not collected. In addition to the
written instructions we gave instructions at the beginning
of the run. During the run the subjects were allowed to ask
questions for clarification. The subjects were not familiar
with the goal of the experiment to avoid biased results.

After the first run the subjects had to complete a question-
naire to assess their academic background, work experience,
experience with UML and other relevant software engineer-
ing related experience.

4.5.2 Professionals Experiment
Because of professionals’ time constraints they performed

only one experiment run. The run contained questions Q1
to Q10. Since we intended to allow professionals from all or-
ganizations and from all over the world to participate in the
experiment we executed the professionals’ experiment as an
online questionnaire. Subjects who prefer pen and paper for
the experiment could download a printable version of the ex-

404

periment material from the experiment website and fax or
mail it to us. We announced the URL of the experiment
website on several related newsgroups and asked industrial
contacts to participate in the experiment and to forward the
request to colleagues in their organization. The profession-
als’ experiment contained the same diagrams and questions
as the first run of the student experiment. The professionals’
questionnaire also contained background questions to gain
insight into the subjects’ experience (which enabled us to
remove results from subjects that could not be regarded as
“professionals” in the sense of this experiment).

4.6 Variables
The factor of interest in this study is the defect type.

This variable has nine levels: the eight defect types and ‘no
defect’ for control questions. Additionally we controlled the
variable ‘domain knowledge’ by designing some questions
with symbolic names instead of meaningful names to make
observations about the effect of domain knowledge. This is
not related to our main research questions and is further
discussed in Section 6.

The subject’s answers to the multiple choice questions are
summarized in a vector with five fields. The fields contain
the frequencies of answers for the four answer options and
the fifth option, that indicates an error. Based on this data
we measure two dependent variables that relate to our re-
search questions stated in Section 1.

In RQ1 we are interested in whether implementers detect
a defect for a given model fragment. The corresponding
dependent variable is the detection rate for each question.
The detection rate of a question is the ratio of subjects that
indicate that they cannot give an implementation due to a
defect that is present divided by the total number of subjects
that answered a question.

Ideally, if a defect is present, it should be detected and
no implementation should be given. Given the motivations
of the subjects’ answers, we regard the case where multiple
answers are given also as defect detection (by giving multiple
answers the subject indicates that the underspecification or
ambiguity has been detected). When no defect is present,
all subjects should ideally give the same implementation.

In RQ2 we are interested in whether undetected defects
impact the interpretation of a model. An undetected defect
is not necessarily problematic. In case the writer(s) of a
model and all readers have the same interpretation there is
no problem. But since defects are in most cases mismatches
between diagrams, it is possible that conflicting information
leads to different interpretations. To measure the degree
of spread over the four possible options of the answers we
have developed a so called agreement measure (short AgrM).
AgrM maps the four fields of the answer vector representing
the answer frequencies to a scalar. The agreement mea-
sure is 0 if answers are distributed equally over all options
(maximal disagreement), and 1 if only one option receives
all answers (everyone agrees). AgrM is informally explained
in Figure 2 as the opposite of entropy. AgrM is described
formally in the Appendix. We use AgrM for descriptive
statistics and defect classification in Section 5.

4.7 Hypotheses
Ideally, when a defect is present, it is detected by every-

one (detection rate = 1) and when no defect is present, no
one reports a defect (detection rate = 0). We expect that

AgrM=0 AgrM=10<AgrM<1

Figure 2: Informal explanation of AgrM measure

defects are not detected by everyone. This would lead to the
null hypothesis: ‘the detection rate for defected models =
1’ and the alternative hypothesis ‘the detection rate for de-
fected models < 1’. However, in practice false negatives and
false positives appear. False negatives reduce the maximum
measured defect rate of 1. We assume that the likelihood of
false positives equals the likelihood of false negatives. This
justifies hypothesis H1 for RQ1, which is tested for each
defect type (d-ratedef and d-ratecontrol denote the detection
rate for defected questions and for control questions, respec-
tively):

• H10: d-ratedef = 1−d-ratecontrol

• H1alt: d-ratedef < 1−d-ratecontrol

In RQ2 we address the risk for misinterpretation caused
by a defect. For RQ2 we only consider the four fields of the
answer vector that represent the answer frequencies for the
four options that correspond to some choice of implementa-
tion. The field containing the frequency of indicated errors
is discarded. Ideally, everyone interprets a given model in
the same way (no misinterpretation). In this case 100% of
the subjects give the same answer. The results of the control
questions (Table 2) show that even without a defect not all
subjects agree upon the same interpretation (i.e. due to hu-
man imperfection some subjects make errors). The results
of the control questions show that it is reasonable to expect
that 98% of the subjects agree on one interpretation, and
2% are spread over the other three options. This leads to
the hypothesis H2 for RQ2, which is tested for each defect
type:

• H20: for a defected model fragment ≥ 98% of the
implementers agree upon the same interpretation.

