
1Scientific RepoRts | 7: 15537  | DOI:10.1038/s41598-017-15785-9

www.nature.com/scientificreports

Effects of discrete dynamic-
conductivity fractures on the 
transient pressure of a vertical well 
in a closed rectangular reservoir
Wanjing Luo1, Pengcheng Liu1, Qing Tian1, Changfu Tang2 & Yinfang Zhou3

With the extraction of hydrocarbons from reservoirs, fractures will gradually close and their 
permeabilities will be reduced. Therefore, fracture conductivity will change dynamically during 
hydrocarbon extraction. The main objective of this study is to develop a new semi-analytical model to 
simulate the flow inside a homogenous porous medium containing discretely distributed fractures with 
dynamic conductivities. Based on a dynamic-conductivity model, the pressure and pressure-derivative 
characteristics of a well on or near discrete dynamic-conductivity fractures were simulated. The results 
show that four flow regimes can be identified for a well near a dynamic-conductivity fracture. Dips 
in the pressure-derivative curves in the transitional flow period were observed as soon as pressure 
disturbances reached a fracture. In addition, humps caused by the effects of dynamic conductivity 
were observed after the transitional flow period. Wider and deeper dips were found on the pressure/
pressure-derivative curves of a well surrounded by multiple fractures. The novel model presented here 
can provide a tool for elucidating the flow mechanisms of fluids in closed rectangular reservoirs with 
discretely dynamic-conductivity fractures.

Discrete fractures are fractures that are distributed in sandstone and carbonate formations and include uncon-
nected natural fractures, faults and hydraulic fractures1–3. In many naturally fractured reservoirs, fractures and 
faults can be discrete rather than forming connected network systems4,5. �e presence of discrete fractures con-
tributes greatly to the enhanced production of oil and gas.

�e fractures can be divided into three categories: uniform-�ux fractures, in�nite-conductivity fractures and 
�nite-conductivity fractures. For uniform-�ux fractures, we assume the �ow rate along the fracture surface is uni-
form. �e original uniform-�ux/in�nite-conductivity solutions for a vertically fractured well were developed by 
Gringarten et al.6. �e wellbore pressure of an in�nite-conductivity fracture can be obtained in the uniform-�ux 
fracture case by measuring the pressure drop at 0.732 in the fracture. Cinco et al.7 found that the assumption of 
an in�nite-conductivity fracture ignoring the pressure drop along the fracture may lead to errors for low and 
moderate fracture conductivities. �e authors de�ned this type of low and moderate conductivity fracture as a 
�nite-conductivity fracture.

Many studies have reported investigations of transient pressure analyses for vertical wells on single hydraulic 
fractures6–11 and horizontal wells intercepted by multiple hydraulic fractures12–19. Cinco and Samaniego8 dis-
cussed the �ow regimes in detail for a �nite-conductivity fracture. �ey �rst presented the entirety of �ow regimes 
for a �nite-conductivity fracture, i.e., bilinear �ow, formation linear �ow and radial �ow regimes. Based on the 
�ow regimes, reservoir parameters can be obtained through interpretations of well tests. Berumen et al.9 also 
investigated the pressure behaviours of wells intercepting asymmetric fractures of both in�nite and �nite con-
ductivity under constant rates using numerical methods. Tiab et al.10 applied the Tiab’s Direct Synthesis tech-
nique to evaluate fracture asymmetry in �nite-conductivity fracture wells producing at a constant rate. Luo and 
Tang11 proposed a model to discuss the pressure response of a varying-conductivity fracture. Larsen and Hegre12 
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rigorously presented a transient pressure solution for horizontal wells with circular �nite-conductivity fractures 
in a three-dimensional unbounded formation using the Laplace transform method. Crosby et al.13 developed an 
analytical and experimental study of the initiation of transverse fractures from horizontal wells. Wan and Aziz14 
described a new semi-analytical solution for horizontal wells with multiple hydraulic fractures. �e fractures can be 
rotated at any horizontal angle to the well, and they need not fully penetrate the formation in the vertical direction. 
Wei and Economide15 provided a calculation procedure for transverse fractures and related the performance of 
each fracture with well-established methodologies such as the dimensionless productivity index. Medeiros et al.16  
presented a discussion of diagnostic pressure and pressure-derivative plots for hydraulically fractured horizontal 
wells in locally and globally fractured formations. Brown et al.17 adopted a classic tri-linear �ow model to simulate 
the pressure-transient and production behaviours of fractured horizontal wells in an unconventional shale reser-
voir. Zhao et al.18 presented a “tri-porosity” mathematical model to describe �uid �ow from a shale gas formation 
to a multi-fractured horizontal well. Yuan et al.19 established a simple, practical and time-e�cient septa-linear 
�ow model to obtain the transient pressure and production.

