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Abstract Assessing landscape connectivity is impor-

tant to understand the ecology of landscapes and to

evaluate alternative conservation strategies. The ques-

tion is though, how to quantify connectivity appropri-

ately, especially when the information available about

the suitability of the matrix surrounding habitat is

limited. Our goal here was to investigate the effects of

matrix representation on assessments of the connectiv-

ity amonghabitat patches andof the relative importance

of individual patches for the connectivity within a

habitat network. We evaluated a set of 50 9 50 km2

test areas in the Carpathian Mountains and considered

three different matrix representations (binary, categor-

ical and continuous) using two types of connections

among habitat patches (shortest lines and least-cost

paths). We compared connections, and the importance

of patches, based on (1) isolation, (2) incidence-

functional, and (3) graph measures. Our results showed

that matrix representation can greatly affect assess-

ments of connections (i.e., connection length, effective

distance, and spatial location), but not patch prioritiza-

tion. Although patch importancewas notmuch affected

by matrix representation, it was influenced by the

connectivity measure and its parameterization. We

found the biggest differences in the case of the integral

index of connectivity and equallyweighted patches, but

no consistent pattern in response to changing dispersal

distance. Connectivity assessments inmore fragmented

landscapes were more sensitive to the selection of

matrix representation. Although we recommend using

continuous matrix representation whenever possible,

our results indicated that simplermatrix representations

can be also used as a proxy to delineate those patches

that are important for overall connectivity, but not to

identify connections among habitat patches.

Keywords Connectivity assessment �Conservation �

Graph theory � Landscape representation � Least-cost

path modeling � Resistance surface

Introduction

In today’s increasingly human-dominated landscapes,

many species can only survive in the long run if habitat

patches are well-connected (Fischer and Lindenmayer

2007). Quantifying habitat connectivity, i.e., the
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degree to which a landscape promotes or hinders

movements among habitat patches for a given species

(Taylor et al. 1993) is therefore essential for conser-

vation decisions (Luque et al. 2012). However, how to

quantify connectivity appropriately is often vague,

partly because of the plethora of methods that have

been proposed to measure connectivity, but also

because of limitations in the available input data

(Kool et al. 2012). Specifically, there is often only

limited information about the suitability of the matrix

surrounding habitat patches to facilitate species’

movement, and that raises the question to what degree

this imperfect matrix information renders connectivity

assessments useless or even misleading.

One useful classification scheme to assess connec-

tivity distinguishes two major groups: structural and

functional connectivity. Structural connectivity mea-

sures are solely based on landscape structure (e.g.,

size, shape and configuration of habitat) with no direct

link to species’ behavior, while functional connectiv-

ity measures are based on the ecological responses of

organisms to individual landscape elements (e.g.,

patches) and the ability of individuals to move in the

matrix (Tischendorf and Fahrig 2000). Connectivity

assessments are typically conducted in stages that

include selection and definition of environmental

variables and biological (field) data, definition of

habitat and land area among habitat patches, and

selection and application of connectivity measures.

Decisions taken at each of these stages are driven by

the availability of input data and knowledge on

species’ habitat requirements and dispersal abilities,

and are crucial for the final connectivity assessment.

Therefore, it is important to highlight sources of

possible uncertainties (including data and software

uncertainties; Lehman and Ramil 2002; Lechner et al.

2013; de Rigo 2013) in connectivity assessments and

their consequences in order to give practitioners more

guidance on how to assess connectivity to inform

conservation planning. Uncertainties in connectivity

assessments focused on connectivity measures and

their behavior in response to variation in landscape

structure were widely discussed (e.g., Goodwin and

Fahrig 2002; Pascual-Hortal and Saura 2006; Saura

and Pascual-Hortal 2007a; Baranyi et al. 2011). As a

result, limitations of many available connectivity

measures have been indicated, together with practical

solutions and recommendations on best performing

ones.

Although proper selection and application of con-

nectivity measures is undeniably important for eval-

uation of connectivity, how the landscape is

represented in terms of habitat suitability and resis-

tance for a given species may be equally important

(Zeller et al. 2012; Trainor et al. 2013). Landscape

structure clearly influences dispersal and habitat

connectivity (e.g., Goodwin and Fahrig 2002; Uezu

et al. 2005; Pflüger and Balkenhol 2014), making it

crucial to represent landscape structure appropriately

in connectivity analyses. Most connectivity analyses

are based on a patch-mosaic model of landscape

structure, in which landscapes are seen as mosaics of

discrete habitat patches embedded in a background

matrix (Forman 1995; Bender et al. 2003). The

simplest assumption about the matrix is that it is

homogeneous and does not influence the movement of

organisms among habitat patches. This was a common

approach in early connectivity studies (Fahrig and

Merriam 1985; Henein and Merriam 1990), and it is

also the most parsimonious approach for species for

which knowledge about their response to different

matrix elements is scarce, or for broad-scale assess-

ments concerning a wide range of target species (e.g.,

Saura et al. 2011; Opermanis et al. 2012). However, in

reality the matrix is rarely homogeneous in terms of its

suitability for dispersal of a given species, and the

composition of the matrix influences movement

behavior and movement risk (Pflüger and Balkenhol

2014).