• H2alt: for a defected model fragment < 98% of the
implementers agree upon the same interpretation.

4.8 Analysis Techniques
To test H1 we consider for each defect type the number of

subjects that indicated a defect and the number of subjects
that did not indicate a defect and the same data for the cor-
responding control question. We applied McNemar’s test [2,
22] for marginal homogeneity. This test is similar to the χ2

test, but does not require independent samples. We have a
same subject design, hence our samples are dependent.

To test H2 we consider the distribution (l, r) where l is
the frequency of the most prominent interpretation and r
combines the frequencies of the three other interpretations.
More formally: l is the maximum frequency of the four in-
terpretations options, and r is the sum of the frequencies of
the three other interpretation options. The sum s of l and r
is the total number of answers of subjects, not indicating an
error. We construct a reference distribution (0.98 ·s, 0.02 ·s)
which represents the ideal case, where 98% of the readers

405

agree on one interpretation. Since these distributions are
independent we can use the χ2 test to test the two distribu-
tions for equality.

We used Microsoft Excel for hypothesis testing.

4.9 Threats to Validity
In this section we discuss the threats to validity in or-

der of decreasing priority: internal, external, construct and
conclusion validity (according to [28]).

4.9.1 Internal Validity
Threats to internal validity are influences on the causal

relation between the controlled factors and the independent
variable.

In both experiments described in this paper the order of
the questions is the same for all subjects, hence there is a
potential for order effects. Order effects occur when there
is interaction between the objects of the study. To avoid
interaction we constructed the objects, i.e. the model frag-
ments, such that all fragments are in different domains, and
the naming of elements (classes, methods...) is chosen such
that each pair of model fragments has no common names for
its elements. As described in Section 4.1 each question has
three types of possible answers. To avoid that the subjects
could predict the correct answer the order of the answers is
chosen absolutely random. In all runs, there were no two
questions with the same combination of injected defect and
domain knowledge available, hence, we assume that there
were no learning effects. The second run of the first exper-
iment contained questions that were almost equal to ques-
tions from the first run. The results were almost the same,
hence there were no learning effects.

Fatigue during completion of the questionnaire is a possi-
ble threat to validity. The number of obvious wrong answers
is almost the same for questions at the end of the question-
naire as it was for questions at the beginning of the ques-
tionnaire. Therefore there is no decrease in performance.

Communication between the subjects influences the sub-
jects’ answer behavior. This threat can be ruled out for the
student subjects, since the experiment was executed in an
observed exam session where the students were not allowed
to communicate. There is a risk, that the professionals com-
municated. After participating in the experiment we inter-
viewed some of the subjects, who indicated that they did
not communicate about the experiment during execution.

A difference between the students and the professionals is,
that the professionals volunteered to participate in the ex-
periment and may be more motivated for a task. We cannot
completely exclude this threat, but since the results of both
subject groups are very similar we assume that the volunteer
effect has no significant influence on our observations.

Subject’s knowledge of an application domain can influ-
ence the dependent variable. Since there are differences in
the cultural and educational background of the subjects this
effect is a threat to the internal validity of this experiment.
To compensate for this effect we have chosen objects from
various application domains and some objects unrelated to
any application domain (because symbolic names are used).

4.9.2 External Validity
Threats to external validity are concerned with whether

the results of the experiment can be generalized to a profes-
sional software context.

Students as subjects could be a threat for the external va-
lidity of the experiment. The subjects in the first experiment
are all MSc students with experience in UML. According
to Kitchenham et al. [16] students can be used as subjects.
Additionally we have performed the second experiment with
professionals. The experiment has fewer subjects, but con-
firms the results of the larger first experiment (Section 6.3).

