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Effects of Dissipation on a Quantum Critical Point with Disorder

José A. Hoyos, Chetan Kotabage, and Thomas Vojta
Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409, USA

(Received 19 May 2007; published 4 December 2007)

We study the effects of dissipation on a disordered quantum phase transition withO�N� order-parameter
symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field
theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness
critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to
conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to
the Hertz theory of the itinerant antiferromagnetic transition.

DOI: 10.1103/PhysRevLett.99.230601 PACS numbers: 64.60.Ht, 75.10.Lp, 75.10.Nr, 75.40.�s

The low-temperature properties of quantum many-
particle systems are often sensitive to small amounts of
impurities or defects. Close to quantum phase transitions
(QPTs), the interplay between quantum fluctuations and
random fluctuations due to disorder can destabilize the
conventional critical behavior, leading to exotic phe-
nomena such as quantum Griffiths effects [1,2] and
infinite-randomness critical points [3] as well as smeared
phase transitions [4] (for a recent review see, e.g., Ref. [5]).

In particular, the QPTs in disordered quantum Ising
magnets are governed by infinite-randomness critical
points [3,6] which display slow activated dynamical scal-
ing. In a dissipative environment, the dynamics becomes
even slower. In the experimentally relevant case of Ohmic
dissipation, the tunneling of sufficiently large droplets (the
ones normally responsible for Griffiths phenomena) is
completely suppressed [7,8]. As a result, the sharp quan-
tum phase transition is destroyed by smearing [4].

In contrast, in dissipationless systems with continuous
O�N� order-parameter symmetry, disorder does not induce
exotic infinite-randomness behavior in dimensions d > 1
[9]. This changes in the presence of Ohmic dissipation. It
was recently shown that large locally ordered droplets are
not frozen (in contrast to the Ising case. Instead they dis-
play the exponentially slow dynamics associated with a
quantum Griffiths phase [10]. This leads to the important
question of whether the QPTs of continuous symmetry
order parameters with Ohmic dissipation are also of
infinite-randomness type.

In this Letter, we answer this question and elucidate the
nature of the transition by applying a strong-disorder re-
normalization group (RG) to the Landau-Ginzburg-Wilson
(LGW) order-parameter field theory of the problem. Our
results are summarized as follows: The QPT is controlled
by an exotic infinite-randomness fixed point in the univer-
sality class of the random transverse-field Ising model. The
dynamical scaling is activated rather than power-law, i.e.,
correlation time � and correlation length � are related via
ln�� � , with  the tunneling exponent. With decreasing
temperature, the order-parameter susceptibility diverges as
�� �ln�1=T��2��d= =T, and the specific heat vanishes as

C� �ln�1=T���d= . Here, � is the cluster size exponent.
Close to the QPT, the finite-temperature phase boundary
takes the unusual form Tc � exp��const� jrj�� � with r
the dimensionless distance from the QPT and � the corre-
lation length exponent. The exponents  , �, and � are
universal and identical to those of the random transverse-
field Ising model. The resulting phase diagram is shown in
Fig. 1.

Our starting point is a quantum LGW free energy func-
tional for an N-component (N > 1) order-parameter ’ in d
dimensions. The clean action reads

 S �
Z
dydx’�x���x; y�’�y� 	

u
2N

Z
dx’4�x�; (1)

where x 
 �x; �� comprises imaginary time � and position
x,

R
dx 


R
dx

R1=T
0 d�, and ��x; y� is the bare inverse

propagator (two-point vertex) whose Fourier transform
reads ��q; !n� � r	 �2

0q2 	 �j!nj
2=z0 with r the bare

distance from criticality (the bare gap). �0 is a microscopic
length scale, and !n is a Matsubara frequency. The damp-
ing coefficient � depends on the coupling of the order

FIG. 1 (color online). Temperature-coupling phase diagram
for Ohmic dissipation. IRFP denotes the infinite-randomness
critical point. The phase boundary (solid) and the crossover
line (dashed) between the quantum critical and quantum para-
magnetic (QPM) regions take unusual exponential forms leading
to a wide quantum critical region. Both phases contain Griffiths
regions near the IRFP [10].
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parameter to the dissipative bath and the spectral density of
the bath modes. We are mostly interested in overdamped
(Ohmic) spin dynamics (z0 � 2). However, to demonstrate
the special role of z0 � 2, we also consider variable z0.
Quenched disorder can be introduced by making the dis-
tance from criticality r a random function of position r!
r	 �r�x�. Analogously, disorder is introduced into �0

and/or �.
To apply the real-space based strong-disorder RG

[11,12], we discretize the action (1) by defining discrete
coordinates xj and rotor variables ’j���. It is important to
note that the rotors do not describe individual microscopic
degrees of freedom, they rather represent the average order
parameter in a volume �V large compared to �0 but small
compared to the correlation length �, i.e., ’j��� �R