One way to better represent matrix heterogeneity is

to estimate the resistance to movement among habitat

patches. This is typically done by analyzing environ-

mental variables that can be converted into a ‘resis-

tance’ or ‘cost’ surface, i.e., a raster that depicts a

travel cost in each cell (Rayfield et al. 2010; Zeller

et al. 2012). Depending on the available information

about the matrix and a species’ dispersal ability, this

resistance surface can either be of categorical or

continuous representation (Bender et al. 2003; Zeller

et al. 2012). In categorical resistance surfaces, a

limited number of classes represent different resis-

tance levels to movement (e.g., Chardon et al. 2003;

Rabinowitz and Zeller 2010; Magrach et al. 2012;

Rubio et al. 2012). Alternatively, each cell in the

matrix can be assigned a continuous resistance value

(e.g., Kuemmerle et al. 2011; Ziółkowska et al. 2012;

Trainor et al. 2013). In practice, the decision how to

represent matrix resistance in a given connectivity
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analysis often depends on data availability for a given

species (Beier et al. 2008; Sawyer et al. 2011; Zeller

et al. 2012). Resistance surfaces based on land cover

maps, maybe in conjunction with data on linear

barriers (e.g., roads, rivers), are typically categorical,

and the definition of cost values often relies on expert

opinion. On the other hand, resistance maps based on

habitat suitability models typically result in continu-

ous resistance maps, where resistance is highest where

habitat suitability is lowest (Zeller et al. 2012; Trainor

et al. 2013).

An important question therefore is how different

matrix representations may affect connectivity anal-

yses. Most prior comparative studies of connectivity

measures assessed either only binary (i.e., habitat vs.

non-habitat) matrix representations (e.g., Moilanen

and Nieminen 2002; Bender et al. 2003; Schooley and

Branch 2011; Laita et al. 2011; Baranyi et al. 2011;

Rubio and Saura 2012) or categorical matrix repre-

sentations (e.g., Visconti and Elkin 2009). Only a few

studies evaluated the influence of different matrix

representations on connectivity analyses itself, and

these compared only categorical matrix representa-

tions (Rayfield et al. 2010), or binary and continuous

matrix representations (Szabó et al. 2012). More

detailed and comprehensive studies in this matter are

lacking, especially in terms of analyzing different

aspects of connectivity assessments (delineation of

corridors, selection and parameterization of connec-

tivity measures, importance of habitat patches) in

landscapes with different spatial patterns.

Our main goal here was to examine how different

matrix representations affect connectivity assess-

ments. For a set of landscapes, we compared three

different matrix representations: (1) binary (where the

matrix is considered as homogeneous in terms of its

influence on species’ movement among habitat

patches), (2) categorical (where different movement

costs are assigned based on land-cover categories),

and (3) continuous (where travel costs are derived

from a habitat suitability map). Specifically, we

addressed the following questions:

(1) What is the influence of different matrix repre-

sentations on the delineation of corridors, i.e.,

the connections among habitat patches?

(2) What is the influence of different matrix repre-

sentations on the importance and ranking of

individual patches, according to different

connectivity measures, for the overall connec-

tivity of the habitat network?

(3) Towhat extent does the effect of differentmatrix

representations and measures on connectivity

depend on landscape structure (i.e., the shape

and spatial arrangements of habitat patches)?

Materials and methods

Study area

We evaluated the effect of different matrix represen-

tations on habitat connectivity assessments for a set of

landscapes in the Carpathian Mountains. The Carpa-

thians are Europe’s largest mountain range, stretching

in an arc across Austria, Slovakia, the Czech Republic,

Hungary, Poland, Ukraine, Romania, and Serbia

(Fig. 1). Elevation ranges from around 100–2655 m

a.s.l. Climate is moderately cool and humid. Forests

cover approximately half of the Carpathians (up to

90 % between 1,000 and 1,500 m a.s.l.; Kozak et al.

2008). The region is critically important for biodiver-

sity conservation in Europe, hosting vast semi-natural

forests, unique traditional farming landscapes, and

manyendemic species. TheCarpathians are also crucial

for large carnivore and herbivore conservation, harbor-

ing Europe’s largest wolf and brown bear populations,

and some of the largest free-ranging populations of

European bison (UNEP 2007; Kozak et al. 2013).

Data

To create different matrix representations, we used a

land covermap and a continuous habitat suitabilitymap

for European bison (Bison bonasus) that covered all of

our study landscapes (Kuemmerle et al. 2010). Both

maps had 100-m resolution. The land cover map was

derived from the CORINE Land Cover 2000 database

(http://dataservice.eea.europa.eu) and a land cover

classification of Landsat TM/ETM? images for Uk-

raine (overall accuracy[90 %;Kuemmerle et al. 2009,

2010), and included eight land cover classes: coniferous

forest, mixed forest, broadleaved forest, grassland,

cropland, open settlements, dense settlements, and

water (Kuemmerle et al. 2010). The habitat suitability

map, with suitability values ranging from 0 (the lowest

suitability) to 100 (the highest suitability), was derived
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from actual observations and herd range maps using

maximum entropy modeling and a set of predictor

variables including land cover (land cover categories

from the land cover map described above, forest frag-

mentation, and distance to forest), human disturbance

(distance to roads, distance to settlements), and topog-

raphy (aspect, slope; Kuemmerle et al. 2010). The

habitat suitability map showed that bison select forest-

dominated habitats with a preference for complex

mosaics of forests and grassland patches in areas of low

human disturbance (Kuemmerle et al. 2010).