The size of the model fragments ranges between three and
nine classes. In industrial models we have found between
fifty and several hundred classes. Therefore the size can
be considered as a threat to validity concerning the gen-
eralizability of the outcomes. When acting (e.g. reading,
modification) on industrial models, designers focuss on only
a subset of the model, which decreases the size gap for this
experiment on cognitive effects. As the complexity in in-
dustrial models is in general larger, the effects of defects in
industrial models are expected to be at least as severe as the
effects reported here. In terms of number of classes indus-
trial models are larger than our fragments by a factor rang-
ing between ten and hundred. Similar experiments show the
same size factor, e.g. Deligiannis et al.[9] have source code
fragments of 18 classes and Purchase et al.[26] has a model
fragment of ten classes. Multiplying the sizes of these ex-
periments by a factor between ten and 100 yields sizes that
are common source code sizes in industrial projects.

4.9.3 Construct Validity
Construct validity is the degree to which the dependent

and independent variables accurately capture the concepts
that should be measured by this study.

Since the experiment is designed as a multiple-choice test,
four possible interpretations are explicitly stated to the sub-
ject. This situation is different from the situation in a
real software development process, where the subject is not
guided by a set of predefined interpretations. In practice,
the subject has to choose from an infinite set of interpreta-
tions. Therefore the results in the experiment might differ
from practice. As the set of possible interpretations is in
practice much larger and the subject is not guided and will
most likely not guess the interpretation, we expect the de-
tection rate and agreement measure to be even lower than
in the experiment.

4.9.4 Conclusion Validity
Conclusion validity is the extent to which correct con-

clusions about the relations between the treatment and the
outcome of the experiment can be drawn. We have carefully
taken precautions to avoid issues threatening the conclusion
validity. Particularly precautions guaranteeing homogeneity
of the subject groups with respect to subjects’ background,
satisfaction of the assumptions of the statistical tests and
accuracy of measurements are taken (described in in Sec-
tion 4.

5. RESULTS
The results of this experiment are shown in Table 2. The

first column shows the identifier of the question, the second
column shows the defect type (as in Section 3). In the follow-
ing columns, S and P indicate the results from the students
experiment and the professionals experiment, respectively.
The column N shows the number of subjects participating
in the question, The following columns give the results for
detection rate (d-rate) and agreement measure (AgrM). The

406

Figure 3: Defect detection boxplot

column s indicates with a checkmark which questions used
symbolic names in the model fragments. All questions (ex-
cept Q10) are paired with a control question that does not
contain a defect (the paired control question is given in the
column Ctrl. Qu.). The results are discussed in this section.

In the Tables 3 and 4 we give an objective classification
of defect types based on the experiments.

5.1 Data Purification
The results of this experiment might be biased by sub-

jects with lack of motivation or with insufficient expertise
to answer the questions. Therefore the answers of such sub-
ject should be excluded from the results. We analyzed the
subjects’ answer behavior to identify subjects with the men-
tioned characteristics.

The answer options of the questions contained wrong an-
swers (one wrong answer for defected questions, three wrong
answers for control questions). We use the number of wrong
answers per subject to identify subjects who are guessing.
The first run of the student experiment and the profession-
als’ experiment contained 18 questions (including subques-
tions). 81,9% of the students gave no or one wrong answer.
No student gave more than three wrong answers. The re-
sults for the professionals experiment are similar. Therefore
no subject was removed. The second run of the student
experiment contained 9 questions, two students gave three
wrong answers (which we regarded as suspect of guessing)
and they were therefore removed from the results.

5.2 RQ1: Defect Detection
Research question RQ1 investigates whether implementers

detect a defect in an UML model.
The data of all defect types from Table 2 is summarized in

Figure 3. The boxplot shows the detection rate for questions
containing a defect compared to control questions. In case of
a control question the vast majority of the subjects gives an
implementation and only a small fraction wrongly detects a
(non present) defect. The figure shows that even in case of
a model defect, more subjects indicate to give a implemen-
tation than detect the error. Defect types marked with an
s are based on model fragments with symbolic names.

We tested hypothesis H1 to investigate RQ1. The test
statistic χ2 of McNemar’s test is given in Table 2. The

Figure 4: Agreement boxplot

threshold value at a significance level of α = 0.05 and one
degree of freedom is 3.84. We indicate rejection of the null
hypothesis with r, failure of rejection is indicated with an
f. The null hypothesis is rejected for all defect types except
for ‘Class not instantiated in SD’.