�V dy’�xj 	 y�.
We first consider the large-N limit of our action where

all calculations can be carried out explicitly. We will later
show that the results apply to all N > 1. In the large-N
limit, the discrete action reads

 S �
T
E0

X
i

X
!n

�ri 	 �i 	 �ij!nj
2=z0�j�i�!n�j

2

�
T
E0

X
hi;ji

X
!n

�i��!n�Jij�j�!n�; (2)

where ri, �i > 0 and the nearest-neighbor interactions
Jij > 0 are random quantities, E0 is a microscopic energy

scale used to make the field dimensionless, and �j�!n� �

E0

R1=T
0 ’j���e

i!n�d�. The Lagrange multiplier �i enforces

the large-N constraint h�’�k�i ����
2i � 1 for each order-

parameter component ’�k�i . The local distance from criti-
cality, 	i � ri 	 �i, contains all single-site renormaliza-
tions and is thus always positive.

The basic idea of the strong-disorder (Ma-Dasgupta-Hu)
RG is to successively integrate out local high-energy de-
grees of freedom [3,11,12]. Here, the competing local
energies are the local gaps 	i and the interactions Jij. In
the bare theory (2), they are independent random variables
with distributions Q�	� and P�J�, respectively.

In each RG step, we choose the largest local energy � �
maxf	i; Jijg. If it is a gap, say 	2, the unperturbed part of
the action is S0 � �T=E0�

P
!n
�	2 	 �2j!nj

2=z0�j�2�!n�j
2.

The coupling of �2 to the neighboring sites, S1 �

��T=E0�
P
j;!n

J2j�2��!n��j�!n�, is treated perturba-
tively. Keeping only the leading low-frequency terms that
arise in 2nd order of the cumulant expansion, we obtain
new interactions ~S � ��T=E0�

P
!n
�i��!n�~Jij�j�!n� be-

tween all sites that used to couple to �2, with

 

~J ij � Jij 	
Ji2J2j

	2
: (3)

At the end of the RG step, �2 is dropped from the action.

If the largest local energy is an interaction, say J23, we
solve the two-site cluster S0 � �T=E0�

P
!n

P
i�2;3�	i 	

�ij!nj
2=z0�j�i�!n�j

2 � �T=E0�
P
!n
J23�2��!n��3�!n�

exactly while treating the interactions with all other sites as
perturbations. The calculation is straightforward but
lengthy; details will be published elsewhere. For J23 �
	2, 	3, the two rotors �2 and �3 are essentially paral-
lel; thus they can be replaced by a single rotor ~�2 with
effective renormalized action ~S � �T=E0�

P
!n
� ~	2 	

~�2j!nj
2=z0�j ~�2�!n�j

2. For Ohmic dissipation, z0 � 2, the
renormalized gap is given by

 

~	 2 � 2
	2	3

J23
; (4)

implying the relation ~�2 � �2 	 �3 for the damping con-
stants. The new rotor represents a cluster with effective
moment (number of sites represented)

 ~
 2 � 
2 	
3: (5)

The renormalized interactions of the new rotor with each of
the remaining ones are given by

 

~J 2j � J2j 	 J3j: (6)

The net result of the RG step is the elimination of one
site and the reduction of the energy scale � together with
renormalizations and reconnections of the lattice. Since the
structure of the RG recursion relations (3)–(6) is identical
to that of the random transverse-field Ising model [3,6,13],
we conclude that our system belongs to the same universal-
ity class.