Wedelineated six test areas (subsets of 50 9 50 km2)

for further analyses (Fig. 1).We selected the test areas so

that they had different proportions and patterns of high

and low quality habitat. All data processing (including

the definition of habitat networks) was done in ArcGIS

10.0 (ESRI 2011) with scripts written in Python 2.6

(Python Software Foundation 2013).

Habitat patches and matrix representations

We defined habitat patches as groups of at least 100

pixels (i.e.,[1 km2) with a habitat suitability index

above a certain threshold. We applied three different

thresholds (50, 60, and 70) to produce maps with

different spatial patterns (Fig. 1; Table 1). Depending

on the threshold, habitat patches covered from 0.5 to

34.5 % of each test area. The resulting maps also

differed in terms of the number of habitat patches

(1–42), mean patch size (1–52 km2), and mean

distance between neighboring patches (3–19 km).

For each test area and habitat patch delineation

threshold, we considered three matrix representations

to describe the resistance to movement defined as the

physiological cost of moving through a particular

environment (Zeller et al. 2012):

– Binary: the landscape was only separated into

habitat and non-habitat, reflecting the assumption

that the matrix is homogeneous in terms of its

influence on species movement.

– Categorical: each land cover class was assigned a

certain resistance to movement. The resistance for

each land cover class was defined as a mean

resistance for this class according to the continu-

ous representation (Table 2).

– Continuous: thematrixwas defined as a continuous

resistance surface, i.e., the inverse of the habitat

suitability (cost = 100 - habitat suitability). Cost
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Fig. 1 The Carpathian Mountains with locations of six exemplary test areas and delineated habitat patches for habitat suitability index

above 60
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values ranged from 0.45 to 100, with a mean value

of 80.95.

Since land cover was an important variable to

determine habitat suitability, the categorical and con-

tinuous matrices were correlated (coefficients of deter-

mination varied from0.63 to 0.78 among the test areas).

Connections among habitat patches

We delineated a connection between two given habitat

patches either as the shortest line (binary matrix

representation), or as a least-cost path (categorical and

continuous matrix representations) connecting edges

of patches. Least-cost paths were determined using the

Cost Path tool available inArcGISDesktop 10.0 (ESRI

2011). For each connection, we calculated its length,

and effective distance defined as the sum of cost values

along the path multiplied by the grid cell dimensions

(vertical/horizontal, or diagonal). To obtain effective

distances for binary matrix representations, we calcu-

lated the sum of cost values (based on categorical or

continuous representation) along each connection

multiplied by the grid cells dimensions.

First, we compared the connections for different

matrix representations visually in the maps. Second,

we analyzed distributions of connection lengths and

effective distances depicted in box plots. Based on this,

we applied linear regression and the Wilcoxon rank-

sum test to determinate the significance of differences

among the lengths and effective distances of connec-

tions for differentmatrix representations. All statistical

analysis were conducted in R 3.0 (R Core Team 2013).

Selection of connectivity measures

Various connectivitymeasures havebeenproposed in the

literature (e.g., Goodwin and Fahrig 2002; Calabrese and

Table 1 Main

characteristics of habitat

patches for the analyzed test

areas

Test

area

Habitat suitability

index threshold to

define habitat patches

Number

of patches

% of landscape

covered by

habitat patches

Mean patch

size (km2)

Mean distance

between neighboring

habitat patches (km)

1 [50 21 30.56 36.38 5.96

[60 15 22.81 38.01 8.86

[70 19 11.53 15.16 4.92

2 [50 32 10.62 8.30 4.76

[60 19 5.99 7.88 4.97

[70 17 2.3 3.37 6.38

3 [50 36 21.35 14.82 3.59

[60 23 13.10 14.24 5.08

[70 11 4.19 9.52 10.19

4 [50 34 34.53 25.39 2.59

[60 29 24.85 21.42 3.41

[70 42 11.59 6.90 2.77

5 [50 12 10.89 22.68 6.92

[60 2 4.15 51.84 19.07

[70 1 0.04 1.03 –

6 [50 12 14.95 31.14 5.47

[60 5 1.16 5.78 12.29

[70 0 – – –

Table 2 Resistance values for the categorical matrix

representation

Land cover class Resistance value

Coniferous forest 47

Mixed forest 48

Broadleaved forest 63

Grassland (managed and unmanaged) 91

Cropland 97

Open settlements 99

Dense settlements 100

Water 100

Landscape Ecol (2014) 29:1551–1570 1555

123



Fagan 2004; Kindlmann and Burel 2008; Rayfield et al.

2011). Based on revision of studies discussing short-

comings and advantages of connectivity measures (e.g.