Table 3 presents a classification of defect types by detec-
tion rate (of the student experiment), defect types at the top
of the table remain undetected in most cases. The least de-
tected defects are Multiple classes with the same definition,
Method not in SD (symbolic) and Object has no class in CD.
The most detected defect is Class not in SD (symbolic).

5.3 RQ2: Variation of Interpretations
With research question RQ2 we investigate the risk for

misinterpretation caused by a defect. The data from Table 2
is summarized in Figure 4. The boxplot shows the agree-
ment measure of questions containing a defect compared to
control questions. The control questions have a high AgrM
value (average: 0.91), which indicates that most subjects
have the same interpretation of the model. The AgrM value
of defected models is widely spread between .14 and 1.00 (av-
erage: 0.73). The results show that defected models have
a larger variety of misinterpretations and, hence, contain a
higher risk for misinterpretation and miscommunication.

We tested hypothesis H2 to investigate RQ2. The test
statistic χ2 of the χ2 test is given in Table 2. The threshold
value at a significance level of α = 0.05 and one degree of
freedom is 3.84. We indicate rejection of the null hypothesis
with r, failure of rejection is indicated with an f. The null
hypothesis is rejected for all defect types in the student ex-
periment. In the professionals experiment we fail to reject
the null hypothesis for four defect types. These defect types
are inconsistencies between sequence diagrams and class di-
agrams. We found that the practitioners tend to regard the
sequence diagram as leading. Amongst students this behav-
ior was observed to a much lesser degree.

H2 compares the results of a question with a reference dis-
tribution (as described in Section 4.8). This allows us to test
the hypothesis for defected questions as well as control ques-
tions. As expected, we failed to reject the null hypothesis
for all control questions.

407

N d-rate AgrM Ctrl. χ2 (H1) χ2 (H2)
Qu. Defect S P S P S P s Qu. S P S P
Q1.1 Msg. without Name 111 48 .69 .60 .47 .44

√
Q1.2 16,00 r 8,17 r 87,37 r 19,16 r

Q2 Msg. without Method 111 40 .39 .38 .84 .90 Q4 50,97 r 13,37 r 11,68 r 1,78 f
Q8 Msg. without Method 111 30 .49 .33 .86 .94

√
Q4 45,63 r 13,76 r 7,17 r 1,01 f

R1.2 Msg. without Method 110 [.49 .69
√

R1.1 42,12 51,56 r
Q3 Msg. in wrong direction 111 34 .60 .58 .47 .95

√
Q1.2 73,96 r 4,26 r 25,11 r 0,42 f

Q6.1 Obj. has no Class in CD 111 31 .14 .21 .81 .97 Q6.2 73,09 r 21,16 r 13,09 r 0,20 f
Q7.1 Use Case without CD 109 30 .50 .52 .83 .44 Q7.2 47,08 r 6,25 r 9,17 r 10,62 r
Q5.2 Class not inst. in SD 111 34 .47 .68 .49 .64 Q5.1 84,05 r 4,76 r 75,40 r 6,52 r
Q9.2 Class not inst. in SD 109 30 .95 .96 .54 .14

√
Q9.1 1,00 f 0,67 f 85,17 r 7,26 r

Q10 Multiple Class defs. 107 27 .10 .33 .92 .68 \ 5,27 r 9,70 r
R3 Method not called in SD 109 [.14 .67

√
Q1.2 76,05 r 55,70 r

Q1.2 Control question 110 48 .08 .16 .97 .89
√

0,18 f 1,50 f
Q4 Control question 111 34 .05 .13 .95 .91 1,10 f 1,66 f
R1.1 Control question 110 [.06 .92

√
3,42 f

Q6.2 Control question 111 31 .05 .07 .96 .97 0,13 f 0,15 f
Q7.2 Control question 110 30 .05 .22 .95 .92 2,69 f 0,94 f
Q5.1 Control question 111 34 .05 .13 .94 .95 1,85 f 0,88 f
Q9.1 Control question 110 30 .04 .07 .99 1.0

√
0,40 f 0,50 f

Table 2: Complete Results. ([: not part of professionals experiment; \: no control question)

Defect S P Quest.
Multiple Class Defs .10 .33 Q10
Method not in SD (s.) .14 n/a R3
Object has no Class in SD .14 .21 Q6.1
Msg. without Method .39 .38 Q2
Class not in SD .47 .48 Q5.2
Msg. without Method (s.) .49 .33 Q8
UC without SD .50 .52 Q7.1
Msg. in the wrong Dir. (s.) .60 .48 Q3
Message without Name (s.) .69 .60 Q1.1
Class not in SD (s.) .95 .96 Q9.2

Table 3: Classification by detection rate

Table 4 presents a classification of defect types by AgrM
(of the student experiment), defect types with the largest
spread over different interpretations are at the top. Most
misinterpretation is caused by the defect type Class not in
SD (symbolic version).

