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It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations

between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the tran-

sition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests

that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symp-

toms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and main-

tenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies

suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal

function and, therefore, the formation of augmented drug-context associations that contribute to the development of ad-

diction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocam-

pus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to

relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocam-

pus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdraw-

al, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-

induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to

avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hip-

pocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.

Addiction is a major worldwide health problem that results in
maladaptive behavioral changes, some that can last a lifetime.
This behavioral plasticity, often times maladaptive, must be as-
sociated changes in neural plasticity. In fact, it has been noted
multiple times that there is a high degree of overlap between
the neurobiology of learning and memory and the neurobiology
of addiction (e.g., White 1996; Kelley 2004; Hyman et al. 2006;
Volkow et al. 2014; Goodman and Packard 2016). Drugs of abuse
are often linked to disrupted learning, but the relationship be-
tween drugs of abuse and learning is more complex as drug use
and abuse is also associated with the development of strong but
maladaptive memories that contribute to drug-seeking beha-
vior and addiction. It is the overarching premise of this review
that initial or acute use of drugs can facilitate the development
of maladaptive memories between drug effects and environmen-
tal stimuli and that these associated memories can exert strong
behavioral control and facilitate drug-seeking behavior and re-
lapse. With continued use of drugs, learning deficits emerge along
with cognitive inflexibility. These learning deficits and cognitive
inflexibility combined with previously formed maladaptive drug-
context/drug-cue associations contribute to the maintenance of
addiction.

While there are multiple types of learning, this review will
focus on hippocampus-mediated learning. The hippocampus is
perhaps the iconic brain region associated with learning and

memory. For instance, the work of Scoville and Milner (1957)
with patient H.M., whose severe epilepsy was treated with com-
plete resection of the hippocampus and surrounding medial
temporal lobe tissue, demonstrated the critical importance of
this brain region in the formation of new long-term declarative
memories. The patient H.M. could not maintain new declarative
memories. This is particularly problematic because declarative
memories contribute to self-definition as they encompass me-
mories of events and autobiographical memories. As part of an es-
sential role in declarative memory formation, the hippocampus
is especially good at binding information together to form com-
plex representations (Sutherland and Rudy 1989; for review,
see Yonelinas 2013) that are necessary for spatial and contextual
memory formation (O’Keefe and Dostrovsky 1971; Kim and
Fanselow 1992; Kim and Lee 2011; Loureiro et al. 2012). In addi-
tion to involvement in long-term declarative memory formation,
the hippocampus is also well known as one of the brain regions
that demonstrate a high-level synaptic plasticity, often assessed
by changes in long-term potentiation (LTP); (Teyler and DiScenna
1987; Lynch et al. 1990). The high degree of plasticity in the hip-
pocampus and the ability of this region to support contextual and
declarative memories may facilitate drug-induced changes in hip-
pocampal function that have a profound effect on behavior.
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It is clear that the physiological effects of drugs of abuse can
become associated with contextual information, contributing to
future drug-seeking behavior (Bardo et al. 1984; Carr et al. 1988;
Bienkowski et al. 1996; Le Foll et al. 2006; Tropea et al. 2008;
Kutlu et al. 2015a). Because of the critical role of the hippocampus
in learning contextual information (Smith and Mizumori 2006),
drug-associated changes in hippocampal function may contribute
to the development of maladaptive drug-context associations.
With continued drug use, adaptations including tolerance occur
and these changes could disrupt hippocampal function. Chronic
drug use is often associated with cognitive deficits (Ornstein et al.
2000; Robbins et al. 2008; Stavro et al. 2013), and these deficits
could contribute to addiction by interfering with acquisition of
adaptive behavior that supports the cessation of drug use. Further-
more, withdrawal symptoms for multiple drugs of abuse include
cognitive deficits (Solowij 1995; Jacobsen et al. 2005), which
could contribute to relapse when individuals attempt to reverse
these deficits (Khantzian 1985; Rukstalis et al. 2005; Patterson
et al. 2010). It is beyond the scope of this review to discuss all
drugs of abuse; therefore, we will focus on cocaine, amphetamine,
nicotine, ethanol, opiates, and cannabis, examining for each
drug the effects of acute administration, chronic administration,
and withdrawal on hippocampus learning and hippocampal syn-
aptic plasticity. In addition, because there is substantial evidence
showing that self-administration and yoked-administration of
drugs result in the same effects on hippocampal plasticity (Tho-
mas and Everitt 2001; Thomas et al. 2003; Yamaguchi et al.
2004, 2005; Domı́nguez-Escribà et al. 2006; Noonan et al. 2008),
we will review studies using both contingent and noncontingent
drug administration together. Evidence from human subject stud-
ies along with laboratory animal studies will be reviewed.

Cocaine

The effects of acute administration on

hippocampus-dependent learning and memory
Cocaine, a highly addictive psychostimulant derived from the leaf
of Erythroxylon coca, is often characterized by compulsive use and
obsessive drug seeking (Dackis and O’Brien 2001). Cocaine addic-
tion affects roughly 2 million people in the USA, with 1.5 million
of them identified as “cocaine users,” and every day there are
1700 new users (U.S. Department of Health and Human Services
2011). In addition to cocaine’s negative health consequences
including cardiovascular, pulmonary, and psychiatric compli-
cations (Brody et al. 1990; Haim et al. 1995; Lange and Hillis
2001), cocaine has been reported to be the most commonly
used illicit drug among patients seeking emergency care (40.3%;
SAMHSA 2011). These figures highlight cocaine addiction as a dis-
ease with devastating consequences; thus, understanding the pro-
cesses underlying the development and maintenance of cocaine
addiction is vital.

Despite its negative health consequences, when acutely ad-
ministered cocaine activates the brain’s reward circuitry, produc-
ing a euphoric state that serves as a reinforcer for future cocaine
use (Volkow et al. 1999). In addition to the pleasurable effects,
acute cocaine has also been shown to improve cognition in hu-
mans (Garavan et al. 2008) and enhance learning and memory
in laboratory rodents (Wood et al. 2007). However, these procog-
nitive effects during initial cocaine exposure may be responsible
for the formation of maladaptive drug-context/-cue associations
that may facilitate the development of compulsive drug-seeking
behavior. In support of this hypothesis, studies have shown that
laboratory rodents learn to self-administer cocaine (e.g., Richard-
son and Roberts 1996; España et al. 2010) and associate a specific
context with cocaine reward (e.g., Spyraki et al. 1982; Vidal-Infer

et al. 2012) remarkably quickly. The rewarding effects of cocaine
are so powerful that a number of studies have shown that an espe-
cially addiction-prone subset of laboratory animals trained to self-
administer cocaine prefer cocaine over feeding and mating and
compulsively self-administer cocaine at fatal rates (Deneau et al.
1969; Lenoir et al. 2007; Kerstetter et al. 2012; Perry et al. 2013).
This suggests that the coupling of cocaine’s procognitive effects
with overstimulation of the reward system may result in dysregu-
lated behavioral outcomes rather than enhancement of behav-
ioral control.

There are several brain regions within the mesolimbic circuit
that are directly affected by cocaine, including reward-related re-
gions such as the nucleus accumbens and ventral tegmental area
as well as regions that control cognition such as the prefrontal cor-
tex and hippocampus (Bardo 1998; Thomas et al. 2008). Among
these regions, the hippocampus may be a critical site for both
the rewarding effects of acute cocaine (Kuhar et al. 1991; Koob
et al. 1994; Everitt et al. 1999; Dackis and O’Brien 2001; Anderson
and Pierce 2005) as well as formation and maintenance of co-
caine-context associations (Grant et al. 1996; Childress et al.
1999; Kilts et al. 2001; Wexler et al. 2001) due to its involvement
in both reward and learning and memory (Aggleton et al. 1986;
Burgess et al. 2002; Daumas et al. 2005; for review, see Tulving
and Markowitsch 1997). For example, permanent lesions of the
dorsal, but not ventral hippocampus, as well as temporary inacti-
vation of the dorsal hippocampus by local muscimol infusions
impaired cocaine conditioned place preference (CPP; Meyers
et al. 2003, 2006). Similarly, studies suggest that the dorsal hippo-
campus controls context-induced reinstatement (Fuchs et al.
2005, 2007; Xie et al. 2010; Wells et al. 2011). In contrast to the
dorsal hippocampus, the ventral hippocampus has been shown
to mediate cue-induced and cocaine-primed reinstatement of co-
caine self-administration (Rogers and See 2007; Ramirez et al.
2009). Moreover, Vorel et al. (2001) showed that theta burst stim-
ulation in the ventral hippocampus resulted in relapse of extin-
guished cocaine self-administration. It is also possible that
dorsal and ventral hippocampus may differentially contribute to
the stress-induced relapse to cocaine seeking as studies have
shown that stress affects synaptic plasticity in these regions in op-
posite ways. That is, while stress diminished synaptic plasticity in
the dorsal hippocampus, ventral hippocampal synaptic plasticity
was enhanced by stress (Maggio and Segal 2007, 2009; Segal et al.
2010). Therefore, ventral hippocampus may assume a greater role
in reinstatement of cocaine-seeking behavior during a period of
high stress such as cocaine withdrawal. But this hypothesis has
not been directly examined.