In d � 1, the RG step does not change the lattice topol-
ogy. One can thus derive flow equations for the individual
probability distributions of 	 and J and solve them analyti-
cally [3]. In d > 1, new couplings are generated in each RG
step, and an analytical solution is impossible. However, by
implementing the recursion relations (3)–(6) numerically,
Motrunich et al. [6] showed that there is a fixed point in the
full joint distribution of the 	 and J that corresponds to the
critical point of the system. In both cases, the critical point
is of infinite-randomness type. At criticality, the distribu-
tion of the 	i and Jij becomes singular and broadens
without limit as �! 0 under renormalization which also
provides an a posteriori justification for using the pertur-
bative RG recursion relations (3)–(6). One may be con-
cerned about the initial stages of the RG in a weakly
disordered system, where the strong-disorder method is
not very accurate. However, perturbative RG studies
[14,15] showed that there is no stable weak-disorder fixed
point; instead the perturbative RG shows runaway flow
towards large disorder.

We thus conclude that the infinite-randomness fixed
point found here is universal and controls the transition
for all nonzero disorder strength. Its critical behavior is
characterized by three exponents  , �, and �. The tunnel-
ing exponent  controls the dynamical scaling, i.e., the
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relation between length scale L and energy scale �, which
is of activated rather than power-law type

 ln�1=�� � L : (7)

It also controls the density n� of surviving clusters via
n� � �ln�1=����d= . � describes how the typical moment

 of a surviving cluster depends on �,

 
� ln��1=��; (8)

while � determines how the correlation length � depends
on the distance r from criticality via �� jrj��. In one
space dimension, the exponents are known exactly from
Fisher’s analytical solution [3]:  � 1=2,� � �1	

���
5
p
�=2

and � � 2. In two dimensions, they were determined nu-
merically [6,16], yielding  � 0:42–0:6, � � 1:7–2:5 and
� � 1:07–1:25. For d � 3, the scaling towards an infinite-
randomness fixed point has been confirmed [6], but esti-
mates of the exponent values are still lacking.

We emphasize the particular role played by the Ohmic
dissipation (z0 � 2) of the magnetic modes. To this end,
we consider how the recursion relation (4) is modified for
z0 � 2. For the super-Ohmic case, z0 < 2, we find

 

~	2
�x � ��	�x2 	 	

�x
3 � 	O�J

�x
23 �; (9)

where x � �2� z0�=z0 and � is a constant [17]. Thus, the
multiplicative structure of (4) is replaced by an additive
one. As a result, the local gaps 	 are only weakly renor-
malized for z0 < 2. Near criticality, the distribution of the
interactions J becomes extremely singular while that of the
gaps 	 remains narrow. The critical point is therefore not of
infinite-randomness type but conventional with power-law
scaling �� �z, although the dynamical exponent z can
become arbitrarily large as z0 ! 2�. (Similar behavior
was found at a percolation QPT [18].) For the subohmic
case, z0 > 2, the sharp transition is destroyed by smearing
because rare regions can statically order independently
from each other [5,10].

We now turn to the behavior of observables which is
similar to the random transverse-field Ising model [3,6].
However, there are a few differences caused by the order-
parameter symmetry and the damping of the modes.
Summing over all surviving clusters using (7) and (8) gives
unusual scaling forms for the order-parameter susceptibil-
ity � and the specific heat,

 ��r; T� �
1

T
�ln�1=T��2��d= ���r

� ln�1=T��; (10)

 C�r; T� � �ln�1=T���d= �C�r� ln�1=T��; (11)

where �� and �C are universal scaling functions. At
criticality, this leads to C� �ln�1=T���d= and ��
�ln�1=T��2��d= =T. The dynamic order-parameter suscep-
tibility at criticality can be derived similarly. On the real
frequency axis, Im��!	 i0� � �ln�1=!��2��d= =!. This
implies that low-temperature inelastic scattering experi-

ments at the location of the order-parameter Bragg peak
should see a sharp upturn in the scattering intensity
��ln�1=!��2��d= =! with !! 0. The scaling form (10)
of the susceptibility can also be used to infer the shape of
the phase boundary close to the QPT. The finite-
temperature transition corresponds to a singularity in
���x� at some nonzero argument xc. This yields the un-
usual form Tc � exp��const� jrj�� � shown in Fig. 1.
The crossover line between the quantum critical and quan-
tum paramagnetic regions displays analogous behavior.

The infinite randomness at criticality leads to peculiar
behavior of the correlation functions. The average corre-
lation function �G�x� is dominated by the rare events of two
distant sites belonging to the same surviving cluster. This
yields [3,6] �G�x� � jxj�2�d�� �. In contrast, a typical pair
of sites is not in the same cluster, and develops exponen-
tially weak correlations, � lnGtyp�x� � jxj .