6. ADDITIONAL OBSERVATIONS

6.1 Domain Knowledge
When reading a text that contains errors it is often pos-

sible to understand the intended meaning of the text. Un-
derstanding the right meaning is sometimes even possible if
the errors introduce ambiguity or change the meaning. This
is based on the fact, that the reader knows the language
and he is supported by the fact that he is familiar with the
context, which enables to infer the correct meaning.

In this study we investigate the effects of defects in UML
models. Hence we are also interested whether context knowl-
edge enables the reader to infer the right interpretation from
the defected model. To be able to analyze the use of context
(or domain) knowledge, we designed pairs of models for the
defects Message name does not correspond to method name
(EcM) and Class from SD not in CD (CnSD) such that one
model was taken from a familiar domain (ATM machine
and train crossing) and the other model is essentially equal,
but the elements have symbolic names without a particular
meaning (e.g. class A, method3).

Defect S P Quest.
Class not in SD (s.) .34 .14 Q9.2
Msg. without Name (s.) .47 .44 Q1.1
Msg. in the wrong Dir. (s.) .47 .95 Q3
Class not in SD .49 .64 Q5.2
Method not in SD (s.) .67 n/a R3
Object has no Class in SD .81 .97 Q6.1
UC without SD .83 .44 Q7.1
Msg. without Method .84 .90 Q2
Msg. without Method (s.) .86 .94 Q8
Multiple Class Defs .92 .68 Q10

Table 4: Classification by AgrM

For the defect EcM the results of students and profes-
sionals are almost the same in the cases with and without
domain knowledge (see Table 2). For the defect CnSD there
is a large difference between the model with and without
context for the detection rate as well as for AgrM in both
groups of subjects (Figure 5). When the reader cannot use
domain knowledge to compensate the defect CnSD the de-
tection rate is higher, i.e. 95% of the students and 96% of
the professionals detect the defect. Subjects who compen-
sate the defect using domain knowledge have different inter-
pretations of the model, resulting in low scores for AgrM.

The question for this defect (using domain knowledge)
was to describe the behavior of the classes that control the
traffic light events based on events from the gate sensors and
the rail sensors. Because the order of events at traincrossings
might be slightly different in different countries, we analyzed
the results to detect whether subjects from the same country
(i.e. having common domain knowledge) would have the
same interpretation, but even this was not the case.

6.2 Prevailing Diagram
The questions about consistency defect between a sequence

diagram and a class diagram were designed such that the an-
swer options included at least one option that compensated
the defect by regarding the sequence diagram as correct and
at least one option that compensated the defect by regard-
ing the class diagram as correct. Interestingly, for all defect

408

Figure 5: Results for Defect CnSD.

types that allow either way of interpretation, the option re-
garding the sequence diagram as correct (i.e. prevailing)
received the largest amount of answers. These defect types
are: ED, MnSD, CnCD and EcM.

The defect types Class not in SD (CnSD) and Message
without Name (EnN) also address sequence diagrams and
class diagram, but in these cases there is information missing
in the sequence diagrams (instead of a mismatch). Therefore
they cannot be compensated by using the sequence diagram.
CnSD is discussed in 6.1. The majority of subjects compen-
sates a defect of type EnN using the most straightforward
interpretation of the class diagram (not taking into account
inheritance). But the degree of misinterpretation induced
by this defect type is rather high (i.e. low AgrM values: .47
resp. .44).

The defect type Multiple Class Definitions under the same
Name involves only class diagrams. Most subjects compen-
sate an instance of this defect by taking the union of all
methods and classes of both definitions of the class.

6.3 Generalizability
The presented results are based on a large group of stu-

dents (111 subjects) and a smaller group of professionals
(between 27 and 48 subjects, depending on the question).
The larger amount of subjects in the student group results
in a higher statistical reliability of the results obtained from
this group. The drawback of experiments with students is
that the results may not be generalizable to professionals
because of the different experience level. Students are less
experienced than professionals and their pressure and moti-
vation differs from those of professionals.