These studies establish the hippocampus as the focal region
for the formation and maintenance of long-term memories that
support cocaine-context and cocaine-cue associations. In support
of the hippocampus as the primary target of cocaine in modulat-
ing drug-related memories, acute cocaine has also been shown
to alter hippocampal LTP, a form of synaptic plasticity that may
underlie learning and memory (Bliss and Collingridge 1993).
However, the effects of cocaine on LTP are mixed (see Table 1
for a summary of results). For example, Smith et al. (1993) found
that acute cocaine (30–60 mM) blocked induction of LTP in the
CA1 region of the hippocampus without affecting NMDA re-
ceptors or already established LTP. In contrast, Stramiello and
Wagner (2010) found that enhanced dopaminergic signaling
associated with acute cocaine application (6 mM) increased hippo-
campal LTP in the CA1 subregion. Nevertheless, these contradict-
ing results may be explained by the fact that different drug
concentrations were used by these studies: 30–60 mM by Smith
et al. (1993) and 6 mM by Stramiello and Wagner (2010). In sup-
port of the differential effects of low and high doses of cocaine
on LTP, Thompson et al. (2005) showed that while lower cocaine
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concentrations (5–10 mM) enhanced hippocampal LTP, inhibi-
tion of LTP was observed with a higher concentration of cocaine
(30 mM). Also in line with these results, Wood et al. (2007) found
that an acute moderate dose of cocaine disrupted contextual and
cued fear conditioning, whereas a low dose of acute cocaine en-
hanced both types of learning. Given that, in the absence of toler-
ance to cocaine, it is likely that most first-time cocaine users
initially administer lower doses of cocaine, and therefore, they
are subject to both rewarding and procognitive effects, which
may underlie enhanced hippocampal plasticity that leads to mal-
adaptive drug-associated memories.

In addition to acute cocaine-induced enhancement of
hippocampal LTP, there is also evidence showing that acute co-
caine positively modulates the activation of the proteins within
the cell signaling cascades that support long-term memory for-
mation. For example, phosphorylation of extracellular signal-
regulated kinases -1 and -2 (ERK1/2), a protein required for both
hippocampus-dependent learning and hippocampal LTP (Goo-
ney et al. 2002), was elevated in the dorsal hippocampus following
cocaine CPP (Tropea et al. 2008). Similarly, phosphorylation of
hippocampal cAMP-response element binding protein (CREB), a
transcription factor that plays a major role in synaptic plasticity
and long-term memory formation (Abel and Lattal 2001; Trifilieff
et al. 2006), was increased following cocaine CPP (Tropea et al.
2008). In addition to ERK1/2 and CREB, cAMP-dependent protein
kinase (PKA) seems to be required for the formation and mainte-
nance of cocaine-context memories. For example, Cervo et al.
(1997) showed that post-training intracerebroventricular injec-
tions of a PKA inhibitor disrupted the consolidation of cocaine
CPP. These results suggest that within a limited dose range, acute
cocaine augments hippocampal plasticity and activity of cell
signaling cascades that support hippocampal LTP, which may
enhance the formation of the maladaptive drug-context memo-
ries. It is possible that augmented hippocampal function may re-
sult in drug-context-triggered cravings and drug seeking as initial
cocaine use turns into cocaine addiction with chronic cocaine
abuse.

Effects of chronic cocaine and cocaine withdrawal

on hippocampal function
In contrast to acute cocaine’s procognitive effects, chronic co-
caine users have been repeatedly shown to exhibit a variety of
neuropsychological deficits ranging from disrupted executive
function, visuoperception, and psychomotor function (Bolla

et al. 1999) to impairments of verbal
memory and attention (Mittenberg and
Motta 1993). These deficits were positive-
ly correlated with the severity of cocaine
addiction (Ardila et al. 1991; for review,
see Robbins et al. 2008). Accordingly,
chronic cocaine administration also
leads to impaired spatial learning in ro-
dents that were exposed to cocaine
during adulthood (Mendez et al. 2008)
or adolescence (Santucci et al. 2004;
Santucci 2008). Chronic cocaine-in-
duced learning deficits also seem to be
long-lasting as studies suggest that the
impairing effects of chronic cocaine ex-
posure persist during cocaine withdrawal
(Kelley et al. 2005) as long as 3 mo
(Mendez et al. 2008). These studies sug-
gest that chronic cocaine exposure may
result in a diminished ability to learn
new associations. This effect of chronic

cocaine use may be particularly problematic because inability to
change established drug-context associations or to learn new asso-
ciations that may counteract the maladaptive ones may facilitate
the maintenance of cocaine addiction. For example, exposure
therapy for addiction focuses on reversing learned drug-context
and drug-cue associations to reduce context or cue-triggered crav-
ing, drug seeking, and drug relapse (Rosenthal and Kutlu 2014).
Reduced ability to make new associations during chronic cocaine
use or cocaine withdrawal may disrupt cognitive flexibility and in-
crease the likelihood of relapse.

Importantly, reduced hippocampal function during chronic
cocaine use and cocaine withdrawal may be responsible for the de-
creased ability to form adaptive associations to counteract con-
text-drug memories as studies found that hippocampal function
was altered with chronic administration of cocaine (London
et al. 1990; Beveridge et al. 2006; Gu et al. 2010). For example, co-
caine administration produced increased BOLD signal in the hip-
pocampus of cocaine-dependent human subjects compared with
saline administration (Breiter et al. 1997), while the strength of
connectivity between the hippocampus and dorsomedial prefron-
tal cortex was decreased in chronic cocaine users (Gu et al. 2010).
Also, chronic cocaine self-administration resulted in reduced glu-
cose metabolism in the hippocampus in humans and nonhuman
primates (London et al. 1990; Beveridge et al. 2006). These results
suggest a central role for changes in the hippocampus in cocaine-
induced cognitive deficits.

However, in contrast to reduced hippocampus-dependent
learning during chronic cocaine and withdrawal, there is also
evidence showing that chronic in vivo cocaine administration
resulted in enhanced LTP (Thompson et al. 2002). Thompson
et al. (2004) found that prior chronic cocaine self-administration
resulted in enhanced hippocampal LTP in the CA1 subregion fol-
lowing 3 d of withdrawal but not following 30 d of withdrawal. In
line with these results, other studies found enhanced LTP 3 d after
chronic cocaine administration (Guan et al. 2009). Interestingly,
Thompson et al. (2004) also found decreased hippocampal LTP
100 d after chronic cocaine self-administration, which suggests
that chronic cocaine may have different short-term and long-term
effects on hippocampal plasticity. In line with the results of
Thompson et al. (2004) showing enhanced LTP during short-term
withdrawal, Valzachi et al. (2013) found that chronic cocaine ad-
ministration resulted in increased phosphorylated CREB levels in
the hippocampus following 12 d of withdrawal. Therefore, there
is a potential discrepancy between behavioral studies showing
disrupted hippocampal learning and memory (Melnick et al.