Goodwin and Fahrig 2002; Moilanen and Nieminen

2002; Pascual-Hortal and Saura 2006; Moilanen 2011),

we considered three types of measures to estimate patch

importance: (1) isolation, (2) incidence-functional, and

(3) graph theory measures (Table 3). Our choice of

measures included best-performing and most-often-

applied ones, and was also informed by the possibility

of incorporating information on matrix resistance into

measure’s calculation allowing for assessment of both

structural and potential connectivity (measure’s ‘flexi-

bility’), as well as by our primary focus on habitat

network design (designation of key patches and

connections).

Patch isolation measures the inaccessibility of a

habitat patch for migrants from other patches. The

inaccessibility is a function of the configuration of

habitat patches, patch characteristics (e.g., shape or

size), andmatrix characteristics between habitat patches

(Bender et al. 2003). Patch isolation is thus inverse to

connectivity. We calculated two commonly used isola-

tion measures: nearest-neighbor distance, and area-

weighted nearest-neighbor distance (Table 3).

Incidence-functional measures take into account

distances to all possible source populations (i.e.,

patches), and are based on negative exponential

dispersal kernels. Especially in highly fragmented

landscapes, incidence functional measures are a good

predictor of colonization events (Moilanen and Ni-

eminen 2002). We used the area-weighted version of

Table 3 Description and references for the connectivity measures analyzed in the study

Measure

type

Measure name Formula Description and references

Isolation Nearest-

neighbor

distance

Ii ¼ dNN Edge to edge distance to the nearest habitat

patch. See e.g. Moilanen and Nieminen (2002)

or Bender et al. (2003)

Area-weighted

nearest-

neighbor

distance

Ii ¼
dNN

Ac
i
Ab
NN

where Ai is the area of focal patch i, ANN

is the area of nearest-neighbor patch; b, c are the

scaling parameters of emigration and immigration

respectively

Edge to edge distance to the nearest habitat

patch weighted by the areas of a given patch

and its nearest-neighbor patch. Parameters

b and c allow for considering the scaling of

emigration and immigration (respectively) as a

function of a patch area. See Moilanen and

Nieminen (2002)

IFM Incidence

functional

measure

Ii ¼ Ac
i

P

i6¼j

expð�adijÞ � A
b
j where dij is the distance

between patches i and j; Ai is the area of focal

patch i, Aj is the area of source patch j; b, c are the

scaling parameters of emigration and immigration

respectively; a is the parameter scaling the effect

of distance to migration

Takes into account distances to all possible

source populations, and use a negative

exponential dispersal kernel with parameter a

scaling the effect of distance to migration (1/a

is the mean dispersal distance; Moilanen and

Nieminen 2002)

Graph

theory

Integral index

of

connectivity
IIC ¼

Pn

i¼1

Pn

j¼1

aiaj=ð1þnlijÞ

A2
L

where ai, aj are the attributes

of patch i and j (e.g., patch area or patch quality);

nlij is the number of links in the shortest path

(topological distance) between patches i and j

Measure calculated from the attributes of the

patches and the topological distances between

them. It takes into account the connected area

existing within the patches, the estimated

dispersal flux between different patches, and

their contribution as stepping stones or

connecting elements that uphold the

connectivity between other patches. See

Pascual-Hortal and Saura (2006)

Probability of

connectivity PC ¼

Pn

i¼1

Pn

j¼1

aiajp
�
ij

A2
L

where pij* is the maximum

product probability of all possible paths between

patches i and j; and pij is defined as pij ¼ e�kdij

where k is a distance-decay coefficient and dij is

distance between patches i and j

It is conceptually similar to integral index of

connectivity but for weighted graphs. It uses

the maximum product probability instead of

the topological distance between patches. See

Saura and Pascual-Hortal (2007a)
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the incidence functional measure (Moilanen and

Nieminen 2002), assuming equal scaling parameters

of emigration and immigration (i.e., b = c = 0.3;

Table 3).

Graph theory provides a powerful way to represent

complex landscape patterns and perform advanced

connectivity analyses. In graph theory, habitat patches

are considered as nodes, and connections among them

as edges, allowing investigations of a habitat network

using graph techniques (Urban and Keitt 2001;

Pascual-Hortal and Saura 2006). Connectivity mea-

sures based on graph theory can assess both structural

and functional connectivity. We calculated the inte-

gral index of connectivity, and the probability of

connectivity index, because these perform best among

graph connectivity measures and provide jointly a

more complete view on the role of landscape elements

for maintaining overall landscape connectivity (Saura

and Pascual-Hortal 2007a; Baranyi et al. 2011;

Table 3). When calculating graph measures, we

defined the habitat patch attribute (weight) either as

(1) habitat patch area (assuming that larger patches

have more immigrants), or as (2) equal for all habitat

patches (all patches have the same number of

immigrants).