To investigate whether the results obtained from the stu-
dent group can be generalized to professionals we compared
the results of both groups. We use Pearson’s correlation
to investigate to which degree the results of the students
and professionals are related. The correlations are 0.929 (P-
value<0.001) for detection rate and 0.779 (P-value<0.001)
for AgrM. Hence, there is a strong correlation between de-
tection rate and AgrM of students and practitioners. The
results are statistically significant. Hence, the reliable re-
sults of the student group can be generalized to professionals
without loss of validity.

7. CONCLUSIONS AND FUTURE WORK
In this study we investigated the effects of defects in UML

models. The two major contributions are the investigations
into defect detection and misinterpretations caused by un-
detected defects. The results show that some defect types
are detected by almost all subjects (e.g. 96% of the subjects
detect Class not in Sequence Diagram) whereas other de-
fect types are hardly detected (e.g. Multiple Definitions of
the same Class is detected by 10% only). Most of the ana-
lyzed defect types are detected by less than 50% of the sub-
jects. The risks for misinterpretations are similarly alarm-
ing. Some defect types cause a large variation in interpreta-
tions amongst readers (e.g. Class not in Sequence Diagram
has an AgrM of 0.14) and other defect types hardly cause
any misinterpretations (e.g. Message without Method has a
AgrM of 0.94).

We presented a classification of defect types based on de-
tection rate and risk for misinterpretations. In contrast to
most defect classifications found in literature and industrial
practice this classification is objective and based on em-
pirical evidence. The results show that most defect types
are hardly detected and that there is no implicit consensus
about the interpretation of undetected defects. Therefore
defects are potential risks that can cause misinterpretation
and, hence, miscommunication. These results are generaliz-
able to professional UML designers.

We observed that the presence of domain knowledge ef-
fects the interpretation of UML models. We found an in-
stance of a defect type where the presence of domain knowl-
edge strongly decreased the detection rate. This observation
gives rise to the assumption that domain knowledge sup-
ports implicit assumptions that might be wrong and cause
misinterpretations. The validity of this assumption should
be investigated in further studies.

Our findings can be used to improve the practice of soft-
ware modelling in the following ways: Defect prevention can
be improved through the use of guidelines for creating UML
models that minimize the risk of misinterpretation. Using
the classification, defect removal activities can be improved
by focussing on the most risky defects first.

In further studies the impact of misinterpretations should
be investigated. For example questions like “which imple-
mentation errors will be caused by model defects?” and
“when will errors caused by model defects be detected and
what is the cost of repairing them?” should be addressed.
We invite other researchers to replicate this experiment us-
ing other groups of subjects.

8. REFERENCES
[1] EmpAnADa UML Experiment Web Questionnaire.

2004. http://www.win.tue.nl/empanada/survey.

[2] A. Agresti and B. Finlay. Statistical methods for the
social sciences. Prentice Hall, 3rd edition, 1997.

[3] V. Basili. Evolving and packaging reading
technologies. Journal of Systems and Software, 38(1),
1997.

[4] V. Basili, S. Green, O. Laitenberger, F. Lanubile,
F. Shull, S. Sorumgard, and M. Zelkowitz. The
empirical investigation of perspective-based reading.
Empirical Software Engineering, 1(2):133–144, 1996.

[5] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric paradigm. In Encyclopedia of

409

Software Engineering, volume 2, pages 528–532. John
Wiley and Sons, Inc., 1994.

[6] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Proceedings of The Ninth
International Software Metrics Symposium, pages 239
– 249, September 2003.

[7] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J.
Halliday, D. S. Moebus, B. K. Ray, and M.-Y. Wong.
Orthogonal defect classification - a concept for
in-process measurements. IEEE Transactions on
Software Engineering, 18(11):943–956, November 1992.

[8] R. Conradi, P. Mohagheghi, T. Arif, L. C. Hedge,
G. A. Bunde, and A. Pedersen. Object-oriented
reading techniques for inspection of UML models – an
industrial experiment. In Proceedings of the European
Conference on Object-Oriented Programming
ECOOP’03, volume 2749 of LNCS, pages 483–501.
Springer, July 2003.