Unlike hydraulic fractures that connect to the wellbore, discrete fractures and faults may not be connected to 
the wellbore but, rather, are at a distance. �e e�ects of discrete fractures on pressure responses have also been 
studied20–27. Givens and Crawford20 studied the in�uence of isolated fractures on �uid-displacement response. 
�ey reported that the fracture orientation and length and the fracture-to-well distance are the key parame-
ters that control well performance. Based on assumptions of steady-state-�ow behaviour and uniform fracture 
distribution, Huskey and Crawford21 studied the e�ect of isolated vertical fractures on pressure distribution. 
Cinco et al.22 developed an analytical model to study the transient-�ow behaviours of a well near a single natural 
in�nite-conductivity fracture in an in�nite reservoir. Guo and Evans23 presented the pressure-transient behav-
iours of a horizontal well penetrated by multiple randomly distributed vertical fractures in an in�nite reservoir 
and bounded reservoir. Izadi and Yildiz24 presented a semi-analytical model for transient �ows into multiple ver-
tical wells producing from a porous medium containing randomly distributed discrete fractures. Zeng et al.25 dis-
cussed the pressure response for a vertical well with discrete fractures by accounting for the e�ects of non-Darcy 
�ow. Based on their work, three �ow regions, i.e., �uid �ow near the wellbore, fracture-dominated �uid �ow and 
�uid �ow in the matrix away from the fracture can be identi�ed. Biryukov and Kuchuk26,27 presented a mesh-free 
semi-analytical solution for pressure-transient behaviour in a 2 Dimensional in�nite reservoir containing a net-
work of discrete or connected �nite- and in�nite-conductivity fractures.

�e fracture conductivities reported in the above literature were assumed to be constant. However, a reduc-
tion in formation pressure will result in increases in e�ective closure stress on the discrete fractures in an oil�eld. 
Hence, fractures will gradually close, leading to dynamic decreases in fracture permeability and conductivity with 
time. A transient pressure analysis for a vertical well on a dynamic-conductivity fracture has been investigated 
using semi-analytical and numerical methods28–33. Chen and Evers28 developed a simple model to illustrate the 
performance of a fractured well with stress-sensitive conductivity. Berumen and Tiab29 revealed the e�ects of 
pressure on permeability and conductivity using a numerical method. Pedroso and Correa30 developed a new 
model to discuss the e�ects of permeability on the �ow behaviour of a fractured well. Cho et al.31 presented 
experimental data for a pressure-dependent natural facture. Zhang et al.32 presented the results of a study that 
analysed the build-up of pressure in a vertically fractured well while considering stress-sensitive permeability 
and hysteresis e�ects in fractures. Wang and Aryana33 investigated how stress-dependent fracture apertures and 
their spatial variations a�ected production from unconventional gas reservoirs with complex fracture geometries.

As noted above, the transient pressure behaviours of wells due to constant-conductivity fractures6–19 and 
dynamic-conductivity fractures have been discussed28–33. In addition, transient pressure responses of wells near 
constant-conductivity fractures have been studied20–27. However, to the best of our knowledge, few studies have 
discussed the transient pressure behaviours of wells near discrete fractures with dynamic conductivities in closed 
rectangular reservoirs. In this paper, we develop a new semi-analytical method that is an extension of the popular 
transient pressure calculation method proposed by Cinco et al.7,8 to examine the pressure responses of a vertical 
well in a reservoir with discrete dynamic-conductivity fractures. �e oil or gas is assumed to be produced only 
through the vertical well.

�is paper presents a novel semi-analytical model of a vertical well with dynamic-conductivity fractures in a 
rectangular reservoir. Two veri�cation cases (a well on a dynamic-conductivity fracture in an in�nite reservoir 
and a well near a constant-conductivity fracture in an in�nite reservoir) and the e�ects of various parameters on 
the dimensionless pressure of a vertical well are studied. �e e�ects of boundary size and dynamic conductivity 
on the dimensionless pressure of a vertical well on a fracture are presented. Additionally, the e�ects of fracture 
location, initial conductivity, dynamic conductivity, and distance between the well and fracture on the dimen-
sionless pressure of a vertical well in the vicinity of discrete fractures are presented. Finally, the e�ects of fracture 
number and dynamic conductivity on the dimensionless pressure of a vertical well around four fractures are 
presented.

Mathematical Models
Basic assumptions. In this paper, we assume that the discrete fractures are not joined and that the oil or gas 
is produced only through a vertical well (Fig. 1A). Additional basic assumptions are given below.