Table 1. Effects of cocaine on hippocampal LTP

Study Cocaine admin Dose Pathway Effect

Smith et al.
(1993)

Acute cocaine
(in vitro)

30–60 mM Schaffer collaterals
(CA1)

Decreased LTP

Stramiello and
Wagner (2010)

Acute cocaine
(in vitro)

6 mM Schaffer collaterals
(CA1)

Enhanced LTP

Thompson et al.
(2005)

Acute cocaine
(in vitro)

5–30 mM Schaffer collaterals
(CA1)

Enhanced LTP with lower
doses
Decreased LTP with a
higher dose

Thompson et al.
(2002)

Chronic cocaine
(in vitro)

15 mg/kg/
d × 5 d

Schaffer collaterals
(CA1)

Enhanced LTP

Thompson et al.
(2004)

Chronic cocaine
SA

0.5 mg/kg
FR1 × 15 d

Schaffer collaterals
(CA1)

Enhanced LTP with
short-term withdrawal
Decreased LTP with
long-term withdrawal

Guan et al.
(2009)

Chronic cocaine
i.p. injections

20 mg/
kg × 14 d

Schaffer collaterals
(CA1)

Enhanced LTP with
short-term withdrawal

(SA) self-administration; (i.p.) intraperitoneal.
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2001; Santucci et al. 2004; Mendez et al. 2008; Santucci et al.
2008) and electrophysiology studies showing enhanced LTP
with chronic cocaine administration (Thompson et al. 2002,
2004; Guan et al. 2009). These contradicting results might have
risen because of the fact that behavioral studies cited in this review
tested their subjects in long-term withdrawal between 5 wk and 4
mo. Importantly, Thompson et al. (2004) and Guan et al. (2009)
showed that chronic cocaine administration enhanced LTP in
short-term withdrawal (3 d), whereas disrupted LTP following
long-term withdrawal (100 d). In support of this hypothesis, Del
Olmo et al. (2007) found that chronic cocaine self-administration
enhanced spatial learning 3 h following the last cocaine infusion.
Thus, the dose of cocaine and the length of time from the last drug
administration seem to be major determinants of cocaine’s effects
on hippocampal learning and memory and may explain some of
the cognitive deficits exhibited by cocaine users. It is also impor-
tant to note that increased LTP does not necessarily mean in-
creased learning (Saucier and Cain 1995).

Overall, the studies cited clearly show that initially cocaine
enhances hippocampus-dependent learning and memory result-
ing in strong cocaine-context associations, which may lead to
drug-seeking behavior and chronic cocaine abuse. In turn, chron-
ic cocaine exposure alters hippocampus function and results in
hippocampal cognitive deficits during withdrawal, which may
contribute to impaired cognitive flexibility and inability to re-
verse cocaine-context associations, contributing to relapse.

Amphetamine

The effects of acute amphetamine on

hippocampus-dependent learning and memory
Racemic a-methylphenethylamine (amphetamine, also known
as speed) was first discovered by Barger and Dale in 1910 and later
synthesized and marketed under the brand name Benzedrine
to treat a variety of conditions such as narcolepsy, depression,
Parkinson’s disease, and pulmonary dysfunction (Heal et al.
2013). However, the euphoric effects of amphetamine were quick-
ly discovered and subsequently amphetamine has been abused
for its rewarding properties such as sensations of pleasure, self-
confidence, energy, and alertness (CDC 2007). Owing to these ef-
fects, millions of Benzedrine tablets, under the name of “Energy
tablets,” were given to the members of the American and British
military (Bett 1946) as well as Japanese soldiers during World
War II, and the release of the amphetamine stockpiles after the
war resulted in an amphetamine-dependency epidemic in Japan
(Masaki 1956). In the USA, early studies that provided a platform
for the prescription of amphetamine to reverse combat fatigue
largely ignored its addictive properties (Guttmann and Sargant
1937; Tidy 1938; Bett 1946), which resulted in a widespread pre-
scription of amphetamine-based medications and eventually am-
phetamine addiction peaked in mid-2000s (CDC 2007). Today
amphetamine dependence is a widespread problem (CDC 2007).
According to Substance Abuse and Mental Health Services Admin-
istration (SAMHSA 2005), 1.4 million Americans had used meth-
amphetamine, an N-methylated derivative of amphetamine, in
the last year. Moreover, the rate of amphetamine or methamphet-
amine abuse-related hospitalization more than tripled between
the years 1993 and 2003 (SAMHSA 2006a). Importantly, despite
its initial pleasurable effects, amphetamine has serious negative
health consequences with prolonged abuse. These effects include
physical symptoms such as decayed teeth, weight loss, skin le-
sions, stroke, and heart attack as well as mental symptoms such
as paranoia, hallucinations, anxiety, irritability, social isolation,
aggressiveness, and violence (CDC 2007).

Shortly after its initial release as a prescription drug in 1935,
procognitive effects of amphetamine (e.g., improved intelligence,
concentration, and intellectual performance) were reported in
humans (Guttmann and Sargant 1937; Tidy 1938). These initial
studies were later confirmed by studies showing enhanced mem-
ory consolidation (Soetens et al. 1993), memory recall (Zeeuws
and Soetens 2007), attention and psychomotor performance
(Johnson et al. 2000; Silber et al. 2006), information processing
(Halliday et al. 1994), logical reasoning (Johnson et al. 2000),
and working memory (Mattay et al. 2000) by amphetamine and
its derivatives such as dextroamphetamine in humans. Because
of its attention-improving properties amphetamine was used to
treat ADHD but then this treatment was replaced by drugs with
fewer psychoactive side effects (Wilens et al. 2008). Animal studies
also showed that, similar to other stimulants, acute amphetamine
and methamphetamine enhanced hippocampus-dependent
learning and memory in the T-maze (Ito and Canseliet 2010),
Morris water maze (Packard and McGaugh 1994; Brown et al.
2000; Cao et al. 2013), radial arm-maze (Strupp et al. 1991), and
avoidance conditioning (Doty and Doty 1966). However, these
procognitive effects were dose-dependent as higher doses of acute
amphetamine resulted in deficits in hippocampus-dependent
learning and memory (Blokland et al. 1998). Studies also showed
that amphetamine and methamphetamine produced significant
CPP (Carr et al. 1988; Bardo et al. 1999; Parker et al. 2004; Thorn
et al. 2012, Han et al. 2014) and self-administration (Lyness et al.
1979; Piazza et al. 1989, 1990, 1991; Krasnova et al. 2010;
McClung et al. 2010), which suggests that the rewarding effects
of amphetamine and methamphetamine facilitated the forma-
tion of drug-context associations. In line with acute amphet-
amine’s enhancing effects on hippocampus-dependent learning
and memory, hippocampal LTP was also increased by acute
amphetamine (Delanoy et al. 1983; Gold et al. 1984; Morimoto
et al. 1987) and methamphetamine administration (Heysieattalab
et al. 2016). Moreover, evidence suggests that acute metham-
phetamine-induced enhancement of hippocampus-dependent
learning as well as amphetamine CPP are dependent on the upre-
gulation of ERK1/-2 and CREB in the hippocampus (Gerdjikov
et al. 2004; Cao et al. 2013). Therefore, it is possible that enhanced
hippocampus-dependent learning and memory by acute amphet-
amine administration may drive the formation of drug/reward-
context associations by enhancing hippocampal plasticity. This
hypothesis is supported by the results showing that acute injec-
tions of amphetamine enhanced morphine CPP (Blaiss and Janak
2006) and conditioned approach to sucrose (Blaiss and Janak
2007). Together with studies showing that acute amphetamine
produced procognitive effects as well as enhanced hippocampal
plasticity, these results show that development of amphetamine-
dependence may be influenced by augmentation of drug-context
associations.

Effects of chronic amphetamine use

on hippocampal function
In spite of its acute procognitive effects, chronic use of am-
phetamine and methamphetamine has devastating effects on
cognition, including impaired memory, attention, cognitive flex-
ibility, cognitive inhibition, and decision making (Ornstein et al.
2000; Simon et al. 2000, 2001; Salo et al. 2002; for review, see
Nordahl et al. 2003). These cognitive deficits persist during am-
phetamine and methamphetamine withdrawal (Kalechstein
et al. 2002; Newton et al. 2004; Johanson et al. 2006). Similar to
results from human studies, animal studies also indicate cognitive
deficits in hippocampus-dependent spatial learning tasks such as
the spatial object recognition, T-maze and Morris water maze dur-
ing amphetamine (Mandillo et al. 2003) and methamphetamine
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(Simões et al. 2007; North et al. 2013; Reichel et al. 2014) with-
drawal. In addition, there is evidence showing that deficits in
the hippocampus-dependent learning and memory paralleled re-
ductions in hippocampal LTP induced by methamphetamine
withdrawal (Swant et al. 2010; North et al. 2013). These results
indicate that amphetamine withdrawal disrupts cognition, in-
cluding hippocampus-dependent learning and memory and asso-
ciated hippocampal plasticity. These cognitive problems may
underlie relapse to amphetamine use as amphetamine adminis-
tration may be seen as a way to self-medicate these deficits.

Overall, similar to other stimulants, when administered
acutely amphetamine has procognitive effects including en-
hanced hippocampus-dependent learning and memory. Acute
amphetamine’s procognitive properties may result in aug-
mentation of drug-context associations and contribute to the
development of amphetamine addiction. In contrast, withdrawal
of amphetamine following chronic use results in deficits in
hippocampus-dependent learning and memory. In addition to
the failure to reverse already established drug-context associa-
tions, relapse to amphetamine use may be motivated by attempts
to self-medicated for withdrawal-induced cognitive deficits.