[9] I. Deligiannis, I. Stamels, L. Angelis, M. Roumeliotis,
and M. Shepperd. A controlled experiment
investigation of an object-oriented design heuristic for
maintainability. Journal of Systems and Software,
2(72):129–143, 2004.

[10] M. Elaasar and L. Briand. An overview of UML
consistency management. Technical Report
SCE-04-18, Carleton University, Department of
Systems and Computer Engineering, 2004.

[11] K. E. Emam and I. Wieczorek. The repeatability of
code defect classifications. In Proceedings of the 9th
International Symposium on Software Reliability
Engineering, pages 322–333, 1998.

[12] M. E. Fagan. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(3):182–211, 1976.

[13] M. E. Fagan. Advances in software inspections. IEEE
Tr. on Software Engineering, 12(7):744–751, 1986.

[14] T. Gilb and D. Graham. Software Inspection. Addison
Wesley Publishing Co., 1993.

[15] D. Kelly and T. Shepard. A case study in the use of
defect classification in inspections. In Proceedings of
the IBM Centre of Advanced Studies Conference 2001,
pages 26–39. IBM, 2001.

[16] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. E. Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. IEEE Transactions
of Software Engineering, 28(8):721–734, August 2002.

[17] L. Kuzniarz, Z. Huzar, G. Reggio, J.-L. Sourrouille,
and M. Staron. 2nd Workshop on Consistency
Problems in UML-based Software Development at the
UML2003. Blekinge Institute of Technology, 2003.

[18] O. Laitenberger, C. Atkinson, M. Schlich, and K. E.
Emam. An experimental comparison of reading
techniques for defect detection in UML design
documents. Technical Report NRC/ERB-1069,
National Research Council Canada (NRC), Ottawa,
Canada, December 1999.

[19] O. Laitenberger and J.-M. DeBaud. An encompassing
life-cycle centric survey of software inspection. Journal
of Systems and Software, 2000.

[20] C. F. J. Lange and M. R. V. Chaudron. An empirical

assessment of completeness in UML designs. In
Proceedings of the 8th International Conference on
Empirical Assessment in Software Engineering
(EASE‘04), pages 111–121, 2004.

[21] C. F. J. Lange and M. R. V. Chaudron.
Experimentally investigating effects of defects in UML
models. CS-Report 05-07, Technische Universiteit
Eindhoven, 2005.

[22] Q. McNemar. Note on the sampling error of the
difference between correlated proportions or
percentages. Psychometrika, 12:153–157, 1947.

[23] J. Muskens, R. J. Bril, and M. R. V. Chaudron.
Generalizing consistency checking between software
views. In Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA),
November 2005.

[24] Object Management Group. Unified Modeling
Language, Adopted Final Specification, Version 2.0,
ptc/03-09-15 edition, December 2003.

[25] Object Management Group. Unified Modeling
Language, Specification, Version 1.5, formal/03-03-01
edition, March 2003.

[26] H. C. Purchase, L. Colpoys, M. McGill,
D. Carrington, and C. Britton. UML class diagram
syntax: an empirical study of comprehension. In
Australian symposium on Information visualisation,
volume 9, pages 113–120, September 2001.

[27] C. Wohlin and A. Aurum. An evaluation of
checklist-based reading for entity-relationship
diagrams. In Proceedings of the Ninth International
Software Metrics Symposium. IEEE CS, 2003.

[28] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlesson,
B. Regnell, and A. Wesslen. Experimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

APPENDIX
For the analysis of the multiple-choice questions we were in-
terested in the amount of misinterpretation that was caused
by the presence of a model defect. Therefore we needed a
measure that captures the degree of agreement in the distri-
bution of answers to each question. In our experiment each
question has four answer alternatives. Essentially we want
to measure a distributions’ magnitude of discrimination.

First we define some abbreviations that we need for the
explanation of the measure: K is the number of alternatives
for a question; fi is the number of times alternative i was
selected, where 0 ≤ i < K and k[0..K) is a sorted array such
that k0 = (max fi : 0 ≤ i < K) and kK−1 = (min fi :
0 ≤ i < K); N is the sum of answers over all alternatives:
N =

P
0≤i<K ki.

Hence, our agreement measure (called AgrM) for K > 1
alternatives is:

AgrM(k0, ..., kK−1) = 1− 2

P
0≤i<K kii

N(K − 1)
(1)

AgrM is described in more detail in [21]

410