 1) �e closed rectangular reservoir is isotropic and homogeneous. �e reservoir has constant thickness 
h, constant porosity ϕ and constant permeability k. �e reservoir contains a slightly compressible sin-
gle-phase �uid of constant compressibility ct and constant viscosity µ.

 2) �e reservoir is fully penetrated by vertically discrete fractures. No �uids are assumed to �ow into the 
fractures at their tips. Moreover, the �uids in the fractures are assumed to be incompressible. Each fracture 
is divided into multiple segments of equal length and uniform �ux (Fig. 1B).
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 3) Production of a vertical well with a constant rate from a closed reservoir leads to a reduction in �uid 
pressure and subsequent increase in net closure stress on the fractures. Fracture permeability changes with 
formation pressure. �us, the dynamic conductivity of a discrete fracture is used to describe this phenome-
non. �e �ows in the formation and fractures are assumed to obey Darcy’s law.

Model of fracture dynamic conductivity. According to the e�ective stress law, any change in e�ective 
stress must be compensated for changes in pore pressure, indicating that the variation of permeability caused by 
a stress change can be expressed as a function of pore pressure. Experiments and exponential models have been 
used to characterize the relationship between pressure and permeability28–33.

We chose a more general model used by Zhang et al.32 for this paper. �e relationship between fracture per-
meability and pore pressure is described as
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where: Subscripts “f” is fracture property; “min” is minimum;“i” is initial or segment; kf is fracture permeability, 
mD; p is pressure, psi; γf is fracture permeability modulus.

According to the de�nitions of the dimensionless parameters (Appendix A), the dimensionless dynamic con-
ductivity of a fracture is
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Note that CfD is not constant but, rather, a function of the dimensionless fracture pressure p
fD

. In other words, 

CfD evolves spatially and temporally, and Eq. 3 can be further expressed as
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where: Subscripts “D” is dimensionless; CfD is the initial fracture conductivity corresponding to the initial forma-
tion pressure.

Model of fluid flow in the reservoir. �e wing model introduces a way to �exibly generate complex frac-
tures when describing discrete fractures34. We assume that there are M wings and a vertical well in a closed 
rectangular reservoir. �e well can be on a fracture or near fractures. �e �ow rate in the wellbore is qw. �e 
m-th wing is divided equally into Nm segments with uniform �uxes (Fig. 1B). �e dimensionless pressure of each 
segment can be obtained in the Laplace domain using the superposition principle.

(1) �e well is on the fracture.
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(2) �e well is not on the fracture.

Figure 1. Schematic of the physical model in a closed rectangular reservoir. (A) Well with discrete fractures. 
(B) Uniform-�ux discretization model.
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where: the subscript “w” is wellbore property; “ij” indicates the j-th segment of the i-th fracture wing; “e” is 
boundary; M is the numbers of wings; Nk is segments with uniform �uxes; p

ufD ij km( , )
 and p

uwDij
 are the changes in 

dimensionless pressure at the j-th segment of the i-th wing caused by the production of the m-th segment of the 
k-th wing and the vertical well in the Laplace domain, respectively; xD and yD are dimensionless coordinate in the 
x and y direction, respectively; xeD and yeD are dimensionless boundary coordinate in the x and y direction, 
respectively.

�e uniform-�ux fracture solution p
ufD ij km( , )

 and point source solution p
uwD

 in a rectangular reservoir can be 

obtained from the literature35,36.

Model of fluid flow in the fracture. For �uid �ow in a dynamic-conductivity fracture, the fracture con-
ductivity CfD is correlated with p

fD
. Because p

fD
 is changing spatially and temporally, the fracture can be consid-

ered to exhibit varying conductivity at each step.
A dimension transformation method is introduced to convert the varying-conductivity, equal-length fracture 

into a constant-conductivity, unequal-length fracture (Appendix B, Fig. 2)11.
A detailed derivation of �uid �ow in a dynamic-conductivity fracture is presented in Appendix B. A�er the 

transformation, the equation for a varying-conductivity fracture at each time step can be written as
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Figure 2. Schematic of a dimension transformation. (A) A varying-conductivity, equal-length fracture. (B) A 
constant-conductivity, unequal-length fracture.
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where: ξD is dimensionless coordinate in the ξ direction; ξ∆
Di

 and ξ∆
Dn

 are dimensionless discretized step of the 
i-th and n-th segments in the ξ direction; ∆y

Di
dimensionless discretized step of the i-th segment in the y 

direction

Coupling model. According to the continuity condition whereby pressure and �ux must be continuous along 
a fracture’s surface, the following conditions must hold along the fracture plane:

= = .p p q q, (9)fD D fD D
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where: s is time variable in Laplace domain, dimensionless; q
wD

 dimensionless wellbore �ow rate of a well, in 
Laplace domain, dimensionless; q

fDkj
 is dimensionless wellbore �ow rate of a fracture at “kj” in Laplace domain, 

dimensionless.
For the simultaneous calculation of Eqs (4–10), the pressure solution can be obtained via the Gaussian elim-

ination method and can further be inverted to the time domain using the Stehfest numerical algorithm. With 
production, fracture pressure will gradually decrease, and the dynamic conductivity should be updated along the 
fracture at each time step. Based on the semi-analytical solution, an iterative program can be used to calculate the 
dimensionless pressure and �ux distribution at each time step (Appendix C). �e conductivity distributions along 
the fracture can then be obtained for each time step.

Model verification
To the best of our knowledge, there are no existing models for discrete fractures of dynamic conductivity for 
comparison. In this section, two speci�c models, i.e., a well near a discrete fracture of constant conductivity and 
a well on a fracture with dynamic conductivity, are used to verify our model.

Comparison with a well near a discrete fracture with constant conductivity. A transient-�ow 
solution for an in�nite-conductivity discrete fracture near a vertical well was presented by Cinco et al. in a real 
domain22. �e calculation parameters are listed in Fig. 3(A).

Comparison with a fractured well with varying conductivity. Zhang et al.32 developed a 
�nite-di�erence numerical simulator to model a vertical well on a symmetric fracture of varying conductivity in 
an in�nite reservoir. Figure 3(B) displays the comparison of our model with other models for a constant fracture 
conductivity.

As shown in Fig. 3(A), our model is in signi�cant agreement with the model of Cinco et al.22. (the solid lines 
are the results from our model, and the circles with crosses are from the model of Cinco et al.22). As shown in 
Fig. 3(B), our semi-analytical model (solid lines) agrees closely with the numerical solution of the Zhang et al. 
model32. �e circles represent a well on a symmetric fracture with an initial conductivity = 0.5π. �e upper group 
of curves is dimensionless pressure, and the lower group is its derivative. �e red, green, blue and black lines 

Figure 3. Comparison of our model with other models. (A) Cinco-Ley et al. model. (B) Zhang et al. model.
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represent the values for γfD = 3, 2, 1 and 0, respectively. If γfD = 0, the fracture conductivity remains constant for 
all time, and if γfD > 0, the conductivity changes with production.

�e model veri�cation proves that our model is accurate and that it can be further used in calculations for 
complex cases.

Results and Discussions
We focus on the e�ects of dimensionless permeability modulus γfD, discrete-fracture-well distance D, initial 
discrete-fracture conductivity CfDi and boundary size ×x yeD eD

 on dimensionless pressure. Based on the new 
semi-analytical method presented above, three fundamental cases are presented in detail.

Case 1 is a pressure-transient analysis of a vertical well on a fracture, where the e�ects of boundary size, 
dynamic conductivity and dimensionless permeability modulus on the dimensionless pressure and pressure 
derivative are addressed (Fig. 4).

Case 2 is a pressure-transient analysis of a vertical well in the vicinity of discrete fractures. �is case focuses on 
the e�ects of fracture conductivity, dimensionless permeability modulus, fracture number, distance between the 
well and fracture on the dimensionless pressure and pressure derivative (Fig. 5).

Case 3 is a case study employing synthetic data to obtain the pressure derivative for the discrete-fracture-well 
system (Fig. 6).

Pressure-transient analysis of a vertical well on a fracture. A fracture is assumed to be located at the 
centre of a closed square reservoir with = =x y 20eD eD

. A vertical well on the fracture is under production at a 
constant production rate.

E�ects of dimensionless permeability modulus. Figure 4 presents the curves of dimensionless pressure (solid line) 
and pressure derivative (dashed line) vs. dimensionless time for a symmetrical fracture with di�erent dimension-
less permeability moduli γfD. In Fig. 4(A), the red, blue and black lines represent the values for γfD = 3, 1 and 0, 
respectively. For γfD = 0 (black lines), i.e., constant fracture conductivity, the characteristic �ow regimes can be 
identi�ed on the derivative curve: bilinear �ow with a slope of 1/4, formation linear �ow with a slope of 1/2, radial 
�ow with a constant value of 1/2 and boundary-dominated �ow with a slope of 1. �e sub-�gure presents the 