Nicotine

Effects of acute, chronic, and withdrawal from chronic

nicotine on hippocampus-dependent learning and memory
Prolonged exposure to tobacco products, particularly cigarette
smoking, continues to be the leading cause of preventable prema-
ture death claiming more than 400,000 people’s lives in the USA
each year (20% of all deaths; Benowitz 2010; U.S. Department of
Health and Human Services 2014). Accordingly, active and pas-
sive tobacco use has been causally linked to deaths from cancer,
cardiovascular disease, and pulmonary disease (Sandler et al.
1985; Carbone 1992; McBride 1992; Sherman 1992). Although
nicotine, the main psychoactive component in tobacco, may
play less of a role in the development of these conditions com-
pared with other toxins in the tobacco extract, it is the main com-
ponent leading to addiction. Therefore, by causing repeated use
and prolonged exposure to toxins, nicotine should be considered
as the indirect cause of the smoking-related diseases and deaths
(Benowitz 2010).

An estimated 15%–19% of the U.S. population has been re-
ported to use nicotine products habitually (CDC 2012). Nicotine’s
rewarding effects seem to play a major role in the development of
nicotine dependence (Watkins et al. 2000). In humans, nicotine
results in euphoria, increased energy and arousal, and suppressed
anxiety (Pomerleau and Pomerleau 1985, 1992; Stolerman and
Jarvis 1995; Benowitz 1996). Accordingly, in animals, acute injec-
tions of nicotine leads to CPP (Fudala et al. 1985; Risinger and
Oakes 1995; Vastola et al. 2002; Grabus et al. 2006; Brielmaier
et al. 2008; Kutlu et al. 2015a). Similarly, there is also evidence
showing that smokers learn to associate nicotine’s effects with
specific contexts and cues (Dols et al. 2000, 2002; Thewissen
et al. 2005), suggesting humans and animals learn to associate nic-
otine’s rewarding effects with specific contextual cues. In addition
to its rewarding effects, acute nicotine has cognitive enhancing
properties in humans. Specifically, acute nicotine administration
enhances attention (Parrott and Craig 1992; Bates et al. 1995;
Hahn et al. 2007; Hong et al. 2011), learning and memory (Man-
gan and Golding 1983; Peeke and Peeke 1984; Warburton et al.
1986; Colrain et al. 1992), and information processing (Wesnes
and Warburton 1983; Provost and Woodward 1991; for review,
see Sherwood 1993). In agreement with human studies, there is
a great body of evidence suggesting that acute nicotine augments
hippocampus-dependent contextual and spatial learning and

memory while not affecting hippocampus-independent subtypes
of learning (e.g., cued learning) in rodents. For example, numer-
ous studies from both our group and other laboratories showed
that acute nicotine enhanced hippocampus-dependent contextu-
al and trace fear conditioning, but not cued fear conditioning
(Gould and Wehner 1999; Gould and Higgins 2003; Gould
2003a; Gould and Lommock 2003; Gould et al. 2004; Wehner
et al. 2004; Davis et al. 2006, 2007; Davis and Gould 2006, 2007;
Raybuck and Gould 2007; Gulick and Gould 2008; Kenney and
Gould 2008; Tian et al. 2011; Portugal et al. 2012a, b), as well as
spatial object recognition (Kenney et al. 2011), spatial learning
and memory in Morris water maze (Abdulla et al. 1996; Sharifza-
deh et al. 2005), and spatial working memory in radial arm
maze tasks (Levin and Torry 1996; Levin et al. 1997, 1998). It is
possible that the formation of nicotine-context associations
may benefit from these procognitive effects of acute nicotine.
That is, through promoting hippocampal plasticity, acute nico-
tine may enhance formation of drug-context associations and
promote future nicotine use evoked by contextual and environ-
mental cues. In support of this hypothesis, there is evidence show-
ing that contextual cues associated with nicotine reward reinstate
extinguished nicotine self-administration in rats (Diergaarde et al.
2008; Wing and Shoaib 2008). Therefore, these studies support
the possibility that acute nicotine-induced enhancement of
hippocampus-dependent learning and memory may contribute
to development of nicotine-dependence.

Once nicotine dependence is established, it is especially dif-
ficult to reverse habitual use of nicotine. There is evidence show-
ing that even though 80% of smokers express willingness to quit
(CDC 2002) and 40% of them attempt to quit (CDC 2005), only
3% of them successfully quit (Hughes et al. 2004). One of the
main contributors to this low rate of successful quitting is the neg-
ative symptoms experienced during nicotine withdrawal. Nega-
tive symptoms include irritability and restlessness, anxiety,
social problems, increased food consumption, constipation, and
craving for nicotine (Benowitz 2008). In addition to these general
symptoms, cognitive deficits such as difficulty concentrating
(Pomerleau et al. 2000), disrupted working memory (Jacobsen
et al. 2005; Mendrek et al. 2006), verbal memory problems (Jacob-
sen et al. 2005), increased response time (Snyder et al. 1989; Bell
et al. 1999), and problems in paired-associate learning (Kleinman
et al. 1973) were observed during nicotine withdrawal. In line
with these reports, animal studies also showed that while chronic
nicotine did not have any effect on hippocampus-dependent con-
textual and trace fear conditioning, nicotine withdrawal impaired
hippocampal learning and memory (Davis et al. 2005; Davis and
Gould 2009; Raybuck and Gould 2009; Gould et al. 2012, 2014a;
Portugal et al. 2012a, b; Wilkinson and Gould 2013). Overall, hu-
man and animal studies demonstrate hippocampus-dependent
learning and memory enhancement during initial nicotine expo-
sure and cognitive deficits during nicotine withdrawal. These re-
sults may suggest that initial nicotine exposure results in strong
nicotine-context associations that support drug-seeking behavior,
which may facilitate the transition into chronic nicotine use.
Chronic use leads to neuronal adaptations that produce tolerance
to the enhancing effects of nicotine and withdrawal deficits
in hippocampus learning (Wilkinson et al. 2013; Gould et al.
2014a). Importantly, the nicotine withdrawal deficits in learning
may increase the chance of relapse to avoid these negative symp-
toms. In line with this interpretation is the self-medication
hypothesis of addiction, which states that one of the major con-
tributors to addiction is the drive to reduce the negative symp-
toms that arise during drug withdrawal (Khantzian 1985). In
support, nicotine has been shown to alleviate cognitive deficits
in various mental disorders such as schizophrenia (Adler et al.
1993; for review, see Parikh et al. 2016) and attention deficit/
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hyperactivity disorder (ADHD, Potter and Newhouse 2008; Evans
and Drobes 2009; for review, see Kutlu et al. 2015b), two popula-
tions that show higher rates of smoking (38%–42% of ADHD pop-
ulation, Pomerleau et al. 1995; 80%–90% in schizophrenia,
George and Krystal 2000; de Leon and Diaz 2005). Also in sup-
port of the self-medication hypothesis, there is evidence show-
ing that cognitive deficits during nicotine withdrawal predict
future relapse to nicotine use (Rukstalis et al. 2005; Patterson
et al. 2010). Thus, increased relapse to nicotine use during with-
drawal may be a mechanism to self-medicate for withdrawal-
induced cognitive deficits akin to what occurs with the cognitive
impairments seen in mental disorders.

Modulation of hippocampal plasticity by nicotine
As the previous section explained, while acute nicotine enhances
hippocampus-dependent learning and memory, these processes
are disrupted during nicotine withdrawal. Evidence from electro-
physiology studies support these conclusions and suggest that al-
tered hippocampal plasticity by acute nicotine and withdrawal
from chronic nicotine is largely responsible for these effects. For
example, Alkondon et al. (2003) found that nicotinic acetylcho-
line receptor (nAChR) agonists lead to AMPA and NMDA receptor-
mediated excitatory postsynaptic currents (EPSCs) in CA1 subre-
gion of the hippocampus. Moreover, several studies showed that
hippocampal nAChR activation by nicotine and other nAChR
agonists resulted in enhanced hippocampal LTP (Fujii and
Sumikawa 2000; Welsby et al. 2006, 2007; Jia et al. 2010); that
is, strengthening of weak stimulation-induced short-term LTP
(Fujii et al. 1999; Matsuyama et al. 2000; Matsuyama and Matsu-
moto 2003) as well as direct induction of LTP (He et al. 2000; Ma-
tsuyama et al. 2000; Matsuyama and Matsumoto 2003). Moreover,
antagonism of nAChRs blocked learning-induced CA1 LTP (Mit-
sushima et al. 2012). In addition to the effects of acute administra-
tion of nicotine and other direct nAChR agonists, hippocampal
plasticity has been shown to be altered during nicotine withdraw-
al. For example, Yamazaki et al. (2006) found that the lowered
threshold for hippocampal LTP induction during nicotine admin-
istration was reversed during withdrawal. Therefore, the alter-
ations of hippocampal LTP are in parallel with behavioral effects
of acute nicotine and nicotine withdrawal on hippocampus-
dependent learning. Thus, altered LTP may underlie the develop-
ment of nicotine addiction through formation of drug-context as-
sociations during early use and the development of cognitive
deficits during chronic use and withdrawal.