Our explicit calculations are for the large-N limit of the
O�N� LGW theory. To discuss their relevance for finite N,
we contrast the cases of Ising (N � 1) and continuous
(N > 1) symmetries. In the former, sufficiently strong
Ohmic dissipation freezes the magnetic droplets (the lo-
calization transition in the dissipative two-state system
[19]) leading to a destruction of the sharp transition by
smearing [4]. Recently, this was confirmed in a numerical
strong-disorder RG [20]. In contrast, for N > 1, isolated
droplets continue to fluctuate but with a tunneling rate
(gap) that is exponentially small in their size [10] because
O�N� clusters are right at the lower critical dimension of
the transition. This exponential size dependence of the gap
requires the multiplicative structure of the recursion (4) for
the merging of two rotors. We conclude that this multi-
plicative structure is valid for all N > 1. Since (3) just
reflects standard perturbation theory, all our RG recursion
relations and the resulting infinite-randomness critical
point apply to the general O�N� case with N > 1. This
has been confirmed for undamped dynamics (z0 � 1) in the
case of O�2� symmetry and for a general O�N� rotor model
in Refs. [17].

In the remaining paragraphs, we summarize our results,
we discuss applications, and we consider open questions.
We have studied the effects of dissipation on the quantum
phase transition in a quenched disordered system with
O�N� symmetric order parameter. For Ohmic dissipation,
we have found an infinite-randomness fixed point while the
behavior for the super-Ohmic case (including undamped
dynamics) is conventional. For sub-Ohmic dissipation, the
quantum phase transition is destroyed by smearing. This
must be contrasted with the case of Ising symmetry for
which undamped dynamics already leads to an infinite-
randomness fixed point [3,6], while Ohmic dissipation
causes a smeared transition [4]. All of these results are in
agreement with a general classification [5] of phase tran-
sitions in the presence of weak disorder based on the
effective dimensionality of rare regions: If finite-size re-
gions are exactly at the lower critical dimension, the criti-
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cal point is of the infinite-randomness type. If they are
below the lower critical dimension, the behavior is con-
ventional; and if they can order (freeze) independently, the
transition is smeared.

Our theory has several applications. For instance, the
superconductor-metal quantum phase transition observed
in thin nanowires [21] was studied using a LGW theory
analogous to (1) in one dimension with an O�2� (complex)
order parameter and Ohmic dissipation [22]. The effects of
disorder on the thermodynamics of this problem are de-
scribed by our theory. Transport properties can also be
calculated using the methods of Refs. [23]. Analogously,
our theory should apply to arrays of resistively shunted
Josephson junctions.

A second potential application is the Hertz-Millis theory
[24,25] of the (incommensurate) itinerant antiferromag-
netic transition. In this theory, a LGW free energy analo-
gous to (1) is derived from a microscopic electron
Hamiltonian H � Hband 	Hint 	Hdis consisting of a non-
trivial band structureHband, a Hubbard-like interaction Hint

and a random potential Hdis by integrating out the fermi-
onic degrees of freedom in favor of the bosonic order-
parameter field. The validity of the Hertz-Millis approach
to these transitions is still a controversial question as
several experiments, in particular, in heavy fermion mate-
rials [26], have shown marked differences from the pre-
dicted behavior. Disorder effects are a much-discussed
possible reason for these discrepancies [26,27]. Our theory
provides explicit results on how dissipation and disorder
can yield activated dynamics, quantum Griffiths phe-
nomena, and non-Fermi-liquid behavior. This should
make an experimental verification or falsification of the
disorder scenario much easier. Note that attention must be
paid to the long-range RKKY part of the interaction ne-
glected in (1). It can produce an extra subohmic dissipation
of locally ordered clusters [28] which leads to freezing into
a ‘‘cluster glass’’ phase [29] at a low nonuniversal tem-
perature TCG determined by the strength of the subleading
RKKY interactions. However, the infinite-randomness
fixed point controls observables in the broad quantum
critical region above.

We thank E. Miranda, J. Schmalian, and S. Sachdev for
useful discussions. This work was supported by NSF under
Grant No. DMR-0339147 and by Research Corporation.
Parts of the research have been performed at the Aspen
Center for Physics.
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