Figure 4. E�ects of fracture permeability modulus and initial dimensionless fracture conductivity on 
pressure. (A) Dimensionless pressure (solid lines) and its derivative (dash lines) of a well on a symmetric 
fracture with di�erent dimensionless fracture permeability moduli. (B) Dimensionless pressure of a well on 
a symmetric fracture with di�erent initial dimensionless fracture conductivities. (C) E�ects of boundary size 
on dimensionless pressure and its derivative on a symmetric fracture. (D) �e ratio of average conductivity to 
initial conductivity over time for di�erent boundary sizes.
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ratios of the average fracture conductivities CfDa to initial fracture conductivities CfDi over time for di�erent 
dimensionless fracture permeability moduli γfD: 3(red line), 1 (blue line) and 0 (horizontal black line). �e tran-
sition point is de�ned as the time corresponding to the occurrence of the minimum fracture conductivity CfD min. 
For γfD = 0 (black lines), no transition point exists. For γfD = 3 (red line) and γfD = 1 (blue line), the transition 
points can be found (marked by the red solid and blue solid circles, respectively) on the dimensionless pressure 
curves. Before the transition points, the fracture makes a dynamic contribution to well production. We de�ne the 
time before a transition point as the dynamic-conductivity �ow period. A�er that time, the fracture conductivity 
will remain constant and at a minimum CfD min.

We set the initial CfDi and minimum fracture conductivities CfD min to π and 0.1π, respectively. As shown in 
Fig. 4(A) (sub-�gure), an obvious decrease in dimensionless fracture conductivity CfD can be observed with 
decreasing dimensionless permeability modulus γfD.With increasing dimensionless permeability modulus γfD, 

Figure 5. E�ects of parameters on pressure response. (A) E�ects of dimensionless distance on dimensionless 
pressure and derivative for collinear well and fracture. (B) E�ects of dimensionless distance on dimensionless 
pressure and derivative for well perpendicular to fracture. (C) E�ects of dimensionless fracture permeability 
modulus on dimensionless pressure and its derivative. (D) E�ects of dimensionless distance on dimensionless 
pressure and derivative. (E) E�ects of dimensionless initial fracture conductivity on dimensionless pressure and 
its derivative. (F) Comparison of dimensionless pressure and its derivative for a well near a discrete fracture and 
one surrounded by multiple fractures.
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dimensionless pressure increases, which means that a larger pressure drop is needed to maintain a constant pro-
duction rate. In addition, due to the influence of permeability modulus (γfD > 0), the pressure and 
pressure-derivative curves deviate from the type match curve (γfD = 0). �us, the characteristic �ow regime for a 
symmetric fracture (bilinear �ow with a slope of 1/4, formation linear �ow with slope of 1/2 and radial �ow with 
the derivate of 1/2) cannot be identi�ed.

We de�ne the intervals when the �ow exhibits dynamic fracture conductivity and minimum fracture conduc-
tivity as dynamic-conductivity �ow and minimum-conductivity �ow periods, respectively. For small permeability 
moduli γfD, long dynamic �ow periods and high oil recoveries can be expected. �e transition points between two 
�ow periods for γfD = 1 and γfD = 3 are marked with a solid circle in Fig. 4(A). A rapid decrease in dynamic frac-
ture conductivity CfD with high permeability modulus γfD (Fig. 4(A) sub-�gure) results in a small dimensionless 
time corresponding to the transition point such as tD = 3 for γfD = 3 and tD = 300 for γfD = 1, which indicates that 
fracture e�ectiveness decreases with increasing values of γfD.

E�ects of dimensionless initial fracture conductivity. Figure 4(B) illustrates the e�ect of initial fracture conduc-
tivity CfDi on dimensionless pressure with (dash line, γfD = 3) and without (solid line, γfD = 0) considering the 
e�ects of the permeability modulus. In Fig. 4(B), the red, green, blue and black lines correspond to the values of 
initial fracture conductivity, CfDi = 100π, 10π, π and 0.1π. �e ratios of the average fracture conductivities CfDa 
to initial fracture conductivities CfDi for di�erent initial dimensionless fracture conductivities CfDi are illustrated 
in the sub-�gure of Fig. 4(B). Four transition points are identi�ed on the dimensionless pressure curves (dashed 
lines) for γfD = 3.