To test the influence of dispersal distance on our

connectivity measures, we considered six maximum

dispersal distances beyond which a pair of habitat

patches was considered as unconnected (5, 10, 20, 30,

40, and 50 km). For the probability of connectivity

index, we used a dispersal probability of 0.05 to match

the maximum dispersal probability that we used in the

n
u
m

b
e

r 
o

f 
h

a
b

ita
t 

p
a

tc
h

e
s

sm
a

ll
la

rg
e

amount of habitat [%]

largesmall

BA

DC

Fig. 2 Connections delineated based on binary matrix repre-

sentation (dashed grey lines), categorical matrix representation

(dashed black lines), and continuous matrix representation

(black lines) for exemplary landscapes with different number

of habitat patches and amount of habitat: (A) test area 3, habitat

suitability index above 70; (B) test area 1, habitat suitability

index above 60, (C) test area 2, habitat suitability index above

50; (D) test area 4, habitat suitability index above 50
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analyses of the binary graph measure. To calculate the

incidence-functional measure, we defined the mean

dispersal distance (1/a) as distance corresponding to

the probability of 0.5.

Importance of patches in the habitat network

To assess the importance of individual patches for

maintaining overall connectivity, we ranked habitat

patches. We assumed that the least-isolated patch is of

highest importance for overall connectivity. We used

Conefor Sensinode 2.6 (Saura and Pascual-Hortal

2007b; Pascual-Hortal and Saura 2007; Saura and

Torne 2009, 2012) to evaluate the importance of habitat

patches based on graph measures. To assess habitat

patch (node) importance, Conefor Sensinode performs

nodes removal operations (Urban and Keitt 2001).

Node importance D was computed as the percentage

change in a connectivity measure when removing a

given node from the graph (Saura and Torne 2009):

DðXiÞ ¼ 100�
X � X0

X
ð1Þ

where X corresponds to the overall connectivity value

calculated for the landscape (considering all habitat

patches) and X’ corresponds to the value of the same

measure calculated after removing patch i.

Lastly, we compared the distributions of the

differences in patch importance among the three

matrix representations for different connectivity mea-

sures, dispersal distances, and habitat patch attributes

using box plots. We also compared the position of

individual habitat patches in the rankings, with special

emphasis on the top-ranked patches.

Sensitivity of differences in patch importance

to spatial patterns of habitat

Because the habitat maps differed in terms of their

spatial patterns (see Table 1), we examined the influ-

ence of number of habitat patches, amount of habitat

(%), and mean distance between neighboring habitat

patches on the patch importance calculated based on

different matrix representations. We plotted these

relationships for each connectivity measure (nearest-

neighbor distance, incidence-functional measure, inte-

gral index of connectivity, and probability of connec-

tivity), dispersal distance (from 5 to 50 km) and for

different weights assigned to habitat patches (patches

weighted by the area and patches equally weighted).

For selected examples, we confirmed the observed

response patterns via a linear and nonlinear regression

analysis (exponential and power regression models).

Results

Connections among habitat patches

The number of connections varied strongly among the

analyzed landscapes (from 1 to 861), primarily due to

varying numbers of habitat patches. For a given set of

patches, the spatial location of connections differed
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different matrix representations: binary (MR1), categorized

(MR2), and continuous (MR3); dots represent means
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greatly among matrix representations, particularly

between binary representation, which had the shortest

paths connecting habitat patches, and continuous

representation, where the least-cost paths were gener-

ally the longest (Fig. 2). Connections delineated based

on categorical and continuous representations tended

to overlap, since many connections between distant

habitat patches passed through other patches that acted

as stepping stones (Fig. 2).

We found the biggest differences between binary

and continuous matrix representations in terms of the

absolute lengths and the effective distances of con-

nections, (mean difference around 4 km, maximum up

to 40 km). Differences in the lengths of connections

between binary and categorical on one hand, and

categorical and continuous representations on the

other, were much smaller (mean difference around

2 km; Fig. 3). Differences in connection lengths were

substantially larger for more distant patches, espe-

cially between binary and continuous representations,

but the correlations between inter-patch distances and

differences in connection lengths were not very strong

(R2
= 0.44 for binary and continuous representations,

and only R2
= 0.17 for categorical and continuous

representations; p\ 0.01), except for differences

between binary and categorical representations

(R2
= 0.62; p\ 0.01). We observed similar trends

for effective distances, but differences between dif-

ferent matrix representations were smaller (Fig. 3),

and correlations between inter-patch distances and

differences in effective distances weaker (R2
= 0.35

for binary and categorical representations, R2
= 0.40

for binary and continuous representations, and

R2
= 0.38 for categorical and continuous representa-

tions; p\ 0.01). In general, connections delineated

based on categorical and continuous representations

were much longer than those based on binary repre-

sentations, whereas the opposite was true for effective

distances.
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Importance of patches in the habitat network

Confirming our expectations, the influence of matrix

representation on habitat patch rankings based on

nearest-neighbor measures was small, since differ-

ences in the values of these measures were on average

small among matrix representations (mean differences

did not exceed 250 m for nearest-neighbor distance).

The matrix representation had a bigger influence on

the determination of the most isolated patches, than

the most connected ones.

Contrary to our expectations, matrix representation

had only a limited influence on patch importance based

on incidence-functional (Fig. 4) and graph measures

(Figs. 5, 6). For graphmeasures, the difference in patch

importance for all landscapes did not, on average,

exceed 1.1 % (binary vs. categorical, and binary vs.

continuous matrix representations), and 0.4 % (cate-

gorical vs. continuous representations; Figs. 5, 6). We

observed the biggest differences in patch importance

for the incidence-functional measure between binary

and continuous representations, regardless of the

dispersal distance. For graph theory measures, com-

parisons between binary and categorical, and binary

and continuous representations showed similar results.