In further support of nicotine modulating synaptic plasticity,
nicotine can alter key cell signaling kinases and transcription
factors known to modulate hippocampal learning and plasticity
such as PKA, ERK1/2, and CREB (for review, see Kutlu and
Gould 2016). For example, Gould et al. (2014b) showed that in-
fusions of a subthreshold dose of the PKA inhibitor PKI 14–22
amide into the dorsal hippocampus reversed enhancement of
contextual fear conditioning by acute nicotine. Similarly, the
same study also showed a temporal shift in learning-related dorsal
hippocampal PKA peak activation as a result of systemic acute nic-
otine administration. There is also evidence showing that acute
nicotine administration increased ERK1/-2 phosphorylation
(Nakayama et al. 2001) and this effect was reversed by PKA inhib-
itors (Dajas-Bailador et al. 2002), suggesting that acute nicotine-
induced alterations of PKA translates into changes in downstream
MAPK signaling. Finally, nicotine also modulates the activation
of the transcription factor CREB in the hippocampus. For exam-
ple, acute nicotine enhanced CREB activation (Nakayama et al.
2001; Hu et al. 2002). CREB activity was also enhanced during nic-
otine CPP (Pascual et al. 2009) and acute nicotine-induced en-
hancement of contextual fear conditioning (Kenney et al. 2012),

suggesting that CREB may be critical for the formation of drug-
context memories. Overall, the above-mentioned studies provide
strong evidence indicating that nicotine’s control over hippocam-
pal cell signaling cascades and consequently hippocampal plastic-
ity may be an underlying factor for enhancement of drug-context
memories by acute nicotine and cognitive deficits observed dur-
ing nicotine withdrawal.

In summary, the results of the cited studies suggest that ini-
tially nicotine enhances drug-context associations, which leads
to the development of sustained nicotine use and consequently
nicotine dependence. While chronic nicotine does not seem to al-
ter hippocampus-dependent learning and memory, these process-
es are impaired during nicotine withdrawal. This effect also seems
to contribute to maintenance of nicotine dependence as smokers
may self-medicate for withdrawal-induced cognitive deficits by re-
turning to nicotine use.

Alcohol

The effects of acute ethanol on hippocampus-dependent

learning and memory
Alcoholism is a complex behavioral and physiological phenome-
non in which the abuser progressively loses control over alcohol
consumption despite its negative health consequences (Koob
et al. 1998). Indeed, severe health problems have been associated
with alcohol overconsumption, including medical conditions
ranging from cardiovascular and psychiatric diseases to certain
cancers (e.g., mouth, liver, and esophageal cancers), and liver cir-
rhosis (Rehm et al. 2003). In its 2014 “Global status report on al-
cohol and health” the World Health Organization (WHO) stated
that alcohol abuse is linked to more than 200 health problems
and responsible for �3.3 million deaths world-wide every year
(5.9% of all deaths), which establishes alcohol as one of the
most harmful drugs of abuse to human health.

In addition to the overall health problems caused by alcohol
abuse, alcoholism is also known to cause cognitive impairments
(Ryan and Butters 1983; see Stavro et al. 2013 for a meta-analysis)
with over 50% of alcoholics reporting memory and cognition
problems (Vetreno et al. 2011). The results from laboratory animal
studies also demonstrate alcohol’s impairing effects on cognition.
Specifically, acute ethanol administration impaired hippocam-
pus-dependent learning and memory in the Morris Water Maze
(Markwiese et al. 1998; Shimizu et al. 1998; Matthews et al.
2002; Berry and Matthews 2004), the radial arm maze (Matthews
et al. 1995, 1999; Vandergriff et al. 1995; White et al. 1997, 1998),
the sandbox maze (Rajendran and Spear 2004), and contextual
fear conditioning (see Table 2 for the summary of acute ethanol’s
effects on hippocampus-dependent learning and memory) (Melia
et al. 1996; Gould 2003b; Gould and Lommock 2003; Wehner
et al. 2004; Gulick and Gould 2007, 2008).

In contrast, there is evidence showing that light to moderate
alcohol intake (1–2 drinks per day) may decrease the risk of car-
diovascular mortality, coronary heart disease, and stroke in hu-
mans (Fagrell et al. 1999; O’Keefe et al. 2014), which suggests
that lower doses of ethanol may have some beneficial effects on
human health. In addition, there is evidence showing that unlike
higher doses of ethanol, lower doses are required for ethanol-
induced dopaminergic reward signaling (Gessa et al. 1985), suc-
cessful ethanol self-administration (Sinden and Le Magnen
1982) and ethanol CPP (Bienkowski et al. 1996; Cunningham
and Henderson 2000). In fact, higher doses resulted in decreased
ethanol self-administration and conditioned place aversion
(CPA; Cunningham and Henderson 2000). Furthermore, Sinden
and Le Magnen (1982) showed that low-dose ethanol self-
administration linearly increased during 5 d of training whereas
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self-administration of a high-dose ethanol decreased signifi-
cantly below saline levels. In line with these observations,
Gulick and Gould (2007) found that while higher doses of acute
ethanol resulted in deficits in both hippocampus-dependent
contextual and hippocampus-independent cued fear condition-
ing, lower doses of ethanol enhanced both types of learning.
This report is critical in terms of understanding how alcohol-
context and alcohol-cue associations are formed following initial
alcohol consumption. That is, Gulick and Gould’s (2007) results
suggest that lower doses of ethanol may enhance the forma-
tion of ethanol-context/cue associations initially, which may
facilitate future ethanol intake. The data showing sustained self-
administration and CPP with lower doses and decreased self-
administration and CPA with higher doses of ethanol are also
in support of this hypothesis. Therefore, these results suggest
that a lower dose of ethanol facilitates maladaptive ethanol-
context associations by enhancing reward processes and contex-
tual and cued learning necessary for these maladaptive associa-
tions to occur.

Effects of prolonged alcohol exposure on hippocampal

function
As described earlier, both rewarding and procognitive effects of
initial alcohol exposure may predict increased rates of subsequent
alcohol intake through enhanced drug-context learning. In addi-
tion to possible enhancement of hippocampus-dependent learn-
ing and memory with low doses of ethanol, studies also showed
that prolonged ethanol consumption uniformly resulted in
hippocampus-dependent spatial learning deficits (Bond and Di
Giusto 1976; Beatty et al. 1984; Ehrlich and Humpel 2012), which
were shown to be irreversible in some cases (Cippitelli et al. 2010).
Binge ethanol exposure also results in necrotic cell death and
neurodegeneration in the hippocampus (Obernier et al. 2002;
Hamelink et al. 2005). Moreover, evidence from studies examin-
ing the effects of ethanol on hippocampal plasticity suggests
that chronic ethanol inhibits hippocampal LTP (Durand and
Carlen 1984; Tremwel and Hunter 1994; Roberto et al. 2002,
2003), which may underlie chronic ethanol-induced deficits in
hippocampus-dependent learning and memory. Ethanol inhibi-
tion of LTP may result from decreased excitability of hippocampal
neurons due to blockage of NMDA receptors, specifically NR1/
NR2A or NR1/NR2B subtypes (Hoffman et al. 1989; Lovinger
et al. 1989; Schummers and Browning 2001; Izumi et al. 2005;
for review, see Allgaier 2002) as well as activation of inhibitory
GABAA receptors (Allan and Harris 1986; Aguayo 1990; Reynolds
et al. 1992; Schummers and Browning 2001). In addition to alter-
ations of NMDA and GABA receptor function in the hippocam-
pus, ethanol-induced suppression of hippocampal LTP has been
associated with the inhibition of MAPK signaling (Sanna et al.
2002; Roberto et al. 2003; Chandler and Sutton 2005; Wang
et al. 2012). Roberto et al. (2003) showed that following chronic
intermittent ethanol treatment, both LTP and ERK1/2 activation
were reduced in the hippocampus. Similarly, multiple studies
found that ERK1/-2 phosphorylation was reduced in the hippo-
campus after chronic ethanol administration, whereas this effect
was reversed during ethanol withdrawal and occurred again dur-
ing ethanol reexposure (Sanna et al. 2002; Chandler and Sutton
2005; Wang et al. 2012). Moreover, CREB phosphorylation in
the hippocampus was also inhibited following chronic ethanol
exposure while ethanol withdrawal enhanced hippocampal
CREB (Bison and Crews 2003). The ethanol-induced changes in
MAPK-CREB pathway are crucial to understanding the molecular
mechanisms underlying the hippocampal deficits during chronic
ethanol exposure because numerous studies have shown that ac-
tivation of this cell signaling pathway is necessary for long-term

memory formation (e.g., Atkins et al. 1998; Vianna et al. 2000)
and LTP (e.g., Winder et al. 1999; Kelleher et al. 2004; for review,
see Kutlu and Gould 2016). Overall, these studies show that
chronic ethanol can inhibit cell signaling cascades involved in
learning through activation of GABAergic receptors and blockage
of NMDA receptors in the hippocampus.