For the purpose of comparison, we speci�ed that the minimum fracture conductivities were all CfD min = 0.05. 
For low initial conductivities, for example, CfDi = 0.1π, the e�ect of permeability modulus v on dimensionless 
pressure is relatively stable (no apparent climbing) throughout the entire production period. As initial fracture 
conductivity increases, the e�ect of permeability modulus γfD on dimensionless pressure will be delayed. For 
CfDi = 100π, the pressure responses for γfD = 0 and γfD = 3 are nearly indistinguishable for tD less than 1. However, 
a stronger e�ect gradually appears for larger dimensionless times, such that tD = 10−2–10−1 for CfDi = π, 10−1–100 
for CfDi = 10π and 100–101 for CfDi = 100π, where signi�cant increases in dimensionless pressure can be observed. 
In addition, longer dynamic-conductivity �ow periods resulting from larger initial conductivities can be observed 
from the curves, where the transition points are marked as solid circles. �erefore, large initial fracture conduc-
tivities CfDi can delay and strengthen the e�ects of permeability modulus γfD on dimensionless pressure. As shown 
in the sub-�gure of Fig. 4(B), it takes longer for CfD to decrease to the minimum conductivity CfD min as CfDi 
increases.

E�ects of boundary size. Figure 4(C,D) demonstrates the e�ects of boundary size on pressure response at 
γfD = 0.5 and CfDi = 20. Figure 4(C) displays the e�ects of boundary size on dimensionless pressure and its deriv-
ative for a well on a symmetric fracture at γfD = 0.5. �e red, blue and black lines correspond to the boundary size 
values: =x yeD eD

 = 1000, 100 and 20. �e dimensionless pressures and their derivatives are represented by the 
solid and dashed lines, respectively. Figure 4(D) displays the ratios of average conductivity CfDa to initial conduc-
tivity CfDi over time for di�erent boundary sizes at γfD = 0.5. �e red, blue and black lines correspond to the 
boundary size values, =x yeD eD

 = 1000, 100 and 20, respectively.
Figures 4(C) and (D) show that the small distance between the well and boundary not only caused the 

boundary-dominated �ow (BDF) to occur earlier but also accelerated the declining rate of the average conductiv-
ity of the fracture. Apparently, the existing boundary will signi�cantly impact fracture conductivity and produce 
notable di�erences when the pressure response reaches it. �is phenomenon is caused by the rapid drop in the 
average pressure a�er the boundary-dominated-�ow period, which further leads to obvious decreases in dynamic 

Figure 6. Pressure derivative in a vertical open hole producing from a formation containing discrete fractures.



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 15537  | DOI:10.1038/s41598-017-15785-9

fracture conductivity CfD. �us, a shorter distance to the boundary will enhance the e�ect of permeability mod-
ulus γfD on dimensionless pressure.

Pressure-transient analysis of a vertical well in the vicinity of discrete fractures. For discretely 
fractured reservoirs, a well may be drilled in the vicinity of discrete fractures with dynamic conductivities. �e 
production of the well will be a�ected by the fractures. In this section, we will discuss the pressure behaviours of 
a vertical well in the vicinity of discrete fractures within a closed square reservoir with =x yeD eD

 = 20.

E�ect of the constant fracture conductivity on the dimensionless pressure. To reveal the in�uence of the relation-
ship between the well and a constant-conductivity fracture (CfD = CfDi = 1500, γfD = 0) on dimensionless pressure, 
we set the dimensionless distance to 0.01, 0.1, and 1.0.

Figure 5(A,B) demonstrates the e�ects of dimensionless distance between the well and discrete fracture on 
dimensionless pressure and its derivative (the well and fracture are collinear) (γfD = 0). Four �ow regimes on 
the derivative curve are shown (black dashed line), i.e., early-time radial �ow, transitional �ow, middle-time 
pseudo-radial �ow, and boundary-dominated �ow. Dimensionless pressure and its derivative are represented by 
solid and dashed lines, respectively. �e red, blue and black lines correspond to dimensionless distances of 1, 0.1 
and 0.01, respectively. Figure 5(A) shows that the well and fracture are collinear. Figure 5(B) shows that the well 
is perpendicular to the fracture.

�e durations of the transitional �ows for Fig. 5(A) and (B) di�ered, as shown in the �gures. A�er a period of 
middle-time pseudo-radial �ow, a propagating pressure front would approach the fracture and transitional �ow 
would occur. In that �ow period, downward dips in the derivative curves can be observed. �e durations and 
depths of the dips depend on the well-fracture distance. With increasing dimensionless distance, dips become 
narrower and shallower, representing the gradually decreasing e�ect of the fracture on wellbore pressure. When 
the distance is greater than 1, transitional �ow is not detected. A comparison of Fig. 5(A) and (B) shows the 
stronger in�uence of the collinear case (wider and deeper dip, Fig. 5(A)) than that of the perpendicular case 
(Fig. 5(B)).

A�er the transitional �ow period, middle-time pseudo-radial �ow with a pressure derivative of 0.5 occurs. 
Finally, boundary-dominated �ow is achieved. In the middle-time pseudo-radial �ow and boundary-dominated 
�ow period, the curves of pressure-derivative overlap.