For both-incidence functional and graph measures, we

noted the smallest differences in patch importance

when we compared categorical and continuous matrix

representations. While mean differences in patch

importance were low, we observed outliers, especially

for lower dispersal distances, and the integral index of

connectivity. Maximum differences in patch impor-

tance for probability of connectivity did not exceed

5 %, but reached 24 % for the integral index of

connectivity for some habitat patches.

While matrix representation had in general little

effect on patch importance, patch importance was

quite substantially affected by the connectivity mea-

sure that was used, the definition of habitat patch

attribute, and the maximum dispersal distance. We

observed bigger differences for the integral index of

connectivity and equally weighted patches (for all

matrix representations; Figs. 5, 6). Differences in

patch importance between matrix representations

based on the incidence-functional measure increased

significantly with increasing dispersal distance

(Fig. 4). For the integral index of connectivity and

probability of connectivity, mean differences in patch

importance decreased considerably with dispersal

distance, but only when comparing binary and cate-

gorical, and binary and continuous matrix representa-

tions (Figs. 5, 6). For the incidence-functional

measure, the integral index of connectivity, and the

probability of connectivity, the mean differences

between binary and continuous representations were

generally larger than between binary and categorical

representations.

Similar to the nearest-neighbor measures, matrix

representation also had a small effect on the relative

patch importance rankings for incidence-functional

and graph measures. The only exceptions occurred in

the case of the integral index of connectivity, when

patch attribute was equal for all habitat patches, and

dispersal distances were small. Differences between

the importance of top-ranked habitat patches and other

patches were much bigger when patch area was used

as a patch attribute, especially for landscapes with

several dominant big patches. When habitat patches

were equally weighted, more habitat patches were

similarly important for overall connectivity. Although

the same patches were often highlighted as important

for overall landscape connectivity regardless of patch

weights, among the less-important habitat patches

substantial differences in prioritization occurred.

Sensitivity of differences in patch importance

to spatial patterns of habitat

Because differences in patch importance between

categorical and continuous matrix representations

were in most cases small, we analyzed in detail only

the response patterns derived for differences in patch

importance between binary and categorical, and

binary and continuous representations. We noted that

differences in patch importance changed considerably

with increasing number of habitat patches, amount of

habitat, and mean distance between neighboring

habitat patches-regardless of the matrix representa-

tions used (Fig. 7). In other words, we observed the

bFig. 5 Distribution of differences in patch importance (without

outliers) between different matrix representations for integral

index of connectivity (IIC) for (A) patches weighted by the area,

and (B) patches equally weighted (dots represent mean values);

and relationship between mean difference in patch importance

and maximum dispersal distance, for (C) patches weighted by

the area, and (D) patches equally weighted; MR1 - binary matrix

representation, MR2 - categorical matrix representation, MR3 -

continuous matrix representation
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same trends for differences between binary and

categorical, and binary and continuous matrix

representations.

As number of habitat patches and habitat area

within a landscape increased, differences in patch

importance calculated based on nearest-neighbor

measures showed an exponentially decreasing trend,

and as the mean distance between neighboring habitat

patches increased, an exponentially increasing trend.

We observed reverse trends for differences in patch

importance calculated based on the incidence-func-

tional measure. These trends were not dependent on

dispersal distance, but the strength of the relationship

varied with changing dispersal distance (Fig. 7).

Response patterns observed for graph measures

differed among dispersal distances. In general, they

showed similar trends for longer dispersal distances

([10–20 km) as the nearest-neighbor measures, and

the strength of the relationship increased with dis-

persal distance. For smaller dispersal distances

(\10–20 km) the observed response patterns were

either erratic or, in some cases, reversed. For all

dispersal distances, we observed stronger dependences

for probability of connectivity, and when patches were

equally weighted (Fig. 7).

Discussion

Connectivity is a fundamental property of a landscape,

crucial for the long-term survival of species, making

the appropriate assessment of connectivity crucial for

conservation decisions. Here we assessed the extent to

which incomplete information about the resistance of

the matrix for movement may mislead conservation

efforts. Our results showed that different matrix

representations can greatly affect assessments of

connections, including their lengths, effective dis-

tances, and spatial locations, especially for more

distant patches (Table 4). Connections delineated

based on continuous representation of matrix resis-

tance were much longer than those delineated based on

binary representation, but their effective distances

were shorter. Our findings thus coincide with the

results obtained by Szabó et al. (2012).

Contrary to our expectations, we did not find major

differences in patch prioritizations when using differ-

ent matrix representations (Table 4), and this is a

promising result for conservation practitioners work-

ing in landscapes similar to ones that we analyzed. We

noted the biggest differences in patch importance

between binary and continuous, and binary and

categorical matrix representations regardless of the

considered connectivity measure. However, while the

influence of matrix representation on patch impor-

tance was generally small, it varied according to the

connectivity measure, definition of patch attribute and

dispersal distance (Table 4). In general matrix repre-

sentation mattered more for smaller dispersal dis-

tances, which is intuitive, as species with relatively

limited dispersal abilities are more sensitive to the

changes in matrix resistance (Saura et al. 2011).