Evidence from human studies seems to be in agreement with
animal studies showing chronic ethanol-induced cognitive im-
pairments and disrupted hippocampal function. For example,
impairments in learning and memory (Ryan and Butters 1983;
Vetreno et al. 2011), attention and executive function (Loeber
et al. 2009), and abstraction (Klisz and Parsons 1977; for review,
see Bates et al. 2002) were reported after chronic alcohol use.
These cognitive deficits also persisted during abstinence (Fein
et al. 1990; Stavro et al. 2013). These learning and memory prob-
lems may contribute to relapse to alcohol use and maintenance of
alcohol addiction as individuals with withdrawal-induced cogni-
tive deficits attempt to self-medicate.

In line with chronic ethanol’s impairing effects on cognition
is a condition known as Wernicke–Korsakoff syndrome (WKS),
which results from a prolonged alcohol exposure-induced thia-
mine deficiency. WKS is characterized by gradual impairments
in memory function that spread into other cognitive domains
as chronic alcohol use is maintained (Ryan et al. 1980; Cermak
et al. 1988; for review, see Isenberg-Grzeda et al. 2012). Thus,
WKS is associated with myriad of cognitive deficits such as impair-
ment in verbal processing (Cermak et al. 1973, 1974; Oscar-
Berman et al. 2004), discrimination learning (Jones et al. 1975),
decision making (Brand et al. 2005), and spatial working memory
(Joyce and Robbins 1991). WKS patients exhibited extensive dam-
age to the hippocampus that was linked to the memory deficits
(Sullivan and Marsh 2003; Caulo et al. 2005; Sullivan and
Pfefferbaum 2009). Specifically, hippocampal volume in WKS pa-
tients was greatly reduced to a level comparable to patients with
Alzheimer’s disease (Sullivan and Marsh 2003). Moreover, an
fMRI study showed that the hippocampal activity detected in con-
trols during memory encoding and recognition was absent in the
patients with WKS (Caulo et al. 2005). Results from WKS patients
clearly indicate that prolonged alcohol exposure has deleterious
effects on hippocampus function and morphology, which may
be the source of hippocampus-dependent learning and memory
deficits. Therefore, ethanol-induced neural damage and hippo-
campus-dependent learning deficits may contribute to the nega-
tive symptoms of alcoholism.

In conclusion, lower doses of acute ethanol enhance both
hippocampus-dependent contextual and hippocampus-indepen-
dent cued learning while higher doses of ethanol disrupt both
types of learning. Nevertheless, hippocampus-dependent learn-
ing may be especially sensitive to the effects of acute ethanol
because numerous studies suggest that acute ethanol alters hip-
pocampal function. In contrast, chronic ethanol’s detrimental
effects on hippocampus-dependent learning and hippocampal
function are relatively ubiquitous and one-sided. That is, chronic
ethanol exposure alters hippocampal anatomy, disrupts hippo-
campal plasticity, and changes hippocampal cell signaling lead-
ing to impairments in hippocampus-dependent learning. These
effects may contribute to the cognitive deficits that characterize
ethanol-related syndromes such as WKS. Overall, given that acute
ethanol enhances and chronic ethanol disrupts hippocampus-
dependent learning, it is possible that initially learned drug-
context memories are enhanced by acute ethanol and remain
relatively unaltered during chronic ethanol use due to an inability
to reverse established ethanol-context memories. This hindered
ability to update drug-context association with new information
may contribute to the persistence of and relapse to ethanol
addiction.
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Opiates

The effects of acute and chronic opiate exposure on

hippocampus-dependent learning and memory

Opiates are a class of psychoactive compounds naturally de-
rived from the opium poppy or synthetically produced that
include morphine, diacetylmorphine (diamorphine or heroin),
codeine, oxycodone, and methadone. Opiates such as oxyco-
done are legally prescribed to patients for pain management.
Importantly, legally prescribed opiates lose their analgesic effects
as tolerance develops, which, in some cases, results in drug depen-
dence as patients try to achieve analgesic potency or avoid with-
drawal symptoms. Consequently, although the prevalence of
opiate addiction in the U.S. population is �8% (SAMHSA 2006b),
opiate prescription use in chronic pain patients can be as high
as 90% (Chabal et al. 1997; Manchikanti et al. 2004) and up to
16% of these patients have been documented to abuse prescribed
opiates (Manchikanti et al. 2006). This suggests that opiate addic-
tion is a potential risk to widespread segments of the population.

In addition to its analgesic effects, opiate-induced euphoria
is the leading cause for opiate-seeking in nontherapeutic addicts
but not in therapeutic addicts who abuse opiates for its analgesic
potency (McAuliffe et al. 1985). However, as Koob et al. (1989)
hypothesized, opiates’ positive effects are counterbalanced by
severe negative consequences of opiate withdrawal such as aches
and pain, agitation, anxiety, muscle cramps, nausea, and sleep
disturbances (Alexander and Hadaway 1982; Jaffe 1990; West
and Gossop 1994). Accordingly, while laboratory rodents learn
CPP for morphine (Bardo et al. 1984, 1995; Tzschentke and
Schmidt 1995; Milekic et al. 2006), heroin (Bozarth 1987; Bardo
et al. 1995), methadone (Steinpreis et al. 1996), and oxycodone
(Niikura et al. 2013), they also show CPA to the contexts asso-
ciated with spontaneous withdrawal (Myers and Carlezon 2010)
and precipitated withdrawal induced by opiate receptor anta-
gonists such as naloxone (Jin et al. 2005; Stinus et al. 2005; Li
et al. 2007; Manwell et al. 2009). It is important to note that devel-
opment of CPA to withdrawal symptoms is in line with the fact
that opiate withdrawal symptoms are usually considered more
severe than symptoms associated with stimulant withdrawal
(e.g., amphetamine and cocaine). Thus, it is possible that avoid-
ance of withdrawal plays an especially important role in opiate
dependence.

Similar to cocaine and ethanol, opiate abuse also correlates
with long-lasting cognitive deficits in humans (Rogers et al.
1999; Darke et al. 2000; Ornstein et al. 2000; Curran et al. 2001;
Davis et al. 2002). Abusers of morphine, heroin, and methadone
show impairments in episodic memory (Curran et al. 2001), visual
memory, verbal memory, information processing, problem solv-
ing (Darke et al. 2000), word fluency and attention (Davis et al.
2002), and spatial tactile and verbal memory (Hill and Mikhael
1979; Ornstein et al. 2000). In addition to the effects of chronic
abuse of opiates, Curran et al. (2001) showed that a single dose
of methadone resulted in impaired episodic memory in a popu-
lation tolerant to opiates. Although several studies have suggested
that opiate abuse-related cognitive decline may be linked to com-
promised frontal lobe function (Robinson and Kolb 1999;
Ornstein et al. 2000), studies examining the effects of opiate expo-
sure on hippocampus morphology and hippocampus-dependent
learning and memory suggested that some of the cognitive defi-
cits observed in opiate abusers may be related to altered hip-
pocampal function. For example, opiates have been shown to
inhibit adult neurogenesis in the hippocampus (Eisch et al.
2000) and alter proteins associated with hippocampal synaptic
density such as clathrin (Morón et al. 2007). Moreover, acute mor-
phine has also been shown to disrupt spatial memory retention in