E�ects of dynamic fracture conductivity on dimensionless pressure. We now focus on the e�ects of permeabil-
ity modulus γfD, dimensionless distance and initial fracture conductivity CfDi on dimensionless pressure with 
a dynamic-conductivity fracture near a vertical well. �e parameters used for the calculations are listed on the 
�gures.

 1) E�ects of permeability modulus. Figure 5(C) shows the e�ects of permeability modulus γfD on dimen-
sionless pressure. Dimensionless pressure and its derivative are represented by solid and dashed lines, 
respectively. �e red, green, blue and black lines correspond to the dimensionless permeability modulus 
values,γfD = 3, 2, 1, and 0, respectively. �e e�ect of γfD on dimensionless pressure derivative is concentrat-
ed in the middle-time pseudo-radial �ow period. �ree transition points can be seen. �e presence of the 
dynamic fracture conductivity causes the pressure-derivative curves to deviate from the constant-conduc-
tivity curve (γfD = 0). A hump can be found in the middle-time pseudo-radial �ow and boundary-dom-
inated �ow periods, which indicates the occurrence of sharp pressure drops, and accordingly, the mid-
dle-time pseudo-radial �ow is invisible.

 2) E�ects of distance. Figure 5(D) presents the e�ects of dimensionless distance on the pressure responses. 
Dimensionless pressure and its derivative are represented by solid lines and dashed lines, respectively. �e 
red, blue and black lines correspond to dimensionless distance values of 1, 0.1 and 0.01, respectively. A 
hump caused by the e�ects of dynamic conductivity in the middle-time pseudo-radial �ow period can be 
found in the pressure-derivative curves by comparing Fig. 5(D) (γfD = 3) with Fig. 5(B) (γfD = 0). Note that 
when the dimensionless distance is greater than 1, the e�ect of the fracture can be ignored.

 3) E�ects of initial fracture conductivity. Figure 5(E) demonstrates the e�ects of initial fracture conduc-
tivity CfDi on dimensionless pressure and its derivative with dynamic fracture conductivity (γfD = 3). 
Dimensionless pressure and its derivative are represented by solid and dashed lines, respectively. �e wine, 
blue, green, red and black lines correspond to the initial conductivity values (CfDi = 0.2, 2, 20, 200 and 
2000, respectively). As shown in Fig. 5(E), the dip in the transitional �ow period deepens and the height 
of the hump on the pressure-derivative curve in the middle-time pseudo-radial �ow period increases with 
increasing initial fracture conductivity. For extremely small initial fracture conductivities such as CfDi = 0.2, 
the dips and humps nearly disappear.

Based on the discussion of a dynamic-conductivity fracture near a well, the presence of fractures bene�ts 
production, which leads to reductions in pressure drop (dips). Wider and deeper dips can be obtained when 
fractures are close to wells. In contrast, due to the decrease in dynamic conductivity with production, a hump can 
be observed in the middle-time pseudo-radial �ow period, which indicates that a steep increase in pressure drop 
occurred. �us, it is very important to make use of the early-time radial �ow and transitional �ow periods for pro-
duction. For the middle-time pseudo-radial �ow and boundary-dominated �ow periods, the fracture negatively 
impacts production because the sharp declines in dynamic conductivity result in large pressure drops (humps).

Pressure-transient analysis of a vertical well near multiple fractures. To illustrate the e�ects of 
fracture number, we set 4 fractures around a vertical well. �e dimensionless pressures and their derivatives for 
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a well near a discrete fracture or multiple fractures at dimensionless distance D = 1 are compared in Fig. 5(F). In 
Fig. 5(F), dimensionless pressure and its derivative are represented by solid lines and dashed lines, respectively. 
�e red lines correspond to a well near a fracture with γfD = 3. �e black lines correspond to a well surrounded by 
4 fractures with γfD = 3. �e blue lines correspond to a well surrounded by 4 fractures with γfD = 0.

From Fig. 5(F), when compared against the case with a fracture near a well (red line), an obvious dip can 
be found on the pressure-derivative curve for four fractures around a well (blue line). �erefore, to maintain a 
consistent outcome, lesser pressure drops are needed for a well surrounded by multiple fractures. Similar to the 
single fracture near a well, a hump on the pressure-derivative curve is found a�er transitional �ow (black line).

Case study. Here, a case employing synthetic data is used to examine the pressure-derivative characteristics 
of a vertical open hole producing from a formation dissected by 42 discrete fractures with lengths between 100 
and 450 � (Fig. 1). All the fractures deviate from the horizontal axis by an azimuthal angle of 50 degrees. �e 
fracture lengths and locations were randomly selected. Figure 1 shows the fracture pattern and distribution in a 
Cartesian coordinate system. Only one vertical open hole is producing from the discrete fractured formation at a 
constant production rate (qw = 20 stb/day). �e well location in the formation is variable.