The bigger variations in patch importance that we

found when calculating importance using the integral

index of connectivity compared to probability of

connectivity are a consequence of different connection

models considered by each of these metrics (binary

and probabilistic, respectively). A small change in the

lengths of connections between habitat patches caused

by the use of different matrix representation can

sharply modify the connections among habitat

patches, removing or adding those that are shorter or

longer than the defined dispersal distance threshold.

The corresponding change would cause only a com-

paratively small variation in the dispersal probabilities

for the probability of connectivity index (see Bodin

and Saura 2010).

When we used habitat patch area-weighting, the

importance of patches was closely related to their size,

but when the patches were equally-weighted, the

influence of matrix representation and dispersal dis-

tance on patch prioritizations increased. This is

generally consistent with results obtained by Ferrari

et al. (2007), Laita et al. (2011), and Szabó et al.

(2012). Connectivity analyses only based on distance

estimators (either Euclidean or functional) tend to

overestimate the role of small patches (Laita et al.

2011), but these patches can be critical network

elements, acting as stepping stones between larger, but

bFig. 6 Distribution of differences in patch importance (without

outliers) between different matrix representations for probabil-

ity of connectivity index (PC) for (A) patches weighted by the

area, and (B) patches equally weighted (dots represent mean

values); and relationship between mean difference in patch

importance and maximum dispersal distance, for (C) patches

weighted by the area, and (D) patches equally weighted; MR1 -

binary matrix representation, MR2 - categorical matrix repre-

sentation, MR3 - continuous matrix representation
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more distant, patches (Rubio and Saura 2012). On the

other hand, when patch size is included in a connec-

tivity measure as a patch weight, the overall value of

the measure may be more sensitive to the intra-patch

connectivity than to the matrix resistance itself

(Estreguil et al. 2014). Possible solutions to this issue

allowing to account for intra- and inter-patch connec-

tivity separately were proposed by Saura and Rubio

(2010) and Estreguil et al. (2014). Our research is

complementary to these studies in that it addresses the

impact of the matrix representation on the connectivity

assessment in general, and key patches and connec-

tions in particular, while referring to the problem of

the sensitivity of graphmeasures through investigation

of different weights assigned to habitat patches.

Patch size is commonly used in connectivity

analyses as a proxy for the number of individuals

occupying patches, especially if detailed population

data is not available. However, often the patch quality

or effective area, i.e., weighted by habitat quality, may

be a better proxy for population size and dispersal

potential than unadjusted patch area (Visconti and

Elkin 2009; Schooley and Branch 2011). The best

compromise for most studies is probably to measure

patch quality as a key resources that are likely to play a

role in determining species survival, fecundity, and

density (Mortelliti et al. 2010). The simplest way to

include patch quality in connectivity measures would

be to assess habitat suitability values for each patch,

and then to weight patches using mean habitat

suitability values, or the effective area calculated

based on such statistics. Additional investigations of

this issue are needed, especially given that our results

showed that the parameterization of connectivity

measures is critical for the assessment of patch

importance.

In terms of different landscapes types, we found

that matrix representation had a greater effect for
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landscapes with a low number of small and dispersed

habitat patches, than for landscapes with high number

of large, less-dispersed habitat patches (Fig. 8). This is

an intuitive result, since the matrix should matter more

in more fragmented landscapes where movement

distances are longer and the probability of crossing

inhospitable areas is higher. Surprisingly, for inci-

dence-functional measure we observed the opposite,

i.e., mean differences in patch importance were higher

for landscapes with a high number of bigger habitat

patches located close to each other. Furthermore, this

response pattern was robust to changing dispersal

distance, inferred from the graph measures which

showed different trends for small and large dispersal

distances (Fig. 8). We presume that the unusual

behavior of the incidence functional measure may

result from the definition of parameter a scaling the

effect of distance to migration. Inaccurate estimates of

a could easily lead to the false conclusion that

increasing connectivity decreases the likelihood of

occupancy (Prugh 2009). Although we investigated

different dispersal distances, additional tests involving

bigger range of a values, as well as landscape

characteristics, might better explain the effect of this

measure. These additional tests, by using neutral

landscape models (i.e., fractal landscapes and frac-

tional Brownian motion; Keitt 2000; Chipperfield

et al. 2011) would also substantiate our findings

regarding the influence of landscape structure on

connectivity assessments under different matrix

representations.

The change of response pattern of graph measures

with the change of dispersal distance confirmed that

the scale of analysis is, besides the definition of matrix

resistance values and the selection of connectivity

measure, critical in connectivity assessments (Kool

et al. 2012). Furthermore, species can respond at

different scales to different landscapes features indi-

cating the possible need to examine a continuum of

scales when estimating the resistance to movement

(Zeller et al. 2014).

We did not consider alternative cost assignments

for the different land cover classes in categorical

representation, but least-cost route delineation is

certainly sensitive to cost values assignment to land

cover types (Rayfield et al. 2010). We decided to test

only one categorical representation where weight of

each land cover class was defined as the mean cost

derived from continuous representation, in order to

make those two representations more comparable.