Morris water maze (Farahmandfar et al. 2010) and Y-maze (Ma
et al. 2007), another hippocampus-dependent task (Retailleau
et al. 2013). There is also evidence showing that chronic heroin
and morphine impair hippocampus-dependent spatial learning
in Morris water maze (Means et al. 1996; Tramullas et al. 2008), ra-
dial arm maze and Y-maze (Spain and Newsom 1991). Moreover,
the impairing effects of chronic administration of opiates on spa-
tial memory have been linked to an increase in proteins associated
with apoptosis such as Fas, FasL, and Bad in the cortex and hip-
pocampus (Tramullas et al. 2008), which suggests that chronic
opiates may interfere with hippocampus-dependent learning
through increased hippocampal neurotoxicity and cell-death.
Finally, in addition to their effects on hippocampus-dependent
learning and hippocampal function, both acute (Ito et al. 2001)
and chronic opiate exposure (Ito et al. 2001; Salmanzadeh et al.
2003) have been shown to disrupt hippocampal plasticity in the
form of decreased hippocampal LTP. These results show that
both acute and chronic opiate administration result in deficits
in hippocampus-dependent learning and memory and, therefore,
it is difficult to explain sustained opiate use by enhanced drug-
context memories in this case as there is no evidence suggesting
that acute administration of opiates may enhance hippocampus-
dependent learning and memory. Nevertheless, studies showing
that laboratory rodents successfully learn CPP to opiates suggest
that normal drug-context learning occurs through the reinforcing
effects of the opiates.

Opiate withdrawal-induced enhancement

of drug-context associations
Opiates may be different from the other drugs of abuse reviewed
here as low doses of opiates do not enhance memory; instead, opi-
ate withdrawal may alter hippocampal function contributing to
formation of memories linking the aversive effects of withdrawal
and withdrawal context. As mentioned, opiate withdrawal is often
more severe than stimulant withdrawal (Alexander and Hadaway
1982; Jaffe 1990; West and Gossop 1994). Earlier models of opiate
addiction, such as Wikler’s (1948), proposed that avoidance of
withdrawal symptoms is a major motivator for continued drug
use. Also, latter models followed Wikler’s hypothesis by describ-
ing opiate addiction as a balance between positive (reward) and
negative (withdrawal) reinforcers (Koob et al. 1989). In line with
these models, rodents learn to avoid contexts paired with sponta-
neous (Myers and Carlezon 2010) or opioid antagonist precipitat-
ed opiate withdrawal (Jin et al. 2005; Stinus et al. 2005; Li et al.
2007; Manwell et al. 2009). Human studies also report condi-
tioned withdrawal symptoms to specific contexts (O’Brien et al.
1977; Childress et al. 1986; McLellan et al. 1986). For example,
O’Brien et al. (1977) precipitated unconditioned withdrawal
symptoms such as tearing, yawning, decreased skin temperature,
increased heart rate, and rhinorrhea by using naloxone injections
in a methadone-dependent group. These withdrawal symptoms
occurred in a sound-attenuated room in the presence of a specific
background music and odor. Conditioned withdrawal symptoms
were tested following saline injections. The results of this study
showed that participants exhibited strong conditioned withdraw-
al symptoms to the withdrawal context in the absence of nalox-
one. Moreover, there is qualitative evidence suggesting that
contexts associated with withdrawal increased drug craving in
opiate addicts (Wikler 1973). These results suggest that human
opiate addicts also learn conditioned place aversion to the with-
drawal context, which may contribute to future use of opiates in
attempts to self-medicate to reduce negative symptoms associated
with a withdrawal context.

Interestingly, opiate withdrawal is linked to normalization
and enhancement of hippocampus-dependent learning and
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memory. For example, studies showed that while short-term
withdrawal disrupted performance in the Y-maze (Ma et al.
2007) and Morris water maze (Dougherty et al. 1996), long-term
withdrawal and naloxone-precipitated withdrawal reversed
chronic opiate-induced impairments in these tasks (Dougherty
et al. 1996; Li et al. 2001; Ma et al. 2007). Furthermore, there
are data showing that spontaneous withdrawal from chronic
morphine enhanced the acquisition of cocaine-self admin-
istration (He and Grasing 2004), suggesting that drug-context
learning may be enhanced during opiate withdrawal. More di-
rect evidence for enhancement of future drug seeking as a result
of associations between withdrawal symptoms and withdrawal
context came from Kenny et al. (2006) who showed that as-
sociations between contextual cues and naloxone-induced
precipitated withdrawal symptoms enhanced heroin self-admin-
istration in heroin-dependent rats. These studies indicate that
hippocampus-dependent drug withdrawal-context associations
may reinforce future drug use to avoid negative withdrawal
symptoms.

Studies examining hippocampal plasticity are in agreement
with the view of enhanced opiate withdrawal-related memories.
For example, Mansouri et al. (1997) found that hippocampal
LTP was increased during withdrawal following 20 d of chronic
morphine treatment via drinking water. Similarly, Ito et al.
(2001) showed that hippocampal LTP was attenuated following
acute (1 h) intracerebroventricular morphine administration via
osmotic minipumps whereas it was enhanced when tested in
withdrawal following 72 h of chronic morphine administration
via the same route. This effect was reversed when the slices were
treated with morphine, suggesting reexposure to morphine fol-
lowing withdrawal reversed the withdrawal-induced enhance-
ment of hippocampal plasticity. Similarly, Salmanzadeh et al.
(2003) showed that while LTP was reduced in hippocampal slices
treated with morphine following chronic morphine administra-
tion via drinking water, treatment with artificial cerebrospinal flu-
id (ACSF, spontaneous withdrawal) or naloxone (precipitated
withdrawal) reversed the chronic morphine-induced impair-
ments in hippocampal LTP. There was also another study showing
that morphine withdrawal following repeated injections of mor-
phine reduced hippocampal LTP (Pu et al. 2002). However, dis-
crepancies between chronic morphine administration regimens
(continuous vs. intermittent) employed by these studies make it
difficult to compare results. Still, it is possible that continuous ad-
ministration of opiates via osmotic mini-pumps or drinking water
may mimic prolonged opiate abuse better than short-term inter-
mittent injections. Finally, there is evidence showing that hippo-
campal ERK1/-2 phosphorylation is enhanced during heroin
withdrawal (Edwards et al. 2009), which indicates upregulated
MAPK signaling may underlie opiate-induced enhancement of
hippocampal plasticity. In summary, in contrast to acute and
chronic opiate administration, converging evidence from multi-
ple studies suggests that hippocampal plasticity may be enhanced
during opiate withdrawal.

Overall, the studies reviewed here suggest a potential contrib-
uting factor for sustained opiate abuse. That is, strong memories
are formed about the rewarding effects of opiates, as reflected by
strong CPP, whereas the association between aversive withdrawal
symptoms and the context is augmented by enhanced hippo-
campus-dependent learning and plasticity during withdrawal
from chronic opiate administration. Thus, the withdrawal-associ-
ated context may produce a strong drive for self-medication in an
attempt to ameliorate severe context-evoked withdrawal symp-
toms, which could result in relapse to opiate use and continued ad-
diction. This effect may be dependent on the enhancement of
hippocampal LTP and phosphorylation of cell signaling kinases
critical for hippocampal plasticity such as MAPKs.