We consider two di�erent cases for the well location. �e positions of the vertical open hole in each case are 
marked with solid circles in Fig. 1. In Case 1, the vertical open hole is located at xw = 1335 � and yw = 2533 �. 
In this case, the vertical well is relatively distant from the nearby fractures and close to the boundary. In Case 
2, the well is positioned near the centre of the reservoir at xw = 1520 � and yw = 620 � and is very close to four 
discrete fractures. �e basic data for the reservoir and �uid used in the simulations are listed in Fig. 6. Figure 6 
presents the pressure-derivative responses of a vertical well in a closed rectangular reservoir with discrete frac-
tures. Figure 6 indicates that the expected three �ow regimes—early-time radial �ow, transitional �ow period and 
boundary-dominated �ow—are observed in both cases.

At very early times, only the formation around the vertical well contributes to �ow. �e pressure distur-
bance created at the wellbore has not yet arrived at the fracture. �e logarithmic pressure derivative during the 
early-time radial �ow period is constant at 40.8 psi. At this time, there is no �uid �ow in or across the fracture. As 
soon as the pressure disturbances generated at the wellbore reaches the fracture, �ows in and around the fracture 
are triggered and transitional �ow occurs. During the transitional �ow period, the pressure derivative decreases 
and then increases. Obvious dips can be observed on the curves. Comparing Case 1 with Case 2, a deeper dip is 
seen for Case 2 due to the e�ect of multiple fractures around the wellbore. �e duration of the transitional �ow 
period is controlled by fracture length, distance to fracture, fracture prosperities and fracture number.

A�er the transitional �ow period, given the same discrete-fracture �eld, the location of the vertical open hole 
makes a signi�cant di�erence in the derivative response during the late-time �ow period. �e position of the well-
bore in Case 1 is close to the boundary and away from the fractures, the boundary-dominated �ow prevails during 
the late-time period, and the middle-time pseudo-radial �ow period does not exist on the curve. For Case 2, the 
well is located near the centre of the reservoir and is surrounded by 4 fractures and a hump caused by the decrease 
in fracture conductivity with production can be found on the curve. In addition, the boundary-dominated �ow 
period is delayed due to the large distance between the well and boundaries.

Conclusions
Based on our work, the following conclusions can be drawn.

 1) A novel fracture model that accounts for the e�ect of dynamic conductivity as a function of pressure was 
established. Based on a dimension transformation from a varying-conductivity, equal-length fracture to a 
constant-conductivity, unequal-length fracture, a new semi-analytical solution for a dynamic-conductivity 
discrete fracture was developed in the Laplace domain. �e new method is simple, computationally stable 
and accurate.

 2) �e pressure behaviours of a vertical well on a dynamic-conductivity fracture have been discussed in de-
tail. �e e�ects of boundary size, fracture conductivity and dimensionless permeability modulus on the di-
mensionless pressure have been presented. �e results show that well location mainly a�ects the early-time 
�ow, dynamic fracture conductivity mainly a�ects the middle-time �ow and large initial fracture conduc-
tivity will delay the e�ect of dynamic conductivity on dimensionless pressure during the middle-time �ow 
period.

 3) For a closed rectangular reservoir, the dynamic conductivity of a discrete fracture that depends on the 
fracture pressure will be reduced dramatically. A small reservoir size will strengthen the e�ect of dynamic 
fracture conductivity on dimensionless pressure.

 4) �e pressure response of a vertical well in the vicinity of a discrete fracture has been revealed. Four �ow 
regimes can be found: early-time radial �ow, transitional �ow, middle-time pseudo-radial �ow and bound-
ary-dominated �ow. �e middle-time pseudo-radial �ow may be masked by the e�ect of dynamic fracture 
conductivity. �e presence of a fracture near a well is bene�cial to production and leads to a reduction 
in the pressure drop (dip). In contrast, due to decreases in the dynamic conductivity of the fracture with 
production, a hump can be observed in the middle-time pseudo-radial �ow period, which indicates that a 
steep increase in pressure drop has occurred.

 5) In comparison with those for a single fracture near a well, higher production rates can be achieved for 
wells surrounded by multiple fractures for a given pressure drop. Similar to the single fracture near a well, 
a hump on the pressure-derivative curve can be found a�er transitional �ow. To take advantage of fractures 
and weaken the e�ects of dynamic fracture conductivity in the boundary-dominated �ow period, produc-
tion during early-time radial �ow and transitional �ow periods becomes more important.
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