Table 4 Influence of matrix representation on habitat network assessments with respect to analyzed network features and their

parameters

Habitat

network

element

Analyzed

feature

Parameters Influence of matrix representation on habitat network element

Connection Spatial

location

– High

Length – Biggest differences between binary and continuous representations

Effective

distance

– Larger differences for more distant patches

Shortest lengths with binary representation

Longest effective distances with binary representation

Patch Importance Connectivity

measure typea
In general small

Patch attribute Biggest differences between binary and continuous representations

Dispersal

distance

Highly affected by connectivity measure definition and its parameterization:

Differences more important for isolated patches when using isolation

connectivity measures

Differences increased with dispersal distance for IFM

In general differences decreased with dispersal distance and increased for

equally weighted patches when using graph theory measures

Patch importance based on IIC more sensitive to matrix representation than

patch importance based on PC

a See description of connectivity measures in Table 3
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Indeed, even though we found a strong correlation

between categorical and continuous representations,

connections delineated based on them differed sub-

stantially. This confirmed that the least-cost analyses

are quite sensitive to the parameterization of the cost

surface. In addition, individuals rarely use a single

optimum route, and connectivity analyses focusing on

least-cost paths fail to incorporate variation in indi-

vidual behavior (Bélisle 2005). Uncertainty analysis

of least-cost modeling (Beier et al. 2009), and

alternative methods for delineation of connections

between habitat patches based on cost surface, such as

conditional minimum transit cost, multiple shortest

paths (Pinto and Keitt 2009), or circuit theory (McRae
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et al. 2008; Carroll et al. 2011), may ultimately be

better suited to assess connectivity, but we suspect that

these methods will be similarly sensitive to matrix

representation.

To obtain a continuous resistance surface we

applied a linear transformation of the habitat suitabil-

ity map. This is a commonly used approach, partly

because of the lack of adequate data on species

movements and hence the actual resistance of different

habitat types to movement (Richard and Armstrong

2010; Zeller et al. 2012). However, the relationship

between habitat suitability and dispersal possibilities

of species may not be so simple and can lead to

underestimation of the population’s connectivity

(Trainor et al. 2013), especially for far-ranging

species. Since different transformation functions

may yield different resistance surfaces, and thus affect

connectivity estimates, identifying the biologically

most relevant function is an important step in

connectivity assessments (Trainor et al. 2013).

Although we compared both lengths and effective

distances for connections based on different matrix

representations, we used only the length of connections

to calculate connectivity measures and habitat patches

importance. Length of connection could easily be

comparedwith dispersal abilities of species to evaluate

potential corridors, but does not provide information

on the quality of connection, as in the case of effective

distance (Etherington and Holland 2013). Further

research is required to incorporate effective distances

in calculation of connectivitymeasures, in particular to

find a way to determine the relationship between

effective distances and species’ dispersal abilities. We

assume that the influence of matrix representation on

patch importance could be more pronounced if effec-

tive distances were used in calculations.

Conclusions

In order to be useful for conservationists and land use

planners, connectivity assessments need to identify the

key corridors and habitat patches that maintain overall

connectivity of a landscape for a given species. An

important question thus is how robust connectivity

assessments are when data on matrix resistance to

movement is imperfect, either because dispersal behav-

ior of a given species is unknown, the relevant matrix

information is unavailable, or the study covers large

area and/or wide range of species with diverse dispersal

abilities (e.g., in impact modeling of policy scenarios,

land cover or/and climate change scenarios; Rubio et al.

2012;Mubareka et al. 2013). In such cases it is generally

not possible to represent the resistance of the matrix to

movement as a continuous surface, and binary or

categorical representationsmay be all that is feasible. In

general, connectivity assessments that are based on

matrix representations incorporating resistance to

movement, are better predictors of animal movements

and colonization probabilities than the simple Euclid-

ean approaches (Bender et al. 2003; Gebauer et al.

2013). This is intuitive, and we recommend using

continuous matrix representation whenever possible.

All stages of dispersal including emigration, transience

and immigration are influenced by environmental

heterogeneity, which is typically continuous (e.g. food

availability, temperature, soil pH; Pflüger and Balken-

hol 2014). This is why a continuous representation of

matrix resistance to movement will likely reflect more

accurately how an organism experiences the landscape

(Stoddard 2010). However, an accurate continuous

representation is often not feasible because of limited

input data or knowledge about species’ habitat use and

dispersal behavior. Our results showed that as long as

the main goal of a connectivity assessment is to identify

the most important habitat patches for overall connec-

tivity, then the matrix representation may not be all that

crucial. Indeed, in our study landscapes, the influence of

matrix representation on the relative rankings of patch

importance was negligible, especially when large

habitat patches were present and connectivity measures

were weighted according to patch size. Generally, we

found that the selection and parameterization of

connectivity measures (i.e., definition of patch attribute

and dispersal distance) had amuch stronger effect on the

calculation of patch importance than matrix represen-

tation.On the contrary, the delineation of connections in

the landscape was greatly affected by the type of matrix

representation. Therefore we urge to proceed with great

caution if information about a species dispersal behav-

ior or the matrix resistance to movement is either

lacking at all or only available for broad categories.
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