Cannabis

The effects of cannabis on hippocampus-dependent

learning and memory

Cannabis is a flowering plant that has long been used for the pro-
duction of hemp-based goods (e.g., hemp oil and hemp fiber) and
medicinal purposes (Hillig 2005). Some subspecies of cannabis
that are selectively bred for a high yield of D9-tetrahydrocannab-
inol (THC), the main psychoactive constituent in the cannabis,
are used in recreational drugs such as hashish and marijuana.
Cannabis use currently receives increasing amount of attention
in the USA as both medicinal and recreational marijuana are legal-
ized or decriminalized in more than 20 states. In addition to the
discussions on legalization of cannabis products, with 40% of
the population having used marijuana at least once in their life-
time and �23% current users, the prevalence of marijuana use
is well-above cocaine, heroin, methamphetamine, inhalant
abuse; matching cigarette smoking and alcohol use (SAMHSA
2014). Although usually perceived as a milder form of drug, like
other drugs of abuse, short-term and long-term marijuana use
has been linked to adverse health effects such as anxiety, psycho-
sis, pulmonary problems as well as cognitive problems with pro-
longed use (Hall and Degenhardt 2009; Volkow et al. 2014).
However, marijuana users also self-report positive effects of can-
nabis, including relaxation, analgesia, happiness, creativity, social
benefits, and improved sleep (Goode 1970; Berke and Hernton
1974; Green et al. 2003). In line with the positive emotional ef-
fects of cannabis, THC-induced CPP (Valjent and Maldonado
2000; Braida et al. 2004; Ji et al. 2006; Le Foll et al. 2006) and
THC self-administration (Takahashi and Singer 1979; Justinova
et al. 2003; Braida et al. 2004) have been shown in laboratory an-
imals. In these regards, cannabis exhibits similar properties with
other drugs of abuse, namely rewarding effects with initial use.
However, like opiates and unlike ethanol, cocaine, amphetamine,
and nicotine, acute administration of THC and cannabidiol have
been shown to disrupt hippocampus-dependent spatial learning
in the Morris water maze and radial arm maze (Lichtman et al.
1995; Lichtman and Martin 1996; Da Silva and Takahashi 2002;
Cha et al. 2007; Niyuhire et al. 2007) as well as contextual fear
conditioning (Lemos et al. 2010; Stern et al. 2012). In line with
the animal studies, human studies also suggest that acute canna-
binoids result in impaired memory (Tinklenberg et al. 1970;
Ferraro 1980; for review, see Ranganathan and D’Souza 2006).
Therefore, in the case of cannabis, drug-context associations are
formed in spite of hippocampal learning difficulties associated
with cannabis use.

Cannabis dependence also results in a withdrawal syndrome
during abstinence, which is characterized by heightened anxiety,
irritability, negative mood, restlessness, shakiness, sleeping diffi-
culty, stomach pain, strange dreams, sweating, and weight loss
(Kouri and Pope 2000; Budney et al. 2003; for review, see
Budney and Hughes 2006). These symptoms have been shown
to be reversed by reexposure to THC (Budney et al. 2007).
Comparative studies found that nicotine and cannabis withdraw-
al syndromes share similar negative symptoms (Vandrey et al.
2005, 2008; Budney et al. 2008). Moreover, as shown by self-report
studies, the majority of cannabis users indicated that negative
withdrawal symptoms were the major reason for their inability
to quit and they attempted to self-medicate these symptoms,
which usually resulted in relapse to cannabis use (Budney et al.
1998, 1999; Crowley et al. 1998; Copeland et al. 2001; Coffey
et al. 2002; Stephens et al. 2002; Vandrey et al. 2005; Copersino
et al. 2006). Also similar to nicotine withdrawal, marijuana users
show cognitive deficits during abstinence from cannabis such as
impaired mathematical skills, disrupted verbal expression, altered

Effects of drugs of abuse on hippocampal plasticity

www.learnmem.org 524 Learning & Memory

 Cold Spring Harbor Laboratory Press on August 25, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


encoding and retrieval of verbal memories, attentional problems,
and executive function deficits (Block and Ghoneim 1993;
Solowij 1995; Pope and Yurgelun-Todd 1996). There is evidence
showing that rats undergoing THC withdrawal show deficits
in hippocampus-dependent spatial learning (Wise et al. 2011).
Overall, these studies suggest that both acute administration
and abstinence from cannabis result in difficulties in cognition.
Therefore, in line with self-medication hypothesis, it is possible
that while hippocampus-dependent memory enhancement seen
with nicotine is not apparent for cannabis, relapse to cannabis
use due to withdrawal-induced cognitive and emotional deficits
is a possible contributing factor for the maintenance of cannabis
addiction.

Alterations in hippocampal plasticity by cannabinoids
Disruption of hippocampus-dependent learning as a result of
acute cannabis use may result from deficits in hippocampal plas-
ticity. For example, acute THC reduced the amplitude of both
spontaneous and conditioned stimulus evoked potentials in the
hippocampus (Campbell et al. 1986a,b). Moreover, THC eliminat-
ed the firing of the neurons in the CA1 subregion of the hippo-
campus induced by delayed match-to-sample task performance
(Heyser et al. 1993). Furthermore, like THC, acute cannabinoid re-
ceptor agonists (e.g., WIN-55,212-2 and CP 55,940) also disrupted
spatial memory in rats (Lichtman et al. 1995) and reduced hip-
pocampal LTP (Nowicky et al. 1987; Collins et al. 1994, 1995;
Terranova et al. 1995; Puighermanal et al. 2009; for review, see
Sullivan 2000). For example, Puighermanal et al. (2009) showed
that cannabinoid receptor CB1 activation impaired hippocampal
LTP and this effect was associated with amnesic effects of acute
THC in a hippocampus-dependent context recognition task.
Moreover, enhanced hippocampal plasticity has been document-
ed in mice lacking CB1 receptors (Bohme et al. 1999). In line with
a modulatory role of CB1 receptors in hippocampal plasticity, CB1
activation has been shown to inhibit glutamatergic synapses in
the hippocampus (Takahashi and Castillo 2006), indicating a neg-
ative regulation of NMDAR-dependent long-term memory forma-
tion by CB1 receptors. Although a majority of studies examining
the effects of acute cannabinoids on hippocampal plasticity
reported impaired hippocampal LTP, there is also evidence for dis-
ruption of LTP during withdrawal following chronic THC admin-
istration (Hoffman et al. 2007). Specifically, Hoffman et al. (2007)
found that withdrawal following 3 or 7 d of chronic THC admin-
istration, but not following 1 d of administration, resulted in de-
creased hippocampal LTP 24 h after the last injection. Similarly,
Fan et al. (2010) showed that following 7 d of repeated admini-
stration of THC, hippocampal LTP as well as phosphorylation
of hippocampal CREB were attenuated during withdrawal and
these effects were reversed by inhibition or deletion of hippocam-
pal CB1 receptors. However, human chronic marijuana smokers
have been shown to exhibit downregulated CB1 receptors in a va-
riety of brain regions including the hippocampus (Hirvonen et al.
2012). This result seems to be conflicting with studies showing im-
proved hippocampal plasticity with deletion or inhibition of CB1
receptors. The downregulation does not speak to the functional
state of the receptors and thus, it is possible that these receptors
may be more responsive to endocannabinoids, which may result
in increased efficiency of the endocannabinoid system compared
with systems where CB1 receptors are inhibited or completely ab-
sent. Thus, these studies suggest that both acute and withdrawal
from chronic THC disrupted hippocampal LTP and these effects
were associated with CB1 receptor activation. Given the apparent
parallels between impairments in hippocampus-dependent learn-
ing and memory and disrupted hippocampal LTP, it is likely that
disrupted hippocampal plasticity may underlie the hippocampus-

dependent learning and memory deficits observed following
acute cannabinoid agonism and withdrawal from chronic canna-
binoid administration.

Overall, the studies cited here clearly show that both acute
administration of THC and THC withdrawal lead to cognitive
deficits and these effects are mediated by CB1 receptor-mediated
disruption of hippocampal plasticity. Given that removal of cog-
nitive deficits exhibited by chronic marijuana smokers is one of
the major motivators for relapse to smoke marijuana (Budney
et al. 1998, 1999; Crowley et al. 1998; Copeland et al. 2001; Coffey
et al. 2002; Stephens et al. 2002; Vandrey et al. 2005; Copersino
et al. 2006), it is possible that hippocampal cognitive deficits trig-
ger a self-medication response and contributes to maintenance of
cannabis addiction.

Conclusion

In summary, the studies reviewed here provide evidence for the
involvement of hippocampus-dependent learning and memory
as well as hippocampal plasticity in development and mainte-
nance of addiction. Specifically, acute administration of stimu-
lants such as cocaine, nicotine, and amphetamine, as well as
alcohol enhances hippocampus-dependent learning and memo-
ry. It is possible that this augments drug-context associations
and contributes to future drug use. On the other hand, opiates
and cannabis seem to disrupt hippocampus-dependent learning
and memory following acute administration. Nevertheless, both
opiates and cannabis produce strong CPP, suggesting that success-
ful drug-context associations are formed regardless. In addition to
the enhancement of drug-context associations during acute ad-
ministration of these drugs, all drugs of abuse reviewed here ex-
cept opiates produce strong deficits in hippocampus-dependent
learning and memory and attenuated hippocampal plasticity dur-
ing withdrawal, which may motivate attempts to self-medicate
resulting in relapse and maintenance of drug use. In the case of
opiates, unlike other drugs of abuse, withdrawal leads to en-
hanced hippocampus-dependent learning and memory, which
may facilitate the development of context-evoked withdrawal
symptoms that could facilitate relapse. Overall, human and labo-
ratory animal studies suggest a significant role of drug-induced al-
terations of hippocampus-dependent learning and memory in
development and maintenance of drug addiction